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Abstract: While diversity studies and screening for enzyme activities are important elements of
understanding fungal roles in the soil ecosystem, extracting and purifying the target enzyme from
the fungal cellular system is also required to characterize the enzyme. This is, in particular, necessary
before developing the enzyme for industrial-scale production. In the present study, partially purified
α-amylase was obtained from strains of Pseudogymnoascus sp. obtained from Antarctic and Arctic
locations. Partially purified α-amylases from these polar fungi exhibited very similar characteristics,
including being active at 15 ◦C, although having a small difference in optimum pH. Both fungal
taxa are good candidates for the potential application of cold-active enzymes in biotechnological
industries, and further purification and characterization steps are now required. The α-amylases
from polar fungi are attractive in terms of industrial development because they are active at lower
temperatures and acidic pH, thus potentially creating energy and cost savings. Furthermore, they
prevent the production of maltulose, which is an undesirable by-product often formed under alkaline
conditions. Psychrophilic amylases from the polar Pseudogymnoascus sp. investigated in the present
study could provide a valuable future contribution to biotechnological applications.

Keywords: α-amylase; enzyme; Antarctic; Arctic; temperature; pH

1. Introduction

Antarctica is the least disturbed continent in the world owing to its harsh climate
and geographical isolation. It is a fertile ground for scientific exploration to identify
untapped resources from its extremophilic biota. Microbes in Antarctica are exposed
to very low temperatures, wide temperature fluctuations, desiccation, and strong winds,
which require them to produce unique enzymes and secondary metabolites as an adaptation
strategy to survive [1,2]. Likewise, much of the Arctic experiences comparable climatic
and environmental stresses, providing a foundation for studies of polar microbial diversity
and biochemical adaptations [3,4]. These regions may serve as reservoirs of unexplored
secondary metabolites and novel enzymes [5,6].

Microfungi in the polar regions play a dominant role in decomposition processes [7–9]
by secreting extracellular enzymes and other secondary metabolites [10,11]. However,
understanding of the roles of soil microfungi and their extracellular products in the general
soil ecosystem remains poor [10,12]. Even small changes in the decomposition achieved by
soil microfungi can affect the availability of carbon for heterotrophs, with these effects then
cascading through the entire trophic web. Understanding the ecophysiological responses of
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soil microfungi to environmental stress and changes therein is also an important element in
understanding how they have responded to past climates and in predicting their responses
toward future climate change. The impacts of warming caused by global climate change
are predicted to be most apparent at high latitudes [13].

α-amylases are enzymes with great importance in biotechnology, for instance, in the
food manufacturing, pharmaceutical, and textile industries [14,15]. α-amylases act on the
α-D-(1-4) glycosidic bonds in starch polymers randomly to produce the monomer glucose,
maltose (dimer of glucose), maltotriose (trimer of glucose), and other oligosaccharides [16].
α-amylases, secreted intracellularly or extracellularly, have been widely reported from
various microorganisms, especially bacteria [17,18]. Microbial α-amylases are the major
contributors amongst commercially produced α-amylases through their ‘Generally Rec-
ognized As Safe’ (GRAS) status. Fungal sources of α-amylases, such as Aspergillus oryzae
(Ahlb.) Cohn 1884, A. niger Tiegh. 1867 and A. awamori Nakaz. 1907, make a very large
proportional contribution to commercial α-amylase production [19], while A. fumigatus
Fresen. 1863 and Penicillium chrysogenum Thom. 1910 are used for the same purpose
in solid-state fermentation techniques [19–22]. The majority of these enzymes have, to
date, been obtained from mesophilic or thermophilic fungi [23–25]. It is predicted that
the reliance on chemical catalysts in industrial processes that may negatively impact the
environment will be reduced by 40% and replaced by biologically derived enzymes by
2030 [26].

