
Vol.:(0123456789)1 3

https://doi.org/10.1007/s10040-022-02528-y

PAPER

Temporal interpolation of groundwater level hydrographs for regional 
drought analysis using mixed models

B. P. Marchant1   · D. Cuba1,2 · B. Brauns1 · J. P. Bloomfield3

Received: 14 January 2022 / Accepted: 21 July 2022 
© British Geological Survey, UKRI 2022

Abstract
Large-scale studies of the spatial and temporal variation of groundwater drought status require complete inventories of 
groundwater levels on regular time steps from many sites so that a standardised drought index can be calculated for each site. 
However, groundwater levels are often measured sporadically, and inventories include missing or erroneous data. A flexible 
and efficient modelling framework is developed to fill gaps and regularise data in such inventories. It uses linear mixed models 
to account for seasonal variation, long-term trends and responses to precipitation and temperature over different temporal 
scales. The only data required to estimate the models are the groundwater level measurements and freely available gridded 
weather products. The contribution of each of the four types of trends at a site can be determined and thus the causes of 
temporal variation of groundwater levels can be interpreted. Validation reveals that the models explain a substantial propor-
tion of groundwater level variation and that the uncertainty of the predictions is accurately quantified. The computation for 
each site takes less than 130 s and requires little supervision. Hence, the approach is suitable to be upscaled to represent the 
variation of groundwater levels in large datasets consisting of thousands of boreholes.
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Introduction

The groundwater yield from boreholes is typically a func-
tion of groundwater level (GWLs; Gleeson and Ingebritsen 
2016; Ascott et al. 2019). Groundwater hydrographs pro-
vide information about the continuously changing status of 
groundwater resources at a site. In this context, groundwater 
hydrographs are useful in the quantification and management 
of the response of groundwater to meteorological drought 
(Van Loon 2015). In particular, standardised groundwater 
hydrographs are used in studies of episodes of major drought 
to compare differences in the response of groundwater sys-
tems between sites (Bloomfield et al. 2015; Marchant and 
Bloomfield 2018) and with standardised data for other com-
ponents of the hydrological cycle and driving meteorology 

to understand the propagation of droughts through the ter-
restrial water cycle (Folland et al. 2015; Van Loon 2015).

Standardised meteorological and hydrological time series, 
such as the Standardised Precipitation Index (SPI; McKee 
et al. 1993), the Standardised Precipitation Evapotranspira-
tion Index (SPEI; Vicente-Serrano et al. 2010), the Stand-
ardised Streamflow Index (SSI; Barker et al. 2016; Sven-
sson et al. 2016) and the Standardised Groundwater level 
Index (SGI; Bloomfield and Marchant 2013), are estimated 
using a wide range of techniques that include distribution 
fitting and nonparametric methods (Svensson et al. 2016). 
These methods all require data on a common, regular time 
step. Unfortunately, even when GWL data are collected at 
a nominally consistent frequency, temporal irregularity and 
missing observations are still commonplace (Marchant and 
Bloomfield 2018; Peterson and Western 2018).

An additional challenge when working with raw GWL 
observations, and one particularly pertinent to the study of 
hydrological extremes such as groundwater droughts, is the 
presence of outliers. These observations must be analysed 
in detail and, if they are thought to be erroneous, removed 
from the data prior to model estimation. Analyses of major 
groundwater droughts are increasingly making use of 
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improved access to time series data from hundreds to thou-
sands of observations wells (Kumar et al. 2016; Marchant 
and Bloomfield 2018), so a final requirement is that any 
approaches to GWL interpolation and outlier identification 
and removal should ideally be applicable to large observa-
tional datasets and large-sample hydrology problems (Gupta 
et al. 2014).

Similar challenges exist in the wider environmental sci-
ences such as meteorology and water quality monitoring. 
Shabalala et al. (2019) and Zhang and Thorburn (2022) 
review data infilling methodologies in these contexts.

Here, a flexible mixed model (Dobson 1990) approach 
is described that combines monthly GWL interpolation to 
infill missing observations with identification and removal 
of outliers. The method is illustrated with six GWL hydro-
graphs from various aquifers in the UK (Allen et al. 1997). 
However it is explicitly designed to apply to large-sample 
problems, such as regional- to continental-scale groundwa-
ter drought analysis, where metadata associated with sites 
may be minimal and may be effectively restricted to gridded 
meteorological data (Brauns et al. 2020).

Previously applied approaches to temporal interpolation 
of GWLs differ with regards to (1) whether and in how much 
detail the processes that drive GWL variation are accounted 
for and (2) the heuristic or statistical methods used to pre-
dict GWLs on dates when they have not been measured. 
According to anecdotal evidence from Peterson and Western 
(2018), a variety of heuristic approaches are often adopted—
for example, where GWLs are interpolated within a time 
series between observations to the date of interest; by the 
adoption of data from temporally closest points; or, by aver-
aging data over some appropriate period. These methods 
are not ideal since they are generally not easily replicated 
across sites or between studies and can lack rigorous jus-
tification. In contrast, Zaghiyan et al. (2021) consider for-
mal statistical approaches when infilling groundwater data. 
These approaches follow standard protocols and are more 
easily replicated but they do not utilise knowledge of the 
local weather, hydrology and hydrogeology. Marchant and 
Bloomfield (2018) address this issue using linear mixed 
models. These models combine linear relationships between 
GWLs and drivers of variation such as seasonality and pre-
cipitation with statistical models of the degree of tempo-
ral auto-correlation in the observed data from a site. Other 
modelling approaches represent the drivers of groundwater 
variation in more detail. For example, lumped conceptual 
models for the simulation of GWL time series (Birtles and 
Reeves 1977; Keating 1982; Kazumba et al. 2008; Mackay 
et al. 2014) include the movement of precipitation through 
the hydrogeological system to the location of an individual 
borehole, whereas physically based process-driven-regional-
groundwater models investigate complex groundwater flow 
systems and the impacts of environmental changes on those 

systems more widely (Zhou and Li 2011). The linear, con-
ceptual and regional groundwater models can all be used to 
model GWLs on a regular time step at a location. The more 
detailed models can lead to more accurate predictions if suf-
ficient data are available for their calibration. However, this 
is often not the case (Trichakis et al. 2017; Hellwig et al. 
2020), and regional groundwater models, in particular, can 
suffer from challenges associated with equifinality (Beven 
2006), where there is insufficient data to assess which physi-
cal processes are driving GWL variation.

