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Summary paragraph 

Climate change is impacting virtually all marine life. Adaptation strategies will require a robust 

understanding of the risk to species and ecosystems and how those propagate to human societies. We 

develop a unified and spatially explicit index to comprehensively evaluate the climate risks to marine 

life. Under high emissions (SSP5-8.5), almost 90% of ~25,000 species are at high or critical risk, with 

species at risk across 85% of their native distributions. One-tenth of the ocean contains ecosystems 

where the aggregated climate risk, endemism, and extinction threat of their constituent species are 

high. Climate change poses the greatest risk for exploited species in low-income countries with high 

dependence on fisheries. Mitigating emissions (SSP1-2.6) reduces the risk for virtually all species 

(98.2%), enhances ecosystem stability, and disproportionally benefits food-insecure populations in 

low-income countries. Our climate risk assessment can help prioritize vulnerable species and 

ecosystems for climate-adapted marine conservation and fisheries management efforts.     
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Introduction 

Climate change is a pervasive driver of ecological change and biodiversity loss1,2, with adverse 

consequences for ecosystem health3,4, food security5–7 and human well-being8. Climate-smart management 

and conservation strategies are needed to ensure the effective stewardship of living resources now and in the 

future9–11. The success of these strategies requires a robust understanding of the differential vulnerability of 

species and ecosystems to climate change11–13. While Climate Change Vulnerability Assessments (CCVAs) 

have been advocated as an essential strategy11–13, existing frameworks have not found broad application in 

conservation and management contexts. 

One key factor inhibiting the broader application of CCVAs has been the challenge of evaluating 

species vulnerability comprehensively across three fundamental dimensions: i) their encounter with 

hazardous climate conditions (exposure), ii) their susceptibility (sensitivity), and iii) resilience (adaptivity) 

to those conditions14–17. To date, most CCVAs analyze only one or two of these dimensions16, providing an 

incomplete picture. Moreover, many CCVAs are not spatially-explicit but calculate a single vulnerability 

score across the species’ distributional range (though see exceptions18–20), potentially obscuring spatial 

variation that is critical to management and conservation objectives. CCVAs often incorporate expert 

opinions rather than quantitative empirical data12,17,19, limiting their reproducibility and ability to track 

changing vulnerability through time. Finally, vulnerability is almost exclusively reported in dimensionless 

units to compare and rank species’ relative vulnerabilities12,15–20, limiting their application because 

stakeholders often require explicit risk assessments on an absolute scale. New approaches that augment 

existing CCVAs to address this suite of limitations are thus needed to broaden their application, simplify 

communication among scientists, conservation managers and stakeholders, and facilitate climate-smart 

management strategies9,11,12.  

We address these limitations and develop an empirically rooted, spatially-explicit framework to 

assess both relative climate vulnerability and absolute climate risk for all available marine life forms and 

explore its application to conservation planning and socioeconomic development. We evaluate climate risk 

for 24,975 marine species and ecosystems globally under two contrasting greenhouse gas emission scenarios 

(SSP5-8.5: high emissions and SSP1-2.6: high mitigation). We conclude by exploring the applied 
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advantages of this framework for conservation and management by evaluating aggregate ecosystem climate 

risk in relation to priority conservation areas and assessing climate risk for exploited species within the 

exclusive economic zones (EEZs) of maritime countries and the High Seas beyond national jurisdiction.   

A climate index for marine life 

Our analysis focuses on species that inhabit the upper 100m of the water column, where climate-

driven temperature changes are most severe. Assessed marine species were primarily animals (n=24,617 

species; 98.6%), but also included plants (n=230; 0.9%), chromists (n=72; 0.3%), protozoans (n=48; 0.2%), 

and bacteria (n=8; <0.1%; Extended Data Figure 1a).  

In each 1°×1° degree grid cell (~111×111 km at the equator) across each species’ native geographic 

distribution21 (Figure 1a), validated high-resolution data sources (Table S2) are used to calculate 12 climate 

indices (Figure 1b; Table S1). The indices comprehensively capture unique information about ecological 

responses to climate change and include, for instance, species’ proximity to current22 and projected future23 

hazardous climate conditions, intrinsic resilience to perturbations24, responses to synergistic impacts3 and 

climate-driven ecosystem disruption1. The indices are then used to calculate species’ climate vulnerability 

and risk according to three dimensions: the present-day sensitivity to climate change, projected future 

exposure, and innate potential to adapt (Figure 1c). Climate vulnerability is evaluated on a relative scale 

from zero to one, with vulnerability=1 typically corresponding to a species and location where sensitivity 

and exposure indices are at their extreme highest and adaptivity lowest; (Figure 1d). Climate vulnerability 

scores are converted to an absolute risk scale ranging from negligible (lowest) to critical (highest); (Figure 

1e) using ecological thresholds (Table S4). This absolute risk score captures both the likelihood and 

magnitude of adverse consequences25 for species at the individual locations across their distribution and the 

aggregate ecosystems they compose. This translation of relative vulnerability into absolute risk using 

thresholds is analogous to the Intergovernmental Panel on Climate Change (IPCC) reasons for concern 

(RFC) framework that assesses climate risk to humans14,26 and the widely adopted International Union for 

the Conservation of Nature (IUCN) Red List Index (RLI) of extinction risk for species27. However, whereas 

the RLI assesses extinction risk at the species level and is identical across species’ distributions, the climate 

risk index for biodiversity (CRIB) presented here disaggregates climate risk and its spatial variation across 
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the sites throughout a species’ distribution and evaluates risk for both individual species and aggregate 

ecosystems (Figure 1f). Because the CRIB does not consider range expansions to new locations, it assesses 

the climate risk to the in situ persistence of species and the biotic intactness of their ecosystems; it represents 

a baseline that can be flexibly updated when confronted with new data and knowledge. See Supplementary 

Information (SI): Calculation of the indices for full methodology and an example; Extended Data Figure 2 

depicts the workflow. 