Extracellular α-amylases have been reported from various microorganisms obtained
from different geographical locations. However, there are few reports of psychrophilic
α-amylases from the polar regions. A small number of studies have addressed cold-
active amylases and their role in biological processes in Antarctica from King George
Island [14,27–29], Victoria Land [30], and Wilkes Land [31], with the majority of available
reports being from the continental Antarctic [32]. To date, most enzyme studies from
the Antarctic region have focused on bacteria or, in some fungal studies, specifically on
yeasts [31,33,34]. There are, similarly, very few published Arctic fungal enzyme studies.
Some studies have used soil itself as a simple proxy to evaluate the presence of microbial
enzymes, with no attempt to identify the source organisms e.g., [35]. Other studies have
focused on either enzyme screening or the evaluation of crude enzyme activity, such as
those of lipase at Bellsund, Svalbard [36], and amylase, cellulase, pectinase, phosphatase,
esterase, protease, and urease at Ny-Ålesund, Svalbard [10,37].

Two key environmental factors to be considered in studies of enzymes are temperature
and pH [38]. The temperature has a strong influence on the physiology of soil microfungi, as
well as directly impacting the kinetics of enzymes. pH has an influence on the conformation
of the enzyme molecule and hence its activity [39]. Increasing pH can decrease fungal
growth [40], which can then affect enzyme production [41,42] and, subsequently, the
decomposition rate of soil organic matter (SOM). The two α-amylases considered in the
present study originated from Arctic and Antarctic polar regions characterized by different
environmental conditions. We set out to assess whether their responses to temperature and
pH changes differed. This report provides an important contribution to the knowledge of
psychrophilic α-amylases of fungal origin from the polar regions.

2. Materials and Methods
2.1. Culture Conditions

Strains of the fungal genus Pseudogymnoascus from Antarctic (GenBank accession
no: MF692996) [43] and Arctic (GenBank accession no: MK448240) [44] locations were
retrieved from the National Antarctic Research Centre (NARC) culture collection (held
at Universiti Malaya, Kuala Lumpur). The Antarctic culture was originally isolated from
Fildes Peninsula (GPS: 62◦11′37” S 58◦59′35” W), King George Island during the austral
summer of 2006/07, while the Arctic culture was isolated in the boreal summer of 2010
from Hornsund (GPS: 77◦00′15” N, 15◦25′02” E), Svalbard. These cultures were maintained
at 4 ◦C to match their typical summer environmental temperature.
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Both fungi were revived and cultivated separately in 1 L of minimal medium contain-
ing 1.4 g/L KH2PO4, 10 g/L NH4NO3, 0.5 g/L KCl, 0.1 g/L MgSO4, 0.01g/L FeSO4, and
20 g/L soluble starch as the sole carbon source in 2 L flasks. The pH was adjusted to 6.0
prior to sterilization and incubated at 15 ◦C. The culture condition described here is an
optimized condition determined using the one factor at a time (OFAT) method [45].

2.2. Crude Enzyme Production

After incubation for 10 d, individual flask contents were poured into 50 mL tubes
and centrifuged at 4000 rpm for 30 min at 4 ◦C to obtain a cell-free solution. To ensure
the supernatant was completely cell-free, the contents of the tubes were filtered through a
PES membrane syringe filter (0.45 µm). The filtrate contained the crude enzyme (amylase).
Each flask was filtered and processed separately, with the activity values obtained and
then averaged. The 10 mL of supernatant was prepared in 1 mL aliquots and stored
at −20 ◦C until required in order to avoid frequent freeze–thaw cycles that may reduce
enzyme activity.

2.3. Enzyme Activity Assessment

The total protein content and enzyme activity of amylase in the crude filtrates were
assayed using the Bradford Protein Assay [46] and the modified reducing sugar method [44],
respectively. For this purpose, 1 mL aliquots in 1.5 mL vials were used. Enzyme activity
(U/mL) was calculated based on the reducing sugar assay of Miller [47], using a glucose
standard curve, while protein content was determined using a BSA standard curve. The
specific activity of the enzyme was calculated by dividing enzyme activity (U/mL) by
protein content (mg/mL) and expressing the resulting value in U/mg. One unit of enzyme
is defined as the amount of enzyme required to liberate 1 µmol of reducing sugar (glucose).
The means of the specific activity of the two species were compared using the independent
samples T Test.