When modelling the spatio-temporal status of groundwa-
ter droughts across 948 GWL monitoring sites in the Chalk 
aquifer of the UK, Marchant and Bloomfield (2018) chose 
to adopt a statistical mixed-model approach. They noted that 
although lumped models are much less demanding of data 
for calibration than physically based distributed groundwa-
ter models, they still need some assumptions to be made 
regarding the range of possible model structures and may 
require more parameters to be fitted than equivalent statis-
tical models such as a mixed model. Simultaneously and 
independently of Marchant and Bloomfield (2018), Peter-
son and Western (2018) published a model for the tempo-
ral interpolation of groundwater hydrographs at a site that 
combined a soil moisture/recharge model with a statistical 
model. The approaches of both Marchant and Bloomfield 
(2018) and Peterson and Western (2018) rely on a combina-
tion of an impulse response function (IRF) or linear transfer 
function noise (TFN) model to account for meteorological 
forcing of GWLs (von Asmuth et al. 2002; von Asmuth and 
Bierkens 2005), and some form of temporal interpolation of 
the portion of groundwater variation that is not explained by 
this forcing model.

Peterson and Western (2018) used a TFN model that 
simulated changes in groundwater head by water leaving a 
soil-water store on a daily time step using daily precipita-
tion and areal potential evapotranspiration (Peterson and 
Western 2014) applied to a simple soil-moisture partition-
ing model, whereas Marchant and Bloomfield (2018) esti-
mated monthly changes in head by implementing the pre-
cipitation IRF of von Asmuth et al. (2002) combined with 
sinusoids of periods of 6 and 12 months added as fixed 
effects to their mixed model to represent seasonal vari-
ation caused by evapotranspiration. This latter approach 
was taken as they did not have appropriate data to calibrate 
soil-moisture models at their 948 study sites. Peterson and 
Western (2018) and Marchant and Bloomfield (2018) then 
both predicted heads at the desired time points using inter-
polation techniques that are more commonly applied in 
a spatial context (Webster and Oliver 2007). Due to the 
simple representation of change in groundwater head in 
Marchant and Bloomfield (2018), it is more amenable for 
use in large-sample studies of groundwater drought where 
supporting metadata related to aquifer properties is usually 
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lacking; however, it has limitations. The model does not 
explicitly take account of temperature and had limited 
success in fitting data from sites where there were appar-
ent trends, perhaps affected by extrinsic, anthropogenic 
factors. The fixed effects component of the mixed model 
of Marchant and Bloomfield (2018) has been extended 
here to include further covariates and explicitly account 
for temperature. Also, the estimation of the mixed mod-
els proposed by Marchant and Bloomfield (2018) is time-
consuming, and it is impractical to scale up the process to 
multiple thousands of sites; therefore, efficiencies in the 
model estimation procedure have been sought.

To date, there have been few studies of groundwa-
ter outliers, despite their common occurrence in obser-
vational data. Errors may arise due to mistakes in data 
recording and transcription, but outliers might also reflect 
changes in the borehole, such as collapse or changes in 
reference datum or logger position. Data quality ‘flags’ 
can be attached to observations during data management; 
however, systematic identification of outliers is rare. Fol-
lowing a series of data control steps, such as checking 
well location and that reported groundwater heads were 
below ground level for unconfined aquifers, Tremblay 
et al. (2015) identified outliers as those beyond an arbi-
trary depth threshold related to a local mean level. Li 
et al. (2016) identified observations of more than three 
standard deviations from a smoothed hydrograph. Peterson 
et al. (2018) fitted a double exponential smoothing time-
series model to identify a ‘noise envelope’ and excluded 
GWL observations outside the envelope. Marchant and 
Bloomfield (2018) performed cross-validation on their 
fitted mixed model of GWLs and removed observations 
with standardised squared prediction errors (SSPE) of 
greater than 50 before refitting the mixed model. A similar 
approach to Marchant and Bloomfield (2018) is adopted 
here in the revised mixed model.

Following a brief description of the case study sites and 
data, the methodology for estimating GWLs using mixed 
models with an extended set of covariates is presented along 
with a description of the outlier identification method. The 
results for six sites from the UK are presented and discussed 
in the context of the application of the approach to large-
sample analysis of groundwater hydrographs and particu-
larly in the context of regional- to continental-scale drought 
analysis. The six sites are chosen because of their contrast-
ing patterns of variation with different degrees of seasonal-
ity and evidence of long-term trends, and the contrasting 
number of missing observations. Extensive validation is 
performed to assess the accuracy of the approach for predict-
ing GWLs on dates when they were not observed, determin-
ing the uncertainty of these predictions and estimating SGI 
values. In the validation exercise, temporal gaps of different 

lengths are introduced to the observation record to assess the 
minimum data requirements for its application.

Statistical theory

Linear mixed models

Our temporal modelling procedure is based upon linear 
mixed models of the form:

where z = (z1, z2, …, zn)T is a vector of n GWL measurements, 
and zi = z(mi), where mi is the number of months since the 
start of the study period; M is an n × q design matrix con-
taining q temporally varying covariates recorded at each of 
the n observation times; β = (β1, β2, …, βq)T is a vector of q 
regression coefficients, and ε is a vector containing n nor-
mally distributed residuals. The elements of the Mβ term 
relate the variation in GWLs to available covariates or driv-
ing variables and are referred to as the fixed effects. The ε 
residuals or differences between the observed GWLs and 
the fixed effects are referred to as the random effects. The 
random effects are assumed to have been realised from a 
Normal distribution, and have zero mean and covariance 
matrix C. Nondiagonal elements of C can be nonzero, which 
indicates that the random effects can be temporally corre-
lated. This formulation of the model uses data on a monthly 
time step, although the approach can also be applied to daily 
recorded data.

The elements of C can be determined from a parametric 
covariance function, C(τ), such as the nested nugget and 
Matérn function which relates the degree of correlation 
between a pair of observed groundwater measurements to τ, 
the number of months separating the measurements:

where

Γ is the gamma function and Kν denotes the modified 
Bessel function of order ν. The covariance function has four 
parameters, the nugget variance c0, the partial sill variance 
c1, a temporal parameter a and a smoothness parameter ν. 
The variance of the random effects at each time is equal to 
the sill variance or c0 + c1. The covariance between two ran-
dom effects separated by an infinitesimal temporal lag is c1. 
The covariance function decays towards zero as τ increases. 
The smoothness parameter controls the shape of the function 

(1)
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for small τ, whereas the temporal parameter controls the 
timescales over which the random effects are correlated.

In contrast to many time series analysis methods, the linear 
mixed model does not require that the GWLs are observed at a 
regular frequency. Indeed, linear mixed models are commonly 
applied to spatial problems in which measurements are made 
irregularly across a study area. The covariance matrix can be 
calculated for observations made at any set of times, and the 
model estimation procedure accounts for the varying degree 
of correlation between pairs of observations.