Climate vulnerability of marine species 

Climate vulnerability varies widely, both spatially and across species. The highest vulnerability score 

found in our analysis (0.92) is for a large, long-lived, range-restricted species that is heavily exploited and of 

critical conservation concern: Chinese puffer (Takifugu chinensis), at a highly impacted nearshore site near 

China under the high emission scenario. The lowest vulnerability score (0.07) is for a shorter-lived, 

vertically migrating mesopelagic, pan-global species, the Bluntsnout lanternfish (Myctophum obtusirostre), 

at an offshore site under the low emission scenario. Across an entire species’ distribution, a range-restricted 

species of critical conservation concern, Galapagos damselfish (Asurina eupalama) has the highest 

vulnerability (0.75; Figure 2a), and the Jewel fire squid, Pterygioteuthis gemmate, has the lowest (0.17). 

Substantial differences in vulnerability are seen between higher taxa (Figure 2b).  

Climate risk for marine species 

The emission scenario affects species’ vulnerabilities by modifying their anticipated exposure to 

hazardous climate change. When vulnerability scores are spatially aggregated across each species’ range 

under the high emission scenario, 2.7% of the assessed species are at critical risk, 84% are high, 13% are 

moderate, and virtually none (<1%) are at negligible risk (Figure 2a) by the year 2100. In contrast, 1.3% of 

assessed species under the low emission scenario are at critical risk, 54% are high, 44% are moderate, and 

0.3% are at negligible risk by 2100. The benefits of emission mitigation are near-universal, with 98.2% of 

species less vulnerable and all species less exposed to hazardous climates (Figures S53-S54). The few 
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species that become more vulnerable under emissions mitigation tend to be broadly distributed but have 

highly fragmented and restricted distributions (<=2% of the global area).  

Despite the ubiquitous benefits of emission reduction, relative gains differ among taxa (Figure 2b). 

Among animals, molluscs, ray-finned fishes (Actinopterygii), and cephalopods benefit most from 

mitigation. Numerous species within these groups are targeted by fisheries, suggesting that fisheries may 

benefit inordinately from mitigation, as also suggested by marine ecosystem models8. Irrespective of 

emissions, 27% of species are classified as high or critical risk in their sensitivity and 47% in their adaptivity 

to climate impacts (Figure 2c). In contrast, under low emissions, a minority of species (27%) are classified 

as highly or critically at risk of exposure to projected climate impacts, whereas under high emissions, the 

vast majority (98%) are at high or critical exposure risk (Figure 2c). 

While variation in climate vulnerability is greatest among species (taxonomic coefficient of 

variation=16%), there is also substantial variation across the geographic distribution of each species 

(average spatial coefficient of variation across species=6%). For instance, with mitigation, the climate risk 

for shortfin mako sharks (Isurus oxyrinchus) ranges from negligible in 25% of its distribution to high or 

critical across 3% of its native distribution (vulnerability range=0.11-0.8; Figure S40). This result highlights 

the importance of resolving both taxonomic and spatial aspects of climate vulnerability and risk to guide 

conservation. On average, species are at high or critical climate risk across 85% (S.D.=27%) of their 

geographic distributions under a high emissions scenario and 52% (S.D.=38%) under a low emissions 

scenario by 2100. 

Climate risk across marine ecosystems  

The proportion of species at high or critical risk varies among locations, taxa, and emission scenarios 

(Figure 3). Ecosystems are more so at risk in the tropics (30°S – 30°N), some polar regions (>60°N or S) 

and closer to shore (Figure 3a-e). A disproportionately large number (>75%) of shark, ray and mammal 

species are at high or critical climate risk at low latitudes (~25° N and S), with few areas escaping exposure 

(Figure 3c-d). Far more species are at risk in nearshore and low-latitude ecosystems, where cumulative 

biodiversity peaks28,29 (Figure 3e). Under high emissions, 9% of the ocean contains ecosystems with at least 
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50% of their constituent species at high or critical climate risk, with 1% containing ecosystems where almost 

all (>95%) species are at high or critical risk, including some of the most biodiverse ecosystems28,29 in the 

Gulf of Thailand, the Coral Triangle, northern Australia, the Red Sea, Persian Gulf, nearshore India, the 

Caribbean and some Pacific islands (Figure 3). The recurring high climate risk of nearshore ecosystems is 

notable, as they have also been identified as high priority areas for biodiversity conservation and food 

provision30 and are disproportionately subjected to non-climatic stressors30,31. Nearshore ecosystems 

presently support 96% of the global fishery catch yet contain the most overexploited fisheries30. The risk 

reduction achievable through emission mitigation tends to be greatest for these regions (Figure 3f). Under 

high emissions, there are very few climate refugia where many (>75%) species are at negligible climate risk 

(Figure 3g). Climate refugia are mainly located in mid-, and high-latitude offshore ecosystems (~40-65° N 

or S), predominantly in the southern hemisphere, but are far more extensive under mitigation.  

Top predators are disproportionately climate-vulnerable, relative to lower trophic species (see 

Methods section), across most of the global ocean (Figure 3h). Under high emissions, 63% of grid cells have 

high-trophic level species that are more climate-vulnerable than those lower in the food web; when 

considering only statistically significant effects (71% of cells), the proportion increases to 69%.  

The increasing risk at higher trophic levels is driven by differences in life-history characteristics, size 

structure and metabolic costs, geographic range size and fragmentation, and exposure to human impacts and 

associated extinction risk of species. The variability of climate vulnerability scores among species also 

increases with trophic position, suggesting that in addition to creating asymmetric impacts across marine 

food webs, climate change may also increasingly compromise their overall stability.  