2.4. Partial Purification

α-amylases were purified from the crude filtrates stored at −20 ◦C. Crude filtrates
from the Antarctic and Arctic cultures were subjected to freeze-drying. Freeze-dried
crude amylase samples were diluted in approximately 20 mL of sodium phosphate buffer
(50 mM, pH 6.6) and injected into AKTA Fast Protein Liquid Chromatography (FPLC) (GE
Healthcare, UK) equipped with UNICORN software version 5.1.

A column matrix containing starch linked by epichlorohydrin was prepared following
Kobayashi et al. [48] and stored at 4 ◦C in phosphate buffer at pH 6.6 containing 20% 1 M
ammonium sulfate (AMS). The starch gel matrix was packed into a column (10 cm × 1 cm)
and equilibrated with a phosphate buffer with AMS at pH 6.6. The crude enzyme was
loaded onto the column and run at a flow rate of 0.5 mL/min. Unbound proteins were
discarded, and bound protein was eluted with the same buffer without AMS (phosphate
buffer pH 6.6). The column was adapted to an ice bath prepared with crushed ice to keep
the temperature low in order to reduce the risk of losing activity.

2.5. Enzyme Activity and Temperature and pH Optimization

The total protein content of the partially purified α-amylase was calculated using the
Bradford Protein assay [46], and the enzyme activity was calculated following Miller [47]
and Xiao et al. [49]. The assay was conducted in micro volumes in microplates. The means
of the specific activity of the enzymes were compared using the independent T Test.

Temperatures of 4, 10, 15, 20, 25, and 30 ◦C were chosen for both polar α-amylases for
optimization. Samples were incubated for 30 min. A range of pH (4, 5, 6, 7, 8, and 9) was
chosen for pH optimization, again with 30 min incubation. For pH 4.0 and 5.0, sodium
acetate buffer was used, while phosphate buffer was used for pH 6.0, 7.0, and 8.0, and
Tris HCl buffer was used for pH 9.0. Enzyme activities at each testing point were assayed
following Xiao et al. [49].
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2.6. Visualization of Partially Purified α-Amylases

A large batch culture was prepared in order to generate sufficient enzymes for visual-
ization on Sodium Dodecyl Sulfate Polyacrylamide Gel (SDS-PAGE). For this purpose, 1 L
medium of the same composition as described above was prepared and inoculated with
5 mycelial disks of 10 mm diameter. The crude extract was obtained and partially purified
as described above. The partially purified α-amylases were concentrated using a Sartorius
Vivaspin 6 MWCO 10 kDa ultracentrifuge to give a final volume of 30–100 µL. The samples
were subjected to SDS-PAGE using the Bio-Rad system following Laemmli [50]. Invitrogen
BenchMark Protein marker, which includes a wide range of proteins with molecular weight
(MW) from 15 to 220 kDa, was run together with the samples to allow estimation of the
MW of the unknown protein. Electrophoresis was stopped when the samples reached
the bottom of the resolving gel. The gel was then carefully removed from the glass plates
and placed in Coomassie Blue staining solution. Molecular weights of α-amylases were
determined using the Invitrogen BenchMark Protein Ladder with known molecular weight
as reference.

3. Results
3.1. Specific Activity of Crude Amylases

Specific enzyme activity of crude amylase obtained from Antarctic Pseudogymnoascus
sp. was greater than that of the Arctic strain. The former showed a specific activity
of 2.57 U/mg, while the latter showed 0.82 U/mg (Table 1). Homogeneity of variance
was confirmed using Levene’s F test (F(4) = 1.429, p = 0.298). The independent t test
showed a significant difference between the crude amylase from Antarctic and Arctic
Pseudogymnoascus sp. (t = 14.03, p = 0.0001).

Table 1. Purification steps for Antarctic and Arctic Pseudogymnoascus sp.