The covariance parameters α = (c0, c1, a, ν)T and the regres-
sion parameters β = (β1, β2, …, βq)T of the linear mixed model 
must be estimated from available data. This can be achieved 
with the maximum likelihood estimator which uses a numerical 
optimization algorithm to find the parameter values which lead 
to the maximum achievable value of the log-likelihood function:

L(zǀα, β)= Constant − 1
2

 ln ǀC(α)ǀ − 1
2

 (z−Mβ)TC(α)−1(z−Mβ)

In general, this optimisation is computationally demand-
ing. The log-likelihood must be calculated for sufficient sets of 
parameter values to determine the values of the q + 4 parameters 
that result in the largest likelihood. Each calculation of the like-
lihood function requires the computation of the Matérn covari-
ance function for each element of the covariance matrix and 
then the inversion of this matrix. The computational expense of 
the optimisation can be reduced by differentiating Eq. (4) and 
noting that for a given α the log-likelihood is maximised when

β =  β = (MTC(α)−1M)−1MTC(α)−1z

Further efficiencies can be achieved by constraining the 
parameters of the linear mixed model. For example, the 
smoothness parameter, ν, of the Matérn function could be 
fixed rather than estimated. In, particular, if ν is set to 0.5 
then the nested nugget and Matérn function reduce to the 
nested nugget and exponential model:

This leads to great computational efficiencies because 
each evaluation of the covariance matrix no longer requires 
calculation of gamma and Bessel functions and because 
fewer evaluations of the log-likelihood function are required 
to estimate one fewer parameter.

Variable selection

When using linear mixed models, a practitioner must decide 
which covariates to include in the fixed effects. The fixed 

(4)

(5)

(6)C(𝜏) =

{
c0 + c1 if 𝜏 = 0

c1 exp
(
−

𝜏

a

)
for 𝜏 > 0

effects should reflect the proportion of the variation of GWLs 
that can be explained by seasonal variation, weather variables 
or long-term trends. Omission of key covariates could mean 
that the fixed effects explain a smaller than necessary propor-
tion of the variation. If too many covariates are included, the 
model might be overfitted, meaning the model is too closely 
tuned to features of the calibration data so it predicts the GWL 
at other times relatively poorly. Various statistical tests can be 
used to assess whether the inclusion of a particular covariate 
is justified by the resultant improvement in the model fit. The 
Akaike Information Criterion (AIC; Akaike 1973):

where k is the number of estimated model parameters, is 
often used to compare linear mixed models of spatial vari-
ation (Webster and Oliver 2007). The set of covariates that 
minimises the AIC is thought to best manage the trade-off 
between model complexity (number of parameters) and the 
model fit (the likelihood).

The result of any assessment of the necessity of includ-
ing a particular covariate in a model might vary according 
to which covariates are also present. Hence, the order in 
which covariates are introduced to the model could influ-
ence which covariates are eventually selected—for example, 
increased water abstraction from an aquifer could lead to a 
steady decrease in the GWLs. This could be explained in a 
linear mixed model by including the rate of abstraction as 
a covariate in the fixed effects. Alternatively, the temporal 
trends that result from abstraction could be represented by 
including the date of observation as a covariate. In isolation, 
either of these covariates is likely to improve the model, but 
if the other covariate is already present, they might not lead 
to a substantial further improvement. It is therefore impor-
tant to preselect covariates that could potentially be included 
in the linear mixed model to ensure that they are not strongly 
correlated and likely to explain similar patterns of variation.

Stepwise regression procedures are often used to manage 
the order in which the potential covariates are considered. A 
stepwise procedure using forward selection starts from a linear 
mixed model where the fixed effects are constant. Then a series 
of models are estimated where the fixed effects are a constant 
and one of the potential covariates that are being considered. 
The covariate that leads to the smallest AIC is added to the 
model provided that this AIC value is less than that for the 
model with constant fixed effects. The procedure then contin-
ues until the addition of any of the remaining covariates fails to 
improve the AIC value. A backwards-selection procedure com-
mences with a model that includes all of the potential covari-
ates and then iteratively removes covariates until the removal 
of any of the covariates causes the AIC to increase. Such step-
wise methods can be computationally demanding since they 
require the estimation of multiple linear mixed models.

(7)AIC = 2k − 2L

 ̂
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Prediction

Once the parameters of a linear mixed model have been esti-
mated, it can be used to predict the GWL at any time where 
it has not been observed using the empirical best linear unbi-
ased predictor (E-BLUP; Lark et al. 2006). The predictor com-
bines the values of covariates at the prediction time, and the 
regression relationship within the fixed effects with the GWLs 
observed close to the prediction time. The covariates included 
in the fixed effects design matrix must be known for all times 
where predictions are required. The relative weight given to 
the regression relationship and the observations will depend 
on the degree of temporal correlation within the random 
effects and the time lag between the available observations 
and the prediction time. If the random effects are independ-
ent, the predictor only uses the regression relationship. For 
the linear mixed model with Normal fixed effects (Eq. 1) the 
E-BLUP outputs are the expected GWL, ẑi , and the variance 
of this prediction, �2

i
 after mi months. These outputs are suf-

ficient to specify the entire probability density function (pdf) 
of the groundwater prediction mi months after the start of the 
study period and to determine the probability that any speci-
fied GWL might have occurred.

Validation

The use of a specific linear mixed model implies various 
assumptions about the variation of GWLs. Validation of 
these assumptions is crucial to ensure the accuracy of the 
predictions. Also, validation can identify problems in the 
model estimation procedures and indicate outliers amongst 
the measurements which might be erroneous.

The model should accurately predict GWLs without bias 
and the predicted model variances should reflect the size of 
the errors in the model predictions. Validation procedures 
compare model predictions to observed data. Ideally, the data 
would not have been used to calibrate the model but a sparsity 
of data or the time required to repeatedly calibrate a model 
with different subsets of the data can make this impractical. 
In this circumstance, a ten-fold cross-validation might be per-
formed. Each of the observations are randomly allocated to 
one of ten ‘folds’. The linear mixed model is calibrated using 
all of the available data but at the prediction stage, one fold is 
omitted and the model is used to predict the GWL at the times 
of the observations within that fold. The prediction process is 
repeated missing out a fold in turn so that each observation 
can be compared to a predicted value.

The metrics used to assess model accuracy when valida-
tion has occurred at nv times include the mean error:

and the root mean squared error (RMSE),

Unbiased and accurate predictions will lead to small val-
ues of these metrics but Eqs. (8) and (9) cannot be used to 
compare the effectiveness of modelling at different locations 
where the groundwater measurements have different vari-
ability. If such comparisons are relevant, then the propor-
tion of variance explained by the model or the correlation 
between the observed GWLs and the modelled values might 
be calculated. The Pearson correlation coefficient indicates 
whether a linear transformation of values of a variable can 
lead them to be similar to values of another variable. Obser-
vations and model predictions should be similar without 
applying a linear transformation. Therefore, Lin’s concord-
ance coefficient is a more relevant validation metric:

where ρc(x, y) is Lin’s concordance coefficient for variables 
x and y, ρ(x, y) is Pearson’s coefficient, var(x) is the variance 
of x and μx is the mean of x. Lin’s concordance coefficient 
can take values between –1 and 1, and a value of 1 indicates 
an exact match between the two variables.