Cumulatively, these results suggest that climate change disproportionately affects top predators 

under high emissions and is likely to fundamentally alter the structure of marine ecosystems, with 

consequences for energy transfer, ecosystem stability, and functioning. High trophic species represent a 

small fraction of total biomass but include some of the most economically valuable species32, and declines in 

their abundance can have drastic repercussions for ecosystems33 and human societies. However, with 

substantial emissions mitigation, the average global effect of trophic level on risk declines significantly from 

0.01 to 0.008 (p<0.0001), implying a reduced differential vulnerability for higher trophic levels. This 
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indicates that emission mitigation reduces the likelihood of widespread ecosystem restructuring and 

enhances resilience to climate change relative to the high emission scenario.  

Climate risk and conservation planning 

To evaluate how geographic variation in climate risk aligns with conservation priorities, we calculated three 

aggregate species metrics relevant to conservation planning34–36: range-size rarity (𝑅𝑆𝑅𝑎; Figure 4a) to 

assess biodiversity and endemism35,37, extinction risk (𝐸𝑅𝑎); (Figure 4b), and climate risk (Figure 4c). 

Intersecting locations with the highest 𝑅𝑆𝑅𝑎 , 𝐸𝑅𝑎, and climate risk, identifies priority ecosystems that are 

in urgent need of conservation globally (Figure 4d).  

Aggregate climate risk is positively associated with 𝑅𝑆𝑅𝑎 and 𝐸𝑅𝑎 under both emission scenarios 

(r=0.89-0.95). Under high emissions, 8% of locations have both high aggregate climate risk and 𝑅𝑆𝑅𝑎 while 

15% have low climate risk and high 𝑅𝑆𝑅𝑎 8% of species (n=610) have both a high extinction (vulnerable, 

endangered, or critically endangered) and climate (high or critical) risk scores, and 0.4% (n=28) of species 

are critically endangered and at critical climate risk. Globally, all three metrics intersect across 10% of the 

ocean; they occur across most latitudes and oceans (~70° N to S) but are primarily concentrated close to 

coastlines and islands, where biodiversity and endemism are elevated and where human impacts such as 

fishing are also higher4. 

Climate risk and socioeconomic equity 

We calculated the climate risk for fished species within the exclusive economic zones (EEZs) of 145 

maritime countries and seven High Seas areas beyond national jurisdiction under both emission scenarios to 

2100 (Figure 5). With high emissions, 15% of countries (22) have >90% of all fished species at climate risk 

(high or critical) in their EEZs, with Asian countries projected to be disproportionately impacted (12 of 23 

countries; 52%). Conversely, several countries, including many in Europe, have a lower proportion of fished 

species at risk, including Iceland (8%), Norway (18%), Denmark (20%), and Canada (22%). On average, 

countries in Asia have the highest proportion of fished species at high or critical climate risk (83%), 

followed by those in North America (77%), Oceania (73%) and Africa (71%). For high-seas areas, the 



8 
 

greatest proportions of high or critical risk species are found in the Indian (56%) and North Pacific oceans 

(42%), while the fewest were in the Arctic (1%) and North Atlantic (12%) Oceans. 

Emission mitigation resulted in fewer fished species at climate risk for all countries, but the 

reduction is disproportionate for many low-income countries, such as Bangladesh (-73%), Palau (-70%), 

Saint Vincent and the Grenadines (-70%), Micronesia (-69%), and Tanzania (-68%). Regionally, the average 

risk reduction is greatest for countries in Oceania (-52%), North America (48%), Asia (47%) and South 

America (-35%), and least for those in Europe (-13%).  

To explore the possible impacts of climate risk on socioeconomic inequalities among countries, we 

evaluated the relationships between the proportion of fished species at climate risk for each nation against 

those countries’ wealth, food debt, and fisheries dependence38. Low-income countries that tend to have 

lower levels of wealth and food security, a higher dependency on fisheries, and that contribute least to global 

CO2 emissions have systematically higher climate risks to their fisheries under the high emissions scenario 

(Figure 6a-d) but also experience the greatest risk reduction through mitigation (Figure 6e-h). Low-income 

countries are also subjected to many non-climatic stressors4, likely compounding their susceptibility to 

climate impacts. These results are consistent with ecosystem models that suggest low-income countries will 

likely experience the largest climate-driven declines in their fisheries biomass8 and agriculture production38 

to 2100. While most low-income countries have adopted ambitious nationally determined contributions to 

climate mitigation39, the excessive climate risk they face threatens to widen already substantial 

socioeconomic equity gaps. 

Caveats and future directions 

Climate impacts are pervasive and complex, requiring any climate risk framework to make 

assumptions. First, in the absence of more comprehensive information and data, we assume that the three 

dimensions of risk and 12 underlying indices capture generalized climate impacts across all marine species 

with varying traits, habitat preferences, physiologies, and life historiese.g. 40. Second, while our analysis 

follows convention 15–19 in using surface temperature as the primary measure of climate change, additional 

factors may alter species’ responses, including changes in dissolved oxygen and pH, mixing and nutrient 

flux, differences in rates of warming across depths or modified biotic interactions. While species responses 
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to those factors are presently less well understood, our climate risk framework represents a baseline upon 

which to build and improve using new data and knowledge. Third, our risk metric focuses on species 

exposure in their existing (in situ) geographic ranges to potentially unsuitable conditions and does not 

account for range expansions that represent a key aspect of species adaptivity (SI: Projected loss of suitable 

thermal habitat). It thus represents spatially varying risk to a species in terms of climate-driven extirpation 

for each part of its range. Finally, our framework depends heavily on species distribution models (SDMs), 

which constrains the spatial resolution of our analyses, and may affect the estimation of some indices, such 

as geographic range extent and fragmentation; the development of higher resolution SDMs would alleviate 

this issue.  