Strain Sample
Enzyme
Activity

(µmo/min/mL)

Total Protein
Content
(mg/mL)

Specific
Activity
(U/mg)

Purif-
ication

Fold

Recov-
ery
%

Antarctic
Pseudogymnoascus sp.

Crude 40.64 15.80 2.57 1 100

Partially purified
enzyme 3.71 0.74 5.01 1.95 9.13

Arctic
Pseudogymnoascus sp.

Crude enzyme 18.67 22.67 0.82 1 100

Partially purified
enzyme 3.1 0.13 23.85 29.09 16.60

3.2. Specific Activity of the Partially Purified Enzymes

Partial purification of the α-amylases was achieved by running the crude samples
through a starch gel matrix fitted to an FPLC. Specific activities of the partially purified
α-amylases from Antarctic and Arctic strains were greater than those of the crude amylases,
as expected. The partially purified sample of Antarctic Pseudogymnoascus sp. was purified
to 1.95-fold and exhibited a specific activity of 5.01 U/mg. The partially purified Arctic
sample was purified to 29.09-fold and showed 23.85 U/mg specific activity (Table 1).
Variances were tested for homogeneity using Levene’s F test (F(4) = 2.864, p = 0.166). The
independent T test showed that the α-amylase obtained from Arctic Pseudogymnoascus sp.
showed significantly greater activity compared to that of the Antarctic strain (t = −17.33,
p = 0.0001).

3.3. Temperature and pH Optimization

Antarctic α-amylase produced the highest activity at a temperature of 15 ◦C. The
activity of this enzyme was also higher at 10 ◦C in comparison with measurements at the
higher temperatures of 20, 25, and 30 ◦C, although not significantly different (Figure 1). The
optimum pH for α-amylase from this isolate was 6.0. One-way ANOVA was conducted as
the data were distributed normally, which indicated that there were significant differences
across the pH range tested (F(5, 12) = 265.01, p < 0.01). Tukey pairwise post hoc tests
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indicated that enzyme activities observed at pH 6.0 and 7.0 were significantly higher than
at the other pH levels tested (Figure 2). α-amylase obtained from Arctic Pseudogymnoascus
sp. also showed optimum performance at a temperature of 15 ◦C. As the data were not
normally distributed, Kruskal–Wallis ANOVA was conducted. This showed that there
was a significant difference across temperatures (H(5) = 14.60, p < 0.05) in enzyme activity.
Further post hoc pairwise comparisons showed a pairwise significant difference between
15 ◦C and 30 ◦C (Figure 1). The optimum pH of the Arctic α-amylase, 5.0, was slightly
more acidic than that of its Antarctic counterpart. Kruskal–Wallis ANOVA was conducted
as the data were not normally distributed, which showed there was a significant difference
(H(4) = 13.28, p < 0.01) between enzyme activity tested across the range of pH. Further
non-parametric post hoc pairwise comparisons identified a significant difference between
pH 4.0 and pH 5.0 (Figure 2).
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3.4. Determination of Molecular Weight by SDS PAGE

The molecular weights of the two α-amylases were estimated with reference to a
standard curve built using the BenchMark protein marker. The band obtained in SDS PAGE
indicated the presence of partially purified α-amylase of each strain. The Antarctic and
Arctic α-amylases were both estimated to have a molecular weight of 68 kDa (Figure 3).
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Figure 3. This figure shows 12% Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis of
(a) Antarctic α-amylase from Pseudogymnoascus sp. stained in Coomassie Blue. (Lane 1: Invitrogen
BenchMark Protein marker, Lane 2: Partially purified α-amylase from Pseudogymnoascus sp. from the
Antarctic); (b) Arctic α-amylase from Pseudogymnoascus sp. stained in Coomassie Blue. (Lane 1: Invit-
rogen BenchMark Protein marker, Lane 2: Partially purified α-amylase from Pseudogymnoascus sp.
from the Arctic).