The prediction variances or uncertainty of the predictions 
can be assessed by calculating the standardised prediction 
error (SPE) at each validation time:

If the linear model has correctly quantified the uncertainty, 
then the θi should be realisations from a standardised (zero 
mean and unit variance) Normal distribution, and the mean 
squared SPE should be 1 (Lark et al. 2006). The θi can also be 
used to assess whether the model indicates that an observation 
is very unlikely to occur and is an outlier—for example, there 
is a probability of less than 0.003, according to the model, of 
the observed value leading to a magnitude of θi greater than 3.

Methods

Case study sites and data

Groundwater level data from six UK boreholes were consid-
ered. Three of the sites (A–C in Fig. 1) are located on the Permo-
Triassic sandstone aquifer, and three on the Cretaceous Chalk 

(8)ME =
1

nv

∑nv

i=1

{
zi − ẑi

}

(9)RMSE =

[
1

nv

∑nv

i=1

{
zi − ẑi

}2

] 1

2

(10)�c(�, �) =
2�(�, �)

√
var (�)

√
var (�)

var (�) + var (�) +
�
�x − �y

�2

(11)𝜃i =
zi − ẑi

𝜎i
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aquifer (D–F). The Chalk and Permo-Triassic sandstone aquifers 
(Fig. 1) are the two most important aquifers in the UK each provid-
ing regionally important public water supplies, water for agriculture 
and industry, and in the case of the Chalk, significant baseflow to 
overlying rivers and wetlands (Allen et al. 1997; Jones et al. 2000; 
Bloomfield et al. 2009). All six sites are observation, not abstrac-
tion, boreholes and part of the national GWL monitoring network. 
Although Heudorfer et al. (2019) have recently proposed 45 indices 
to classify groundwater hydrographs based on three principal classes 
of descriptors (structure, distribution and shape), the six hydrographs 
used here have been selected to reflect the typical variation in fre-
quency and density of observations as much as the variety of form 
in GWL hydrographs in the UK. Notwithstanding this, hydrographs 
were selected (based on visual inspection) that showed both strong 
seasonality (sites D and F), extra-annual correlation (C and E), and 
upward (A) and downward (B and C) trends. The monthly medians 
of the observed data are included in Fig. 2. All six hydrographs have 
irregular temporal observations and periods of missing data over the 
analysis period, January 1980 to December 2015—for example, at 
site C, GWL observations are approximately weekly between 1980 
and 1988 and approximately monthly from 1989 to 1994. In 1995 
there are only four approximately quarter annual observations and 
from 1996, the observations are typically daily.

Groundwater level data for the six sites were obtained from the 
British Geological Survey (BGS) database (British Geological 
Survey 2020). Table 1 summarises the level data and hydrogeo-
logical characteristics of each site. Observation boreholes in the 
UK are typically open over extended depth intervals representative 

of the full thickness of the active aquifer. This is the case for the 
observation boreholes in this study (Table 1), although note that 
slotted casing is present in the three Permo-Triassic observation 
boreholes in the upper-most sections of the boreholes to prevent 
collapse. Consequently, groundwater levels from such observa-
tion boreholes reflect piezometric heads in the regional ground-
water system. The length of the record, as well as the sampling 
frequency, varies from borehole to borehole. When multiple 
measurements were available within a month, the median was 
calculated. As is often the case, the records were not complete and 
had a varying number of missing observations. Table 1 includes a 
note on the total number of ‘missing’ months for each hydrograph.

Both monthly precipitation and air temperature data are 
used in the mixed model to estimate monthly GWLs. The 
precipitation data were downloaded from the Global Precipi-
tation Climatology Centre (GPCC), version 2018 (Schneider 
et al. 2018). A gridded product, the data has a spatial resolu-
tion of 0.25 × 0.25° with a temporal coverage ranging from 
January 1891 to December 2016. A precipitation time series 
was extracted for all boreholes by selecting the grid cell clos-
est to the borehole location. For the temperature variable, the 
dataset selected (CRU TS v 4.03) was sourced from the Cli-
mate Research Unit (CRU) based at the University of East 
Anglia (Harris et al. 2020). The data were interpolated into 
a 0.5 × 0.5° grid using angular weighted distance. The data 
cover the period starting from 1901 and ending in 2018 with 
monthly frequency. Like the precipitation dataset, a tempera-
ture time series was obtained for each borehole by extracting 
the data for the grid cell closest to the borehole location.

Statistical modelling

Linear mixed models

Linear mixed models (Eq. 1) were used to represent the varia-
tion of monthly GWLs at each of the six locations considered 
in this study. The models could potentially be reformulated to 
consider GWLs with any other temporal frequency. Different 
covariates were included in the fixed effects to represent (1) a 
constant, (2) seasonal variation, (3) long-term temporal trends, 
(4) responses to rainfall and (5) responses to temperature:

1.	 A constant. A nonzero constant can be accommodated 
in the fixed effects by including a column in the fixed 
effects design matrix (Eq. 1) where every row is 1.

2.	 Seasonal variation. Sinusoidal terms with period 12 
months represented the seasonal variation. Two columns 
were included in the fixed effects design matrix, equal to:

(12)sin

(
2�mi
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)
and cos
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2�mi
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Fig. 1    Locations of the six study boreholes in the UK, © UKRI 2022
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	   The estimated regression coefficients controlled both the 
magnitude of the sinusoid and its phase (i.e. the month of 
the year in which the seasonal term was largest).

3.	 Long-term temporal trends. A linear trend in GWLs 
throughout the temporal window of the data can be 
included in the fixed effects via a column of the design 

Fig. 2   Groundwater level 
(GWL) observations and model 
predictions for the six sites. 
Observed GWLs (black dots), 
predicted GWLs for months 
where observations are missing 
(red dots), removed outliers (red 
circle), outliers according to 
absolute SPE threshold of three 
(grey circles) predicted fixed 
effects (grey line)
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Table 1   Summary site metadata and statistics (minimum, maximum, mean, standard deviation (s.d.) and number of months with no observa-
tions) for GWLs observed at six UK boreholes. aOD above Ordnance Datum, bgl below ground level, masl meters above sea level

Borehole Datum (m 
aOD)

Total depth 
(m)