Conservation implications 

Complementing the IUCN Red List of species extinction risk27, the differential climate risk of species 

presented here could help prioritize conservation measures to reduce extinctions, enable adaptation, and 

build resilience. Our analysis suggests that the climate risk for marine life varies significantly across species 

and within the geographic distribution of each species, emphasizing the critical importance of its evaluation 

in both ecological and geographical dimensions. In a nutshell, species’ intrinsic characteristics more strongly 

determine their climate risk with low future emissions, but geographical variation and where species live 

becomes increasingly important under high emissions. As climate change intensifies, conservation strategies 

that account for spatial variation in climate risk across individual species distributions could become 

increasingly critical to their continued effectiveness. In this context, the geographic patterns of ecosystem 

climate risk (Figure 3) could be helpful to local, national, and regional marine spatial planning, including 

current plans to protect at least 30% of the ocean by 203041. The climate risk scores could be used to; 

identify priority areas (Figure 4) where minimizing interacting pressures (e.g. pollution or fishing) is a 

crucial priority, assess the resilience of current marine protected area coverage to climate change, or design 

protection networks that encompass the full range of climate risk, including hotspots and refugia2,9,42. 

Likewise, climate vulnerability and risk indicators can also support international evidence-based policy 

processes, such as the Convention on Biological Diversity post-2020 global biodiversity framework41.  
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 In addition to the global results we report, our framework can evaluate climate risk at any user-

specified spatial domain resolution, using any data source to enhance their application in varied management 

or conservation settings. This flexibility and scalability can facilitate climate adaptation initiatives in, for 

instance, fisheries management11,43 and aid in understanding the climate risk for global and transboundary 

fish stocks44. In this context, high-resolution climate layers and regionally relevant input datasets have been 

used to evaluate climate risk for fisheries at a regional management scale across the Northwest Atlantic 

Ocean45.  

Overall, our results indicate that the climate risk for marine life is strongly dependent on the 

magnitude of future emissions. With continued high emissions, by 2100, most species (87%) are projected to 

experience a high risk of adverse climate impacts and are at risk across most (85%) of their geographic 

distributions. Upper trophic level predators are significantly more vulnerable than basal species and thus 

experience double-jeopardy, as they are disproportionately targeted by fisheries46 and are associated with 

greater extinction risk47. Nearshore ecosystems that are priority areas of biodiversity conservation and food 

provision30 are a concern, as they experience greater climate risk, on average, and multiple non-climate 

stressors3,4,31.  

Under high emissions, the proportion of high-risk fished species is systematically higher for low-

income countries that are more dependent on fisheries38, contribute least to climate emissions, and do the 

most to mitigate them39. Cumulatively these results suggest that unabated emissions may hinder progress 

toward meeting several of the UN Sustainable Development Goals (SDG) under Agenda 2030, including 

those aimed at reducing hunger (SDG2), improving health, well-being (SDG3), and economic inequalities 

(SDG10), and avoiding adverse ecosystem effects due to climate change (SDG13 and14). However, under 

the emission mitigation scenario, the climate risk to marine life is universally less severe, with the greatest 

risk reduction for low-income countries. This finding emphasizes the critical importance of socioeconomic 

development pathways for marine ecosystems’ health and sustainability and supports strengthening 

international cooperation and financing where needed (SDG17). Our results and new assessment framework 

have the potential to help inform national and international initiatives to conserve biodiversity2,48, design, 
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monitor, and maintain protected areas9,10, and ensure that marine ecosystems are sustainably managed in this 

era of rapid climate change. 
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Figure legends 

Figure 1 | Spatially explicit assessment of climate vulnerability and risk for species and ecosystems 

globally. Within each grid cell (e.g., 1° here) across the native geographic distribution of a species (a), 12 

standardized climate indices are calculated (b) and used to define the three dimensions of climate 

http://www.nature.com/reprints
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vulnerability (c): present-day sensitivity (blue), projected future exposure (red), and innate adaptivity 

(yellow). The dimensions are used to calculate the species’ climate vulnerability (d), and the relative 

vulnerability scores are translated into absolute climate risk categories (e). f) Species maps are superimposed 

to assess the climate vulnerability and risk for marine ecosystems. 

Figure 2 | Climate vulnerability and risk for species. a) Shading depicts the numerical densities of the 

species vulnerability scores under contrasting emission scenarios to the year 2100. Ticks in the margins are 

the scores. (a-c), Gray shading represents climate risk categories and colours the emission scenario 

(low=green; high=purple). b) Points and lines are the average vulnerability scores and 95% confidence 

intervals for major taxonomic groups. The numbers of species are reported. Arrows show the average 

increase in climate vulnerability when transitioning from low to high emission scenarios. c) Points depict the 

proportions of at-risk species (high or critical) according to their sensitivity, exposure, and adaptivity to 

climate change. 

Figure 3 | Climate risk patterns across marine ecosystems. (a-e) The proportion of species at high or 

critical climate risk under the high emissions scenario to 2100 for (a) bony fishes, (b) invertebrates, (c) 

sharks and rays, (d) mammals, and (e) all species. (f) The change in high climate risk species with emission 

mitigation. (g) The proportion of species at negligible climate risk under the high emissions scenario. (h) 

Relationship between the trophic level of species and their climate vulnerability for the high emissions 

scenario. Red denotes areas where climate risk increases when moving up the food web. Gray shading 

denotes cells with insufficient data or non-significant slopes (p>0.05). 

Figure 4 | Climate risk and conservation planning. (a-c) Spatial patterns in (a) aggregated species range-

size rarity (𝑅𝑆𝑅𝑎), (b) extinction risk (𝐸𝑅𝑎), and (c) climate risk in each grid cell under the high emissions 

scenario to 2100. Cells in which the highest 𝑅𝑆𝑅𝑎, 𝑅𝑆𝑅𝑎 and climate risk intersect are shown in (d). The 

latitudinal variation is displayed in the plot margin. 