4. Discussion

The optimum temperature of α-amylases obtained from both polar strains in the
present study was 15 ◦C, confirming that both strains produce cold-active enzymes, which
could be an adaptation strategy [51,52]. Cold-active enzymes are reported to have low
conformational stability [53], which may be a result of random genetic drift [54]. However,
the increased activity at lower temperatures does not affect the overall protein stability [55].
In the present study, the reduction in activity as temperature increased indicates the tertiary
structure of the enzyme loses its stability [56]. The underlying molecular mechanism for
this cold adaptability could be due to (a) core hydrophobicity reduction, surface hydropho-
bicity increment, a low arginine/lysine ratio, weak interaction between inter-domain and
inter-subunits, more and extended loops; (b) alpha helices in the secondary structure;
(c) reduction in content of secondary structure, reduced and weak metal binding sites,
fewer disulfide bridges, and electrostatic interactions; and, finally, (d) reduced oligomeriza-
tion and an increase in the non-conformational entropy of the unfolded state [57–59]. As
enzyme production at industrial scales is commonly performed at low to moderate temper-
atures [60], these two candidate Pseudogymnoascus strains from the Arctic and Antarctic
have good potential for use in biotechnological applications.

The Antarctic α-amylase examined here had an optimum pH of 6.0, similar to that
reported by Iefuji et al. [61]. The Arctic α-amylase had a slightly more acidic optimum
pH of 5.0. The differences in optimum pH could be due to environmental pH, which has
a direct influence on extracellular enzymes. When there are changes in [H+] in the soil
environment, the ionization state and 3D structure of the active sites of the enzymes will be
modified [62], thereby affecting their activity [63–65]. The Arctic α-amylase, in particular,
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may be a good candidate for examination for biotechnological application because the
amount of maltulose, a by-product formed at higher pH during industrial enzymatic
reactions, is reduced considerably when acidophilic enzymes are used [66]. The acidic
pH optima of both Antarctic and Arctic α-amylases are consistent with previous reports
of bacterial and fungal α-amylases, which frequently have slightly acidic to neutral pH
optima [67].

The calculated molecular weights of the α-amylases obtained in the present study
were 68 kDa for both Antarctic and Arctic enzymes. This is consistent with α-amylase
obtained from Aspergillus sp. (68 kDa) [68]. A recent study has reported α-amylase of
bacterial origin (Pseudoalteromonas sp.) from Antarctic sea ice is 61 kDa [69]. Molecular
weights of α-amylases of microbes have previously been assessed as 50–60 kDa [70–72],
although other reports are highly variable, ranging from 10 to 210 kDa. The smallest
molecule (10 kDa) was reported from Bacillus caldolyticus [73] and the largest (210 kDa)
from Chloroflexus aurantiacus [74], both being bacteria.

Our data also showed that both polar α-amylases declined in activity as temperature
increased above 15 ◦C. Although not a primary objective of this study, this activity reduc-
tion can be related to a scenario of environmental temperature increase. It is predicted
that, by the end of this century, global mean air temperature will increase by 1.8 to 3.6 ◦C,
with this being magnified at higher latitudes [75]. Representatives of Pseudogymnoascus are
frequently reported from the polar regions e.g., [27,43,76,77], where they are believed to
play an important role in decomposition processes [78]. As polar soils typically experience
temperatures well below the fungal optimum of 15 ◦C at present [79], increasing tempera-
tures are likely to increase enzyme activity, generating positive feedback on decomposition
rates and, consequently, accelerating climate change by releasing CO2 into the atmosphere.
On the contrary, Misiak et al. [80] who conducted a study at Mars Oasis, Antarctic Penin-
sula using P. roseus suggested that as long as there is high water availability, increasing
temperature (i.e., >20 ◦C) will inhibit the growth of the fungal hyphae and eventually its
ability to decompose organic matter. Therefore, we infer that the enzyme activity increases
following temperature rise until the enzyme activity reaches a maximum point, by which
further temperature increase begins to inhibit and reduce enzyme activity.