Completion Aquifer Min (m asl) Max (m asl) Mean (m asl) s.d. (m asl) Missing

A 48.14 100 Casing to 41.0 
m bgl

Permo-Triassic 
Sandstone

20.64 28.64 24.41 2.25 150

B 4.77 45.7 Casing to 20.5 
m bgl

Permo-Triassic 
Sandstone

-1.73 1.32 -0.55 0.66 39

C 74.57 36.6 Casing to 21.9 
m bgl

Permo-Triassic 
Sandstone

67.09 68.43 67.63 0.37 16

D 98.76 21.7 Open hole Cretaceous 
Chalk

78.11 99.84 87.19 6.49 34

E 138.17 80.8 Open hole Cretaceous 
Chalk

81.11 93.17 87.46 1.95 20

F 29 21.3 Open hole Cretaceous 
Chalk

21.36 29.05 23.32 1.09 91
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matrix equal to mi. However, many long-term trends 
are likely to be nonlinear, perhaps reflecting changes 
to the amount of water extracted from the aquifer. Non-
linear trends can be accommodated using spline basis 
functions as columns of the fixed effect design matrix 
(Marchant 2021). These relatively smooth functions 
each focus their nonzero values on a different portion 
of the study period. When multiplied by corresponding 
regression coefficients, such basis functions can lead to 
highly flexible and smooth nonlinear trends. The times 
at which the different spline basis functions meet are 
called knots. Cyclic spline basis functions (Wood 2017) 
include a constraint that the values of the spline term at 
the start and end of the study period are identical. In this 
paper, four cyclic spline basis functions are combined 
with a linear trend. The knots for the spline functions 
are evenly spaced so that each function covers 9 years. 
The linear trend term controls the difference between the 
fixed effects at the start and end of the temporal window, 
whereas the cyclic spline terms control the deviations 
from the linear trend. If the statistical significance of 
the linear trend regression coefficient term is tested, then 
this test assesses whether GWLs have changed during 
the temporal window (after accounting for the other 
fixed effects), but this change is not necessarily linear. 
The mean of fixed effects produced from cyclic spline 
basis functions can be controlled according to the value 
of their regression coefficients. Therefore, the constant 
fixed effect term is removed when the cyclic splines are 
included in the model.

4.	 Responses to precipitation. According to a standard lin-
ear mixed model (Eq. 1), the variable of interest, such 
as GWLs, immediately respond to changes in the covari-
ates included in the fixed effects design matrix. How-
ever, the GWL response to precipitation can occur over 
timescales of multiple months or years, with the exact 
timescale varying between sites according to the hydro-
geological setting and the time required for water to 
flow to the groundwater store (Bloomfield and Marchant 
2013). Therefore, it is not sufficient to include a time-
series of monthly precipitation as a column of the fixed 
effects design matrix. Instead, it is necessary to account 
for the precipitation over multiple months prior to each 
observation. This could be achieved by including np pre-
cipitation time series p(mi – τ) for τ from 0 to np – 1 as 
columns of the design matrix, but that would lead to 
a model with a large number of regression parameters 
that is likely to have a large AIC value (Eq. 10). Alter-
natively, the average rainfall over the np months could be 
included as a single column of the fixed effects design 
matrix. However, this would imply that the rainfall np − 1 
months prior to an observation date controls the GWL 
to the same degree as the rainfall in months much closer 

to the observation date. Von Asmuth et al. (2002), and 
later Marchant and Bloomfield (2018), modelled lagged 
response to precipitation at a location using an IRF and 
an observational time series of precipitation. Such a 
term could be included via a single column of the fixed 
effects design matrix with rows equal to:

	 
where rp(τ) is the precipitation IRF and p(mi) is the aver-
age precipitation for month mi from the start of the study 
period. The IRF can be written

where Ap, ap, and sp are parameters and Γ(sp) is the 
gamma function of order sp.

	   In this paper, the precipitation term is expressed as an 
IRF in the form of Eq. (14). For each IRF, the value of A is 
selected to ensure that the rp(τ) in Eq. (14) sums to one for 
τ = 0,1,…, np– 1. This permits meaningful visual compari-
son of the IRFs from different sites but does not affect the 
model fit since this term is scaled by a regression coeffi-
cient in the linear mixed model. The ap, and sp parameters 
are optimised along with the α parameters to maximise 
the likelihood function (Eq. 4) and the β parameters are 
selected according to Eq. (5). The number of months of 
precipitation included in the model is set to np = 120. Since 
the IRF parameters have to be estimated by the numerical 
optimiser, the inclusion of such a term adds to the number 
of computations required to calibrate the model.

	   The raw driving precipitation time series could contain 
seasonal variation. This seasonal behaviour was removed 
prior to including precipitation in the linear mixed model 
by subtracting the mean precipitation for that calendar 
month from each observed precipitation value.

5.	 Responses to temperature. Air temperature can influence 
GWLs since it controls the proportion of precipitation 
that evaporates before it reaches the groundwater store. 
Like rainfall, the effects of temperature are unlikely to 
be instantaneous, and therefore an impulse response 
approach is applied with a column of the fixed effects 
design matrix of the form:

	 
where rt(τ) is the temperature IRF and t(mi) is the aver-
age temperature for month mi from the start of the study 
period. The temperature IRF is defined according to Eq. 
(14) with parameters At, at, and st. In this paper nt = 120. 

(13)
np−1∑

�=0

rp(�)p
(
mi − �

)

(14)rp(�) =
Ap

sp�sp−1 exp
(
−ap�

)

�
(
sp
)

(15)
nt−1∑

�=0

rt (�)t
(
mi − �

)
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Again, seasonality in the temperature time series for 
each location is removed by subtracting the mean value 
for that calendar month.

Model estimation and variable selection

The fixed effects terms described in the preceding have been 
chosen to act largely over different timescales. Therefore, 
there should not be strong correlations between the columns 
of the fixed effects design matrix and it should be possible 
to uniquely determine the βi. Also, it should be possible to 
consider the inclusion of the different fixed effects terms 
separately, or in a prespecified order, without this greatly 
affecting the terms that are eventually selected.

 In this paper, rather than using a computationally expen-
sive stepwise approach to variable selection, they are selected 
through a series of tests in a prespecified order. In each case, a 
fixed effect term is included if it leads to a decrease in the AIC. 
First, a model with constant fixed effects is estimated, then the 
other fixed effects terms are considered in the following order:

1.	 The seasonal term
2.	 The long-term trend
3.	 The precipitation term
4.	 The temperature term

These terms were selected because they are likely to 
account for a large proportion of the variation in GWLs and 
covariate data and because the mixed effect model terms can 
be easily formulated. Other processes not included in the 
fixed effects (e.g. abstraction and hydrogeological setting) 
will impact the random effects and hence will be accounted 
for in model predictions, although their impact will not be 
readily discernible from other drivers of GWL variation.

All computations are carried out using the British Geo-
logical Survey’s Geostatistical Toolbox for Earth Scientists 
(Marchant 2018), which can be obtained from the corre-
sponding author. The computation time required for variable 
selection, estimation of the linear mixed model parameters 
and prediction of GWLs at unobserved times is recorded.

Prediction and validation

The estimated model for each site is used to predict GWLs 
for all months where observations were not available using 
the E-BLUP (Lark et al. 2006). In some circumstances, this 
might require the predictor to extrapolate beyond the infor-
mation contained in the available data—for example, if no 
observations are available for the initial years of the study 
period, then the estimated regression coefficients for long-
term temporal trends are unconstrained by data for these 
years. Prediction of GWLs in this period can be misleading 

and unreliable. This is particularly true for the highly flex-
ible cyclic spline functions which can rapidly increase or 
decrease to implausibly large or small values. In this paper, 
the long-term temporal trend covariate values for prediction 
months before the first observation month are replaced by 
the covariate values for the month of the first observation. 
If no observations are available, a similar change is also 
made at the end of the temporal window. This implies that 
any changes to the long-term temporal trends cease beyond 
the bounds of the data. Although these alterations remove 
some implausible trends, the results for months where they 
have occurred should be treated with caution because there 
is no evidence to support the assumption that trends cease. 
Related issues can arise when the random effects are auto-
correlated over a long timescale. When there is a large gap 
between the prediction time and the observation times, the 
random effects tend toward zero. This can mean that when 
the random effects include long-term temporal trends and 
observations are not available at the start or end of the study 
period, the random effects can decay towards zero beyond 
the scope of the data leading to unlikely patterns of variation.