Figure 5 | Climate risk for fisheries among maritime countries. Points and arrows are the proportion of 

fished species that are at high climate risk (high or critical) in the EEZ maritime countries (145) or high seas 
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ocean (7) under high and low emissions to 2100, respectively. The lines depict the magnitude of climate risk 

reduction with emission mitigation in all panels. (a-b) Colours denote the continents or high seas. 

Figure 6 | Climate risk and socioeconomic equity. (a) The proportion of fished species at risk (high or 

critical) under high emissions to 2100 and (e) and the reduction of at-risk species in the EEZ of maritime 

countries. (b-d) Relationships between the proportion of fished species at risk for each country (a; map) and 

(b) their wealth (c), food debt  (d) and fishery dependence38. (f-h) Relationships between the climate risk 

reduction for fished species in the EEZ of maritime countries through emission mitigation (e; map) and (f) 

their wealth, (g) food debt and (h) fishery dependence38. (b-d; f-h) Lines are estimated from linear 

regressions.  
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Methods 

Identification of climate indices 

The 12 climate indices, their rationale, data sources used, and supporting references are listed in Table S1. 

The climate indices were selected to be grounded in ecological theory, widely accepted, and validated 

through peer-review and publication. Indices were restricted to those where the climate change impact 

pathways on species were generalized across them, and to maximize their unique information content and 



16 
 

minimize redundancies; their uniqueness was evaluated by testing their collinearity (SI: Collinearity of 

climate indices & Extended Data Figure 3). Parsimony was also critical to avoid pseudoreplication: indices 

that were easy to interpret and calculate were given priority. These various indices represent a ‘combined 

approach’ to vulnerability assessment1: it integrates trait-based, correlative, and mechanistic information and 

incorporates abiotic, biotic, and human pressures acting across multiple biological organization levels from 

species to ecosystems. The 12 indices are fully described in the SI: Calculation of the indices and listed in 

Table S1. The climate sensitivity indices included species’ thermal safety margins2–5, vertical habitat 

variability and use6–9, conservation status10, and cumulative impacts11–18. Climate exposure indices were 

based on ensemble climate projections and included the’ timing of climate emergence from species’ thermal 

niches19–22, the extent of suitable thermal habitat loss23–25, climate-related ecosystem disruption21,26–29, and 

the projected climate velocity30–32. Adaptivity indices included the species' geographic range 

extent6,30,32,33,35–37, geographic habitat fragmentation38–43, maximum body length1,40,41,44–48, and historical 

thermal habitat variability and use41,49–52. 

Data 

All data sources are listed in Table S2. 

Taxonomic overview 

Species that did not inhabit the upper 100m of the ocean were excluded from the analyses, as were those for 

which the maximum depth of occurrence exceeded 1000m; surface temperatures could weakly define the 

climate risk of these species. Sensitivity analyses were used to validate this threshold (Figure S41). We also 

excluded seabird species from the analyses, as they spend a minority of their time in surface waters. We 

excluded species with large freshwater distributions or spending most of their time in freshwater habitats 

(e.g., sturgeons, salmons, shads, eels).   

Assessed species were primarily animals (n=24,617 species; 98.6%), but also included marine plants 

(n=230; 0.9%), Chromists (n=72; 0.3%), protozoa (n=48; 0.2%), and bacteria (n=8; <0.1%; Extended Data 

Figure 1a). While marine biodiversity sampling, in general, is incomplete, the spatial pattern of assessed 
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species richness herein reflects the global distribution of marine biodiversity53, peaking at low-to-mid 

latitudes (0-35ºN and S), along coastlines, and in known hotspots (Extended Data Figure 1b).  

Native geographic distributions 

Present-day native geographic distributions for marine species were predicted from AquaMaps54 on a a 0.5° 

global grid using environmental niche models. The models predict the probability of occurrence for each 

species as functions of bathymetry, upper ocean temperature, salinity, primary production, and the presence 

of, and proximity to, sea ice and coasts. AquaMaps estimates have been validated using independent survey 

observations55 and evaluated against alternative methodologies and independent datasets56. The native 

geographic distributions for each species were statistically rescaled to a 1° grid using bilinear interpolation 

to ensure that they were compatible with the input climate projections.  

Thermal niches 

The upper and lower thermal preferences and tolerances of marine species were obtained from the 

AquaMaps niche models54. The upper-temperature tolerance values represent the species realized, rather 

than fundamental, upper thermal tolerances. To evaluate the veracity of the species’ upper thermal 

tolerances in AquaMaps we compared the upper thermal tolerances reported in AquaMaps against matching 

species that were available in peer-reviewed databases. In all instances, the AquaMaps realized upper 

thermal tolerances were positively correlated to the upper thermal tolerances in the published databases 

(r=0.8-0.88; Figure S2). As expected, the fundamental tolerances were generally higher than the realized 

tolerances in AquaMaps5. 

Maximum body lengths 

The maximum body size of species was estimated from the FishBase57 and SeaLifeBase58 databases. From 

FishBase, length-length relationships were used to calculate maximum lengths in standard units of total 

length (TLen). To validate the length records, the largest maximum lengths were examined to find and 

exclude those which are not plausible for each genus. From SeaLifeBase, the type of measurement used to 

assess maximum total lengths (TLens) for invertebrates depended on their taxonomy. TLen was defined by 

the shell length and body length for gastropods, bivalves, and some decapods. TLen was determined by 



18 
 

mantle length (ML) for cephalopods, carapace length (CL) for decapods, and shell height (SHH) for some 

gastropods. The lengths (TLen, ML, CL, SHH) were then compared, and the larger lengths were used to 

update the maximum lengths. Species with missing body length values (n=16,073) were imputed using 

multiple imputations by chained equationse.g. 59, a common and recognized approach for estimating diverse 

types of missing data e.g. 4,60. Refer to the SI: Imputation of missing data for complete details of the 

imputation procedure and sensitivity analyses.  

