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1  |  INTRODUC TION

Aerial imagery has become the principal surveying method for 
many animal populations (Butler & Muller- Schwarze, 1977; Fraser 
et al., 1999; Trathan, 2004; Trathan et al., 2012). Such methods are 
favored since they can quickly and efficiently survey large remote 
areas with the help of either manned fixed- wing vehicles/helicop-
ters or unmanned aerial vehicles (UAVs), although the conditions 
associated with each platform type may dictate subsequent image 
processing. In the past decades, many such ecological surveys have 
been conducted (Burn et al., 2006; Chabot et al., 2018; Descamps 

et al., 2011; Dunstan et al., 2020; Groom et al., 2013; Lee et al., 2019; 
Vermeulen et al., 2013). While this is a very efficient way to collect 
large amounts of data, it may create a large postprocessing burden 
that is frequently borne by humans— typically consisting of laborious 
manual scanning of photos or videos to locate, identify, and count 
individual animals (Torney et al., 2016). Volume aside, this can be 
a challenging task due variously to small object sizes, almost indis-
tinguishable fore/background pixels, and varying illuminations (see 
Figure 1).

To alleviate these problems, there has been extensive work to 
integrate computer- based image processing to assist in, or fully 
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Abstract
Animal abundance estimation is increasingly based on drone or aerial survey pho-
tography. Manual postprocessing has been used extensively; however, volumes of 
such data are increasing, necessitating some level of automation, either for complete 
counting, or as a labour- saving tool. Any automated processing can be challenging 
when using such tools on species that nest in close formation such as Pygoscelis pen-
guins. We present here a customized CNN- based density map estimation method for 
counting of penguins from low- resolution aerial photography. Our model, an indirect 
regression algorithm, performed significantly better in terms of counting accuracy 
than standard detection algorithm (Faster- RCNN) when counting small objects from 
low- resolution images and gave an error rate of only 0.8 percent. Density map estima-
tion methods as demonstrated here can vastly improve our ability to count animals in 
tight aggregations and demonstrably improve monitoring efforts from aerial imagery.
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automate, abundance estimation. Early works were mostly based 
on either spectral thresholding approaches or template match-
ing approaches to count targets of interest in imagery (Chabot & 
Bird, 2012; Chabot & Francis, 2016; Christiansen et al., 2014). 
However, those methods are often vulnerable to complex situa-
tions such as heterogeneous backgrounds (Chabot & Francis, 2016). 
Hurford (2017) introduced image processing software, ImageJ to 
assist in counting birds, but its practical use was limited since the 
software cannot handle complex environments, which is com-
mon in various ecological contexts. To alleviate this problem, 
Marchowski (2021) preprocessed images with a denoising neural 
network (Buchholz et al., 2020) before counting with ImageJ, which 
then makes the counting accuracy highly dependent upon the per-
formance of the denoising process. Object- based image analysis 
(OBIA) has also been popular in previous ecological field studies 
(Afán et al., 2018; Chrétien et al., 2016; Lhoest et al., 2015; Rush 
et al., 2018). This method first relies on some handcrafted features 
to group pixels into objects and then classifies objects according 
to properties such as shape and size, but its counting performance 
may suffer when animals are obscured or spatial resolution is low 
(Afán et al., 2018; Chrétien et al., 2016). Hodgson et al. (2016) and 
Hodgson et al. (2018) offer some other examples of computer- 
assisted animal counting, where a combination of Fourier analysis 
and support vector machines are used to exclude background pix-
els, making the subsequent manual counting of animals easier. For 
fully automated estimation of animal numbers, convolutional neural 
networks (CNNs) are commonly adopted, which are a type of deep 
learning neural network with components particularly directed to-
ward images. Their use in image processing has been transformative, 
with robustness proved in classification, detection, and segmenta-
tion (Simonyan & Zisserman, 2015).

Automated counting of animals within images usually involves 
the location, and subsequent classification, of objects within a 
frame. In terms of CNNs, this gives rise to two broad approaches: 
one-  and two- stage algorithms. Two- stage algorithms first propose 
bounding boxes for locations where objects are likely to exist and 

then do the classification, where region- based convolutional neu-
ral network (RCNNs, Girshick et al., 2014) and Faster- RCNN (Ren 
et al., 2016) are representative examples. One- stage methods such 
as You Only Look Once (YOLO; Redmon et al., 2016) and Single Shot 
Multibox Detector (SSD; Liu et al., 2016) process these two tasks 
simultaneously. In general, one- stage methods have the advantage 
of computing speed while two- stage methods have better accuracy.

Both methods have been adopted for analyzing aerial images 
collected in ecological studies. Torney et al. (2019) built a YOLO 
v3 (Redmon & Farhadi, 2018) model to detect wildebeest in ae-
rial images, which displayed accuracy similar to manual processing 
while being quick to compute. Later, more studies applied YOLO- 
based methods to detect their own target species in drone foot-
age (Corcoran et al., 2019; Desai et al., 2022; Gorkin et al., 2020; 
Hamilton et al., 2020). Another one- shot object detector, RetinaNet 
(Lin et al., 2020) was used in an attempt to build a general model 
for bird detection (Weinstein et al., 2022). Kellenberger et al. (2017) 
used a Faster- RCNN model to detect different animals in UAV im-
ages surveyed in Kuzikus Wildlife Reserve park. Additionally, the 
two- stage Faster- RCNN model has also been used to detect koalas 
(Hamilton et al., 2020), kiang (Peng et al., 2020), and large herbivores 
(Ma et al., 2022) in aerial images. Hong et al. (2019) compared the 
performance of different deep learning- based detection methods 
(Faster- RCNN, SSD, YOLO, RetinaNet) on a UAV aerial image data-
set of wild birds and showed the potential of these techniques in 
monitoring wild animals. Their study pointed out that the two- stage 
method Faster- RCNN performs the best among all these detection 
methods with regard to counting accuracy.

Recently, Hoekendijk et al. (2021) proposed a deep CNN model 
to regress the count objects of interest in the image. Their model 
is composed of a ResNet (He et al., 2016) and two fully connected 
layers. Although showing good performance, their model has a size 
limit on the input images, which means for a large image, it has to 
be cropped to a required patch size before passing into the model. 
This may result in issues such as replicated counts across the bound-
ary of these image patches. Also, their results show the model only 

F I G U R E  1 Selected	data	samples	with	(a)	small	object	size,	(b)	almost	indistinguishable	fore/background	objects,	and	(c)	varying	
illuminations are shown. The study object, penguins, is marked with red dots.

(a) (b) (c)
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performs well up to a certain count level— when the count is out of 
this scope, the model exhibits poor performance.

Here, we adopt a fundamentally different method for counting 
animals, where the detection of individual animals is avoided, with 
focus being the estimation of a density map— a concept initially in-
troduced by Lempitsky and Zisserman (2010). Estimated counts are 
instead obtained by the subsequent integration of this density map, 
rather than explicit counting of objects. The density map approach 
has been further integrated into the deep learning framework and 
widely applied in crowd counting (Lin et al., 2021; Ma et al., 2019, 
2021; Qian et al., 2022), where crowds are usually humans.

In this work, we provide a solution to counting animals of low res-
olution in aerial images by creating a density map estimation model 
based on CNNs. To demonstrate the superiority of our method, we 
compare it with the typically used detection method, Faster R- CNN, 
which has been found previously to give the most accurate counts 
among various detection methods (Hong et