Ten-fold cross-validation was performed for all observa-
tions at each site and the SPEs (Eq. 14) were calculated. The 
SPEs are used to indicate potentially erroneous measurements 
that are inconsistent with the statistical model. The choice of 
threshold on the SPEs is somewhat subjective. If a magnitude 
of 3 is selected, then on average, one observation amongst the 
432 months of the study period is likely to exceed this threshold 
purely because of the random variation that is consistent with 
the model. Also, any statistical model simplifies reality and is 
not exactly consistent with complex hydrogeological variation. 
Therefore, additional outliers might be identified which reflect 
the imperfect fit of the model rather than erroneous measure-
ments. In this paper, thresholds on the SPEs of magnitude 3 and 
6 are considered. Once outliers have been identified, they are 
removed from the observational record and the model is refitted 
and ten-fold cross-validation is performed again.

The effectiveness of using the E-BLUP to infill GWL time 
series is explored for different-sized gaps in the data record at 
each site. This procedure consists of selecting an observation, 
j, at random where observations are available for months mj + τ 
and mj – τ for a specified integer lag τ. All observations between 
months mj + τ and mj − τ are removed and the remaining obser-
vations and the estimated model are used to predict the GWL 
for month mj. The process is repeated 500 times for each τ and 
the mean error, root mean squared error, mean SSPE and Lin’s 
concordance coefficient are calculated.

The approximate proportion of variation explained by 
each term in the fixed effects was also calculated. First, the 
variance of the differences between the observed GWLs 
and the full modelled fixed effects was determined. Then, 
this variance was recalculated having removed the term of 
interest from the fixed effects. The approximate proportion 
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of variance explained by the removed term was assumed 
equal to the increase in variance upon removal of the term 
divided by the variance of the observations. Note, that for 
these approximations of the explained variance, the random 
effects are ignored.

Standardisation of GWL time series

Once missing observations with the GWL time series for 
a site have been infilled, the de-seasonalised and normal-
ised SGI for that site is calculated using the nonparametric 
approach described by Bloomfield and Marchant (2013).

Results

Estimation of linear mixed models

From the initial estimation of the linear mixed models with 
an exponential covariance function, a total of 27 observa-
tions with absolute SPE greater than 3 were identified across 
the six sites (Fig. 2). If the observations had been realised 
from the estimated linear mixed models for each site, the 
expected number of observations to exceed this threshold 
would have been 7. However, according to visual inspec-
tion of Fig. 2, the majority of these 27 observations only 
appear to be minor deviations from the underlying variation 
of the time series and cannot be considered to be the result 
of an obvious error in the measurement or data handling 
procedures. Four observations exceed the larger threshold 
of 6 on the absolute SPEs. These observations have more 
apparent deviations from the underlying variation. The three 
outlying observations from sites E and F can be considered 
to be global outliers since they are outside the range of the 
other observations within these time series. There is also a 
local outlier amongst the observations from site A which is 
within the range of values recorded at other times for that 
site but substantially smaller than the values from neigh-
bouring times. The observations where the larger threshold 
was exceeded were removed from the data record and the 
linear mixed models were re-estimated.

Upon re-estimation of the linear mixed models, the sea-
sonal sinusoidal term led to a decrease in the AIC and was 
included in the fixed effects for all sites except for site A 
(Table 2). The seasonal term explained less than 10% of 
the variance at sites B, C, D and E, but a more pronounced 
seasonal pattern of variation was evident at site D (52.9% 
of variance) and site F (20.7 % of variance). The long-term 
trend led to decreases in the AIC for sites A, B and C in 
accordance with the visually apparent trends. The percent-
age of variance explained at these sites was 98.9, 60.0 and 
98.9, respectively.

The precipitation IRF was included in all six models. For 
sites A, C, D, E and F, the shape of the IRF showed a rela-
tively rapid increase from lag zero up to a maximum and a 
more gradual decline whereas the function for site B declines 
monotonically and slowly from its lag zero value (Fig. 3). The 
maxima are attained after 4 months for site A, 22 months for 
site C, 2 months for site D, 8 months for site E and 4 months 
for site F. The initial increase reflects a delay in the precipita-
tion moving through the hydrological system and reaching the 
groundwater store, whereas the decline reflects the time that 
the water remains in the system. The decline is fastest for sites 
A and D and no influence of precipitation is apparent after a 
lag of 20 months. At sites E and F, the IRF decays to zero after 
around 45 and 35 months, respectively, whereas it is greater 
for more than 60 months at site C.

The temperature IRF leads to a decrease in the AIC for 
only sites C and D where it explains 0.3 and 2.6% of the 
variance, respectively. As with the precipitation IRFs for 
these sites, the temperature function for site D acts over a 
considerably smaller time scale than that for site C.

The contributions of the long-term, precipitation and 
temperature fixed effects terms are shown in Fig. 4. These 
factors make quite distinct and not strongly correlated con-
tributions at each site, suggesting that they can each be esti-
mated separately.

The auto-correlation functions for sites A, B and C 
(Fig. 5, top row) indicate that the vast majority of variation 
at these sites is explained by the fixed effects. For sites D, E 
and F, the random effects have variance equal to 0.21, 0.22 
and 0.38 times the variance of the observations, respectively. 
For site D the auto-correlation is negligible for lags of more 
than 5 months, whereas for sites E and F, some auto-corre-
lation is apparent beyond lags of 10 months.

The computation time required to select the covariates 
and estimate the linear mixed models varied between 98 
and 130 s for the six sites (Table 3). The variation in these 
times will have been partly caused by the differing num-
ber of observations and partly by the time required by the 
numerical optimisers to converge to parameter values that 
minimise the likelihood.