Vertical habitat 

The maximum depth of occupancy and vertical habitat range for each species were retrieved from 

AquaMaps54, SeaLifeBase58, and FishBase57. The maximum depth of occupancy and vertical habitat range 

was truncated by the maximum bathymetry present in each grid cell across each species’ native geographic 

distribution. 

Trophic position 

The trophic levels (TLs) for each species were retrieved from FishBase57, SeaLifeBase58, or entered 

manually for 5,686 species (23%). The TLs of primary producers not available in FishBase or SeaLifeBase 

were set at 1 and zooplankton at 2. Grid cells where the resident species spanned <1 TL were omitted from 

the analysis of variation in climate vulnerability with TL. 

Conservation status 

The global conservation status of species was obtained from the IUCN Red List of Threatened Species61. 

The Red List places species into categories of extinction risk according to several criteria, including but not 

limited to their absolute population size, their trend in abundance, metapopulation structure, the extent of 

occurrence, and demographic factors. Red Listed species were associated with the AquaMaps54, FishBase57, 

and SeaLifeBase58 databases using fuzzy string-matching species taxonomies (see SI: Fuzzy matching 

species traits). Species with missing assessments or data deficient (n=18,438) were given a status of Least 

Concern. Refer to the SI: Missing data for complete details of the analyses of missing observations and 

approach to gap-filling them and associated sensitivity analyses. 
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Environmental data 

Per almost all climate change vulnerability analyses1,4,41,62–64, sea surface temperature (SST) was 

used as the central metric of climate change; it has high spatiotemporal availability, and its effects on species 

are generally better understood relative to other climate variables (e.g. oxygen, pH). Daily SST estimates 

were obtained from the NOAA 0.25° daily Optimum Interpolation Sea Surface Temperature dataset 

(OISST)65. The temperature dataset has been available globally since 1981 at a spatial resolution of 4km2. 

SST values were statistically rescaled to a global 1° grid using bilinear interpolation. 

A multivariate index of cumulative human impacts (HI) on ocean ecosystems14,16 integrates 17 

global anthropogenic drivers of ecological change at a global 1km2 native resolution; HI values were 

statistically rescaled to a global 1° grid using bilinear interpolation. 

Climate projections 

An ensemble of monthly sea surface temperature (SST; °C) projections (1850-2100) was obtained from 12 

published Global Climate (GCM) or Earth System Models (ESMs) within the coupled model 

intercomparison project phase 6 CMIP6 archive (Table S3). The models we used span a broad range of the 

projections of SST within the CMIP6 model set. SST projections were made under two contrasting IPCC 

shared socioeconomic pathway (SSP) scenarios representing alternative socioeconomic developments. 

SSP5-8.5 (Fossil-fueled development; ‘taking the highway’) represents continued fossil fuel development, 

and SSP1-2.6 (Sustainability; ‘taking the green road) representing an increase in sustainable development66. 

All projections were regridded onto a regular global 1° grid. 

Analyses 

Design principles 

The climate risk framework incorporated several key features that are often required in applied 

conservation and management settings, including i) it is spatially explicit, ii) it evaluates relative 

vulnerability on a standardized, intuitive scale and translates it into absolute risk categories, iii) it uses 

publicly available quantitative data that are well-validated, thus ensuring reproducibility, iv) it can be 



20 
 

flexibly implemented at varying spatial scales and in different biomes and can accommodate different types 

of information, v) it is comprehensive, evaluating all dimensions that define vulnerability and risk67 using 

multiple assessment types (e.g. trait-based, mechanistic, correlative)1, vii) it evaluates the statistical 

uncertainty (variability) associated with vulnerability, viii) it evaluates the impacts of projected future 

climate changes on species to explore mitigation measures, and ix) it operates hierarchically, maximizing its 

flexibility and information content (Figure 1).  

Calculation of indices 

Climate indices were calculated or obtained in their native units. Each index was defined by the focal 

species’ traits, calculated from environmental or ecological data on a geographic grid across the native 

geographic distribution of the focal species and/or a mix of the two, creating indices that were both 

taxonomically (e.g., each species) and geographically (e.g., each grid cell) explicit.  

Standardizations ensured that the 12 climate indices were comparable on a standardized scale (range: 

0-1), ecologically grounded, and reproducible in future studies and over different geographic domains (e.g., 

regional), spatial resolutions, and future exposure horizons with minimal loss of information (SI: Calculation 

of the Indices). Reference values and scaling functions were used to meet these criteria. Reference values 

were selected using established guidelines such as spatial or taxonomic comparison against global 

maximum15,68. Scaling functions described how the scaled indices varied as their unscaled analogues 

increased. Indices were scaled using standard approaches (e.g., log10), by expression as a proportion of a 

global or theoretical maximum (e.g., %), or using rectangular hyperbolic functions (RHFs); (e.g., saturating 

hyperbola, decelerating curve, and asymptotic regression). RHFs are ubiquitous in biology69 and have been 

used to describe various biological phenomena, including, for instance, the reaction speed of enzymes, the 

nature of predator-prey interactions, and ecosystem stability69. We use the RHF described by the exponential 

equation due to their wide use and ease of interpretation to standardize and normalize the climate indices 

(Figure S3). The SI: Calculation of the indies describes the equations and parameters used to normalize all 

12 climate indices, while SI: Quality control and sensitivity analyses evaluate the impact of different 

standardizations on the calculation of vulnerability (Figures S45-S47)  
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Spatially explicit climate vulnerability of species  

Following sensitivity analyses, our analysis was restricted to species and cells containing all 12 indices 

(Figure S42) and less than 10% missing grid cells across their native geographic distributions (Figure S43). 