The Antarctic and Arctic α-amylases studied here showed very similar characteristics,
with MW of 68 kDa and similar optimum temperature and acidic pH values, but neither
showed close matches to characterized enzymes in available databases. Further analysis is
needed to confirm if they are novel enzymes. In terms of purification fold, Gao et al. [29] re-
ported 5.72-fold after the first purification step, while the present study recovered 1.95-fold
amylase from Antarctic Pseudogymnoascus sp. and 29.09-fold from Arctic Pseudogymnoascus
sp. The differences between the studies are likely due to variability in the methods or
column matrices used. Both microfungi investigated in this study are good candidates for
further examination in the biotechnology industry, as they show the greatest activity at
acidic pH, which is desirable to reduce problems related to by-product formation, and an
optimum temperature of 15 ◦C, which could help to reduce energy use and costs.

Studies focused on amylases of fungal origin are extremely limited. Those studies of
cold-active enzymes that are available refer to fungi that were obtained from other parts
of the world [60,81]. As the fungi of polar regions are generally understudied, it is clear
that they could contain currently unknown enzymatic resources, such as the α-amylases
identified in the present study. Available studies involving psychrophilic or cold active
α-amylases from fungi and bacteria are summarized in Table 2. It is worth mentioning the
different enzyme characteristics between the α-amylase of Pseudogymnoascus sp. (in the
present study) and α-amylase from Geomyces pannorum R1-2 [29], which the latter showed a
fourfold increase (from 15 to 70 ◦C) despite a 5 ◦C difference culture temperature. However,
this may be due to the recombinant nature of the enzyme used in that study.
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Table 2. Characteristics of psychrophilic α-amylases from fungal and bacterial sources.

Origin
Growth Condition Enzyme Characteristics Specific

Activity
(U/mg)

MW (kDa)
Recombinant/Wild

Type Enzyme Reference
Temperature pH Optimum

Temperature
Optimum

pH

Fungi

Pseudogymnoascus sp. 15 6 15 5–6 5.01 & 23.85 68 Wild type Present study
Moesziomyces antarcticus 29 NR 62 4.2 NR 50 Wild type [82]
Geomyces pannorum R1-2

(currently known as
Pseudogymnoascus

pannorum)

20 NR 70 6.0 9.78 × 103 NR Recombinant [29]

Geomyces pannorum R1-2
(currently known as

Pseudogymnoascus
pannorum)

NR NR 40 5 12.8× 103 52 Recombinant [83]

Bacteria

Aeromonas veronii
(Bacteria) 10 NR 10 4 430 63 Wild type [84]

Bacillus cereus NR NR 20 10 175.92 55 Wild type [85]
Microbacterium foliorum
GA2 and Bacillus cereus

GA6
20 NR 20 9 & 10 NR NR Wild type [86]

strain TAC 240B NR NR 7.5 71 50 Wild type [87]
Arthrobacter

psychrolactophilus 22 7 20 NR 105 & 26 Wild type [88]

Shewanella sp. ISTPL2
(bacteria) 10 6.9 4 8 36,690.47 45 Wild type [89]

Pseudoalteromonas sp.
M175 15 8 30 7.5 289.79 61 Wild type [69]

Pseudogymnoascus sp. investigated in the present study have potential applications
in biotechnology. Furthermore, this fungal species could provide the key to answering
questions about fungal-related decomposition processes in the polar regions. However,
fundamental investigations are still required, including (a) the use of genomic and transcrip-
tomic approaches to resolving taxonomic issues and (b) obtaining the DNA sequences to
be cloned in heterologous expression systems. The recombinant protein production could
be optimized and analyzed for substrate specificity, chiral selectivity, and confirmation of
the 3D structure of the enzyme.

5. Conclusions

α-amylase obtained from Pseudogymnoascus strains of Antarctic and Arctic origin
exhibited similar characteristics in terms of optimum temperature (15 ◦C) but differed
slightly in optimum pH, although both optima were slightly acidic. However, in the
natural habitat of these microbes, temperature and pH are not the only influences on
fungal enzyme production, and other factors will be involved, such as C and N availability
and interactions with other microbes. More detailed multivariate studies are required to
enable robust conclusions to be made about microfungal function in decomposition and its
relationship with environmental variables and climate change.
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