Table 2   Approximate percentage of variance explained by each fixed 
effects term within the linear mixed models. ‘NA’ values indicate that 
the fixed effect term was not included in the model

Borehole Seasonal Long-term Precipitation Temperature

A NA 98.9 0.3 NA
B 2.6 60.0 24.8 NA
C 0.1 98.8 11.3 0.3
D 52.9 NA 25.8 2.6
E 9.3 NA 71.2 NA
F 20.7 NA 39.7 NA
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Validation of linear mixed models

The ten-fold cross-validation results (Table 3) indicate that 
the models for all six sites are approximately unbiased, 
with the largest ME occurring for site A and equal to 3% of 
the standard deviation of the observations for that site. All 
models with an exponential covariance function explain a 
substantial proportion of variation in the observations upon 
these cross-validation tests. The largest RMSE of 36% of 
the standard deviation of the observations occurs for site 
D. These relatively large errors reflect the rapid temporal 
changes in GWLs observed at this site. Similarly, all of 
the sites have a large concordance coefficient. For sites A, 
B and C, where the long-term trend explains a large pro-
portion of the variation the concordance coefficients are 
greater than 0.98. The concordance coefficient at the other 
sites is only marginally smaller. Although site F has the 
largest random effects variance, the temporal correlation 

amongst these random effects can be used to accurately 
predict GWLs. The mean squared SPE upon 10-fold cross-
validation are generally close to 1.0, indicating that the 
uncertainty of the predictions is reliably quantified. How-
ever, at site E, the mean squared SPE is a third larger than 
expected. This could indicate that the assumptions of the 
linear mixed model are not exactly honoured at this site—
for instance, the exponential covariance function might not 
be sufficient to accurately approximate the auto-correlation 
of the random effects.

All models were re-estimated using a Matérn rather than 
exponential covariance function, and the cross-validation results 
are shown in Table 3 (note that all other figures and tables relate 
to models with an exponential covariance function). The more 
flexible covariance function did improve the mean SSPE for five 
of the six sites, including site E. There were also modest improve-
ments in the RMSEs for these sites; however, the required com-
putation times generally increased by a factor of more than five.

Fig. 3   Estimated GWL impulse 
response functions (IRFs) in 
response to precipitation (left 
panel) and temperature (right 
panel) at the six sites. Note that 
temperature IRFs for sites A, 
B, E and F do not include the 
Akaike information criterion 
(AIC) and are not included 
in the estimated linear mixed 
model
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When performing 10-fold cross-validation upon this 
dataset, most predictions occur at times near to an obser-
vation that is available to the predictor. When the lags 
between the prediction and nearest observation times are 
controlled, there is some evidence of errors increasing with 
these lags (Fig. 5). This is most apparent for sites D, E and 
F where the random effects have a larger variance and the 
auto-correlation of the random effects has a greater influ-
ence on the predictions. However, large concordance coef-
ficients (>0.75) are evident for all lags up to 15 months at 
all sites. Except for site E, the mean squared SPEs are close 
to 1.0 for all lags. The variation in these squared SPEs 
according to lag at site E is further evidence that a more 
general covariance function might be required at this site. 
When these validated GWLs are converted to SGI values, 
the RMSEs at sites A, B, and C are generally less than 0.5 
for all lags (Fig. 4, bottom row). The SGI RMSEs are gen-
erally larger for sites D, E and F, but they are always less 

than 1, indicating that the infilling procedure is explaining 
some of the variations in SGI. The SGI RMSEs at sites D, 
E and F do increase with the time to nearest observation up 
to a maximum which occurs after a number of months of 
similar magnitude to the range of temporal auto-correlation 
for that site.

Prediction of GWLs and SGI

The predicted GWLs at each site for months where they were 
not observed are shown by the red dots in Fig. 2. From visual 
inspection these predictions appear to be consistent with the 
wider trends and patterns of variation within the time series. 
The flexibility of the linear mixed models is evident in that 
varying degrees of seasonality and responsiveness to pre-
cipitation dependent on the observed GWL variation at each 
site are included in the predictions. Where long periods of 
measurements are missing, any long-term trends in the data 

Fig. 4   Contributions from the 
long-term trend (black), precipi-
tation (grey) and temperature 
(red) fixed effects to the scaled 
GWLs. Each contribution is 
shifted to zero mean
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cannot be reliably predicted. This is most evident at site A 
between 1980 and 1984 when the long-term trend is assumed 
to remain constant although there are no data to support this 
assumption.

Where there are gaps in the GWL observations span-
ning multiple months, the estimated range of tempo-
ral auto-correlation for the site influences how quickly 
the predictions converge to the fixed effects terms—for 
example, the random effects for site B are only temporally 

correlated for short lags (Fig. 5) and the predictions shown 
in Fig. 2 tend the follow the fixed effects, particularly 
between 2002 and 2003. In contrast, the random effects for 
site F have a considerably longer temporal range and larger 
and longer lasting deviations between the fixed effects and 
the model predictions are apparent (e.g. in 1997).

Figure 6 shows the GWL time series when converted 
to SGI. Although it is not the aim of this paper to analyse 
or interpret the temporal changes in SGI between the six 
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Fig. 5   The top row shows the estimated autocorrelation (AC) func-
tion of model residuals for each site. Circles indicate variance of 
residuals. The second row shows Lin’s concordance coefficient 
between predicted and observed values upon validation plotted as a 
function of time to nearest observation; the third row shows mean 

standardised squared prediction errors (SSPE) upon validation plotted 
as a function of time to nearest observation; the bottom row shows 
root mean squared error of predicted standardised groundwater level 
index (SGI) plotted as a function of time to nearest observation

Table 3   Autocorrelation (AC) 
model; mean error (ME); root 
mean square error (RMSE); 
Lin’s concordance coefficient, 
mean standardised squared 
prediction errors (SSPE) upon 
10-fold cross-validation of 
groundwater level model and 
computing time for each site. 
All sets of observations have 
been scaled to variance 1 and 
units are dimensionless

Borehole AC model ME RMSE Concordance Mean SSPE Computing 
time (secs)

A Exponential 0.03 0.17 0.98 1.14 105
Matérn 0.02 0.17 0.98 1.03 763

B Exponential 0.00 0.15 0.99 1.10 128
Matérn –0.00 0.15 0.99 1.05 762

C Exponential 0.00 0.08 1.00 1.03 130
Matérn –0.00 0.10 1.00 1.09 835

D Exponential 0.01 0.36 0.93 0.92 98
Matérn 0.01 0.35 0.93 1.01 389

E Exponential 0.00 0.22 0.97 1.33 120
Matérn 0.00 0.18 0.98 0.92 647

F Exponential 0.02 0.30 0.95 1.13 115
Matérn 0.02 0.27 0.96 1.08 680
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sites, the figure demonstrates the utility of normalised and 
standardised groundwater level hydrographs. For example, 
it is evident from visual inspection that sites D, E and F 
show broadly similar temporal variations in SGI with low 
groundwater level stands (low SGI) in 1992–1993 rapidly 
transitioning to relatively high groundwater level stands 
(high SGI) in 1994. For large regional datasets with many 
SGI hydrographs, it is possible to undertake some form of 
clustering to identify sites with similar temporal variations 
in SGI and extract and characterise droughts from those 
collections of sites (Bloomfield et  al. 2015; Marchant 
and Bloomfield 2018). Sites B and C show longer term-
declines in SGI and site A an upward trend in SGI over 

the analysis period. Previously, Marchant and Bloomfield 
(2018) have inferred that such characteristics may indi-
cate a degree of human influence on the SGI hydrographs 
(either long-term overexploitation or groundwater rebound) 
and screened such sites out of a large-sample analysis used 
for the characterisation of groundwater droughts. However, 
if long-term trends in groundwater status are the focus of 
future large-sample studies, then trend analysis of SGI time 
series, such as those shown in Fig. 6, would enable a quan-
titative assessment of changes in SGI between sites. The 
predicted GWLs and SGI values for the six sites reported 
here have been deposited in the NERC National Geosci-
ence Data Centre (Bloomfield et al. 2022).