For each species within each grid cell across its geographic distribution that contained sufficient data, 

sensitivity, exposure, and adaptivity were calculated as the mean of the four indices that define them. The 

standard deviation of the vulnerability dimensions provided an estimate of their statistical uncertainty and 

was propagated forward through the subsequent vulnerability calculations using inverse variance weighting 

described below. Vulnerability (𝑉𝑖,𝑗) was calculated from sensitivity, exposure, and adaptivity, while 

statistically accounting for both the variability and the uncertainty associated with the indices of climate 

exposure derived from ensemble climate projections (SI: Calculating climate vulnerability).  

The uncertainty associated with the model-projected climate exposure of species was statistically 

accounted for through discounting. Discounting is common in economics and is used to develop the ocean 

health index (OHI15) to account for the greater uncertainty associated with unknown future states. Its use in 

the vulnerability estimation is analogous: the future exposure of species to climate change, estimated from 

ESM projections, are less well resolved than are their present-day sensitivities or innate adaptive capacities. 

Our confidence in the reliability of the projected exposure indices scales with the length of the climate 

projection and the number of ensemble projections. Accordingly, these factors define a discount rate 𝜕. 

Exposure indices derived from single ESMs that make longer-term climate projections are generally less 

reliable34,70–72 and are thus more heavily discounted. Those derived from a larger ensemble of ESMs that 

make shorter-term projections are perceived as more reliable and are discounted less. The discount rate was 

calculated as 

 𝜕 =
𝑌𝑒𝑎𝑟𝑠

100𝜃
+  

𝑀𝑜𝑑𝑒𝑙𝑠

−25𝜃
+ 0.026, Equation 1 

where 𝑌𝑒𝑎𝑟𝑠 is the number of years in the climate projection, 𝑀𝑜𝑑𝑒𝑙𝑠 is the number of climate projections 

in the ensemble, and 𝜃 is a scaling factor set to 40. Under this derivation, the discount rate is maximized at 

5% when projections are made for >=100 years from a single projection and are minimized at 0% when 

projections are made for <5 years from >19 projections. Our study evaluated climate projections from 12 
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models over 80 years, yielding a discount rate of 3.1%. Discounts applied to exposure are credited to 

present-day sensitivity, such that the maximum total adjustment is 10%, to conserve the vulnerability scaling 

to between zero and one. For each species within each grid cell across its geographic distribution, the 

discount rate was applied to the estimated exposure and sensitivity estimates as follows.  

 𝐸̆𝑠,𝑐 = [(1 − 𝜕)(𝐸𝑠,𝑐)], Equation 2 

 𝑆̆𝑠,𝑐 = [(1 + 𝜕)(𝑆𝑠.𝑐)], Equation 3 

Where 𝑆̆𝑠,𝑐 and 𝐸̆𝑠,𝑐 are the discounted sensitivity and exposure estimates for species 𝑠 within cell 𝑐. 

Following this, the vulnerability was calculated as a weighted average of adaptivity and discounted 

sensitivity and exposure as 

 𝑉𝑠,𝑐 =
[𝑆̆𝑠,𝑐×𝜔𝑆𝑠,𝑐] [𝐸̆𝑠,𝑐×𝜔𝐸𝑠,𝑐]+ [(1−𝐴𝐶𝑠,𝑐) × 𝜔𝐴𝐶𝑠,𝑐] 

𝜔𝑆𝑠,𝑐+𝜔𝐸𝑠,𝑐+𝜔𝐴𝐶𝑠,𝑐
+, Equation 4 

where 𝑉𝑠,𝑐 is the vulnerability, 𝑆̆𝑠,𝑐 and 𝐸̆𝑠,𝑐 are the discounted sensitivity and exposure, respectively, and 

𝐴𝐶𝑠,𝑐 is the adaptivity for species 𝑠 within cell 𝑐. 𝜔𝑆𝑠,𝑐, 𝜔𝐸𝑠,𝑐, and 𝜔𝐴𝐶𝑠,𝑐 are the statistical reliability 

weights for the estimated sensitivity, exposure, and adaptivity, calculated from their scaled variances. The 

weights for estimated sensitivities were calculated as the inverse of their coefficients of variation as 

 𝜔𝑆𝑠,𝑐 = (
𝜎𝑆𝑠,𝑐

𝜇𝑆𝑠,𝑐
)

−1

 Equation 5 

where 

 𝜇𝑆𝑠,𝑐 =
1

𝑛
∑ 𝑆𝑠,𝑐,𝑖

𝑛

𝑖=1
 Equation 6 

and 

 𝜎𝑆𝑠,𝑐 = √
∑ (𝑆𝑠,𝑐,𝑖 − 𝜇𝑆𝑠,𝑐)

2𝑛
𝑖=1

𝑁𝑆𝑠,𝑐
 Equation 7 

where 𝜔𝑆𝑠,𝑐 is the reliability weight and 𝜎𝑆𝑠,𝑐 and 𝜇𝑆𝑠,𝑐 are the standard deviation and mean, respectively, of 

the four indices, 𝑖, that define sensitivity for species 𝑠 within cell 𝑐. 𝑁𝑆𝑠,𝑐 is the number of climate indices, 𝑖, 

that define sensitivity for species 𝑠 within cell 𝑐. 
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Spatially inexplicit climate vulnerability of species  

The vulnerability for each species was calculated as an inverse variance-weighted mean of the 

vulnerabilities in each grid cell across its geographic distribution as   

 𝑉𝑠 =  
∑ 𝜔𝑉𝑠,𝑐 𝑉𝑠,𝑐

𝑛
𝑐=1

∑ 𝜔𝑉𝑠,𝑐 𝑛
𝑐=1

 Equation 8 

while their variance-weighted standard deviations were calculated as 

 𝜎𝑉𝑠 =  √
𝑣1

𝑣1
2 − 𝑣2

∑ 𝜔𝑉𝑠,𝑐(𝑉𝑠,𝑐 −  𝜇𝑉𝑠,𝑐)2
𝑁

𝑐=1
 Equation 9 

where, 

 𝑉1 =  ∑ 𝜔𝑉𝑠,𝑐

𝑁

𝑐=1
 Equation 10 

and 

 𝑉2 =  ∑ 𝜔𝑉𝑠,𝑐
2

𝑁

𝑐=1
 Equation 11 

and 

 𝜔𝑉𝑠,𝑐 = (
𝜎𝐷𝑠,𝑐

𝜇𝐷𝑠,𝑐
)

−1

 Equation 12 

Under this derivation, greater statistical weighting is given to vulnerability estimates in grid cells where their 

variance (e.g., spread of the indices used to calculate them) is lower and vice-versa. Species estimates will 

be more variable when the vulnerability is more dissimilar in the grid cells that comprise its geographic 

distribution and vice-versa. 

Climate risk for species and ecosystems 

We defined climate risk thresholds to translate climate vulnerability into risk categories according to the 

ecological interpretation of each of the 12 climate indices (Table S4). The risk thresholds are defined in their 

native units and propagated through the analysis, preserving their meaning and interpretation. This approach 

using thresholds is comparable to the definition of extinction risk used by the IUCN Red List of species61 

and the RFC framework adopted to define climate risk by the IPCC67,73,74. It allows the relative vulnerability 
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of species and communities to be translated into absolute risk categories using transparent and, where 

possible, empirically supported approaches75–77. Details of the risk thresholds used to determine climate risk 

for species and their justification are listed in Table S4. 

Ecosystem patterns of climate risk 

In each 1° cell, we calculated the slope (𝛽𝑇𝐿) of a weighted linear regression between the local vulnerability 

of a species and its TL. The magnitudes and directions of 𝛽𝑇𝐿 capture systematic differences between 

species’ vulnerability given their position in the food web. The magnitude of 𝛽𝑇𝐿  quantifies how rapidly 

vulnerability changes when moving up one trophic level in the food web. The direction of 𝛽𝑇𝐿 quantifies 

which food web components are most vulnerable: positive values indicate that high trophic species (e.g., top 

predators) are more vulnerable than low (e.g., primary producers) and vice-versa. Sensitivity analyses were 

undertaken, omitting primary producers (TL=1; n=302 species) or all plankton (TL<2.5; n=1,095 species) or 

testing alternative model configurations; our results were not significantly changed by these sensitivity 

analyses (Figure S50). 

Exploitation status 

Exploited species were identified as those that have fisheries landings data reported in the United Nations 

Food and Agricultural Organization (FAO) global capture production database or the Northwest Atlantic 

Fisheries Organization fisheries statistics database, 2000 and 202178. For each exploited species, we added 

all possible synonyms contained within the World Register of Marine Species taxonomic database79.  

Aggregate ecosystem indices  

In each grid cell across their geographic distributions, the species’ range-size rarity (RSR) was calculated as 

 
𝑅𝑆𝑅𝑠,𝑐  =  

𝐴𝑠,𝑐

𝐴𝑠
 

Equation 2 

 

Where 𝐴𝑠,𝑐 is the surface area for species 𝑠 in grid cell 𝑐, and 𝐴𝑠 is the surface area comprising the 

geographic distribution of species 𝑠. Following this, the aggregate species range-size rarity (𝑅𝑆𝑅𝑎) was 

calculated in each grid cell as the sum of RSRs for all species that live there. Aggregate ecosystem 

extinction risk was calculated as the sum of the standardized IUCN red list statuses for all species in each 
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grid cell. Aggregate climate risk was similarly calculated as the sum of the standardized climate 

vulnerability scores for all species in each grid cell. Under these derivations, ecosystems where all species 

have low scores for extinction or climate risk, or for 𝑅𝑆𝑅𝑎 receive low aggregate scores, and scores increase 

with the number of species and their risk or 𝑅𝑆𝑅𝑎 values. Thus, the aggregated scores account for the 

number of species (biodiversity) and cumulative risk or ecosystems.  

Climate risk across maritime countries 

We calculated the fraction of exploited marine species that fall within different climate risk categories that 

are resident within the exclusive economic zone (EEZ) of maritime countries under both emission scenarios. 

Exploited species were identified as those reported in landings databases maintained by the UN FAO or 

Northwest Atlantic Fisheries Organization. We then evaluated the climate risk of fisheries for different 

countries in relation to their social and economic status indicators, including total per capita wealth ($US 

person; 1995-2014)80, per capita food deficit (kcal person day-1; 1999-2016)81, and fishery dependency34. 

Quality control and sensitivity analyses 

Extensive sensitivity analyses were undertaken (described in the SI: Quality control and sensitivity analyses) 

to inform our determination of the appropriate species and data to include (Figures S41-S45), the acceptable 

levels of data missingness (Figure S43), the impact of the standardizations on the calculations (Figures S44-

S46), the veracity of the imputations (Figure S47), the collinearity of the indices (Extended Data Figure 3) 

and the definition of species’ native geographic distributions (Figures S49-S49).  

Data availability 

All datasets used in this paper are described and archived at the publicly available sources listed in Table S2. 

Species vulnerability scores are available through the Dryad digital repository82. 

 

Code availability 

Statistical analyses were conducted using the R statistical computing platform83 and the code is available 

upon request to the corresponding author. 
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