Fig. 6   Predicted standardised 
groundwater level index (SGI) 
time series for each of the six 
sites
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Discussion

Effectiveness of linear mixed models in predicting 
GWLs

The linear mixed models presented here were computed in 
times less than or equal to 130 s and led to plausible predic-
tions of GWLs on dates where they were not observed across 
all six sites. The models are flexible enough to represent 
disparate patterns of variation including long-term trends, 
seasonal behaviour of different magnitudes and responses to 
weather variables over different time scales. Little supervi-
sion of the modelling procedure is required and it appears to 
be suitable to be upscaled to much larger studies.

The validation tests indicated that all the models lead 
to large concordance coefficients between predicted and 
observed values and that the uncertainty of the predictions 
is quantified reasonably accurately. The largest discrepancy 
between realised errors and predicted uncertainty occurs 
at site E where squared SPEs are on average 33% higher 
than expected. This discrepancy can be reduced by using 
a more complex model with a Matérn rather than an expo-
nential covariance function. For studies across a few sites, 
such modifications to the model would be desirable. How-
ever, the five-fold increase in computation times might be 
impractical for studies that include data from thousands of 
sites. The models continue to explain a substantial propor-
tion of variation when the infilled GWLs are converted to 
SGI time series.

The reliability of the uncertainty quantification implies 
that the models can be used to identify observations that are 
inconsistent with the underlying variation in GWLs at each site. 
However, some caution should be applied when deciding how 
these outliers should be interpreted and treated. Some outliers 
are likely to be present because the linear mixed models are too 
simple to represent the full complexity of GWL variation. There-
fore, a relatively large threshold on SPEs was adopted when 
identifying outliers to ensure that any removed values were very 
much inconsistent with the expected values and likely to be the 
result of errors or particularly transient processes.

The validation results appear to indicate that sufficient 
data are available at these six sites to calibrate a linear 
mixed model, infill the time series of observations, calcu-
late the SGI series and understand the temporal variation 
in drought status of each site. The most obvious limitations 
in the models occurred when long-term trends were act-
ing, but no observations were available at the start or end 
of the time series to constrain these trends. Therefore, the 
authors recommend that caution is applied in applying the 
approach if there are no observations within 12 months of 
the start or end of the study period. Validation errors do 
increase with the time lag between the nearest observation 

and the prediction time. Further recommendations include 
using only time series with no data gaps of more than 24 
months. It is also necessary that more than 150 observa-
tions are available at the site so the geostatistical model can 
be reliably calibrated (Webster and Oliver 2007). However, 
these recommendations are necessarily subjective because 
the magnitude of errors at any site is a complex function of 
the proportion of variation explained by the fixed effects, 
the degree of temporal correlation of the random effects 
and the number and configuration of missing data. Once a 
model has been estimated, it should be validated using the 
approaches adopted in this paper to confirm that it is leading 
to informative predictions. The approaches described in this 
paper could be used for study periods of shorter duration 
than the 35 years considered here, provided the aforemen-
tioned recommendations are satisfied. However, for these 
shorter study periods, it is likely to be more challenging to 
identify relationships between GWLs and climatic variables, 
particularly if the impacts of these variables are integrated 
over many months.

Effectiveness of linear mixed models in interpreting 
drivers of GWL variation

The linear mixed models can potentially include four types of 
trends in the fixed effects, namely the seasonal variation, long-
term trends, response to precipitation and response to tempera-
ture. The variable selection procedure indicates which of these 
have an impact at each site. However, when the proportion of 
variation explained by each term at each site is examined, some 
of the terms that pass a statistical test to be included in the model 
have a relatively small influence on GWLs. Therefore, the inclu-
sion of a term in the model should not necessarily be seen as an 
indication of the importance of that term in controlling GWLs.

The approximate percentages of variance explained at 
each site indicate that the dominant terms vary between sites 
in line with the authors’ expectations. There is substantial 
seasonal variation at sites D, E and F and to a lesser extent 
at site B. The long-term trend term dominates at sites A, 
B and C and precipitation explains more than 10% of the 
variation at all sites except site A. The temperature term 
is only included in the models from two sites and explains 
only a small proportion of variation. There is some weak evi-
dence to suggest that the temperature term acts over a similar 
timescale to the precipitation term and perhaps corresponds 
to a time-varying proportion of precipitation that is lost to 
evapotranspiration. Data from regions with more extreme 
temperature variation are required to explore this proposal 
in more detail. It should be noted that the seasonal term, 
when it is included, will account for the effects of seasonal 
variation in temperature. The temperature term is therefore 
explaining variation from the seasonal norm.
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It is possible to separately present the contribution of each 
fixed effect term in the model (Fig. 4). These plots indicated 
that the terms are not strongly correlated. The IRF plots 
(Fig. 3) provide a visualisation of how the hydrogeological 
system responds to precipitation and to a lesser extent tem-
perature. Expert knowledge of the system and the natural or 
anthropogenic changes it has undergone are required to inter-
pret the long-term trend components of variation. The mod-
elling procedure can be performed with any combination of 
the different covariate terms described previously and, indeed, 
additional terms which may be introduced to the model in any 
order to reflect a conceptual model of the system being studied.

Some hydrogeological conditions are not currently 
included in the fixed effects model and, if these conditions 
occur at a particular site, their impacts will be included in 
the random effects. Therefore, the model cannot be used to 
readily interpret these impacts. Such conditions include tid-
ally induced semidiurnal GWL fluctuations in coastal aquifer 
systems, nearby abstraction leading to short-term variation 
in GWLs and bodily connection with surface water bodies. 
If suitable sea level, abstraction and surface water level data 
were available then these sources of variation could be added 
to the fixed effects.

 Detailed inspection of the precipitation IRFs can pro-
vide some insight into the processes controlling the relation-
ship between precipitation and groundwater recharge (Calver 
1997)—for example, peaks in the IFRs for small lags indicate 
rapid recharge perhaps caused by piston or by-pass flow (Al-Jaf 
et al. 2020).

Conclusions

The linear mixed modelling framework developed in this paper 
is suitable to infill GWL time series from thousands of boreholes 
as required in large-scale studies of groundwater drought. The 
approach is computationally efficient, flexible, and can iden-
tify unexpected and potentially erroneous observations. The 
models can accommodate seasonal variation, long-term trends 
and responses to precipitation and temperature over different 
temporal scales and examination of the relative contributions 
of each of these terms aids interpretation of the drivers of GWL 
variation. Validation of the model predictions confirms that the 
models explain a substantial proportion of GWL variation and 
that the uncertainty of these predictions is reliably quantified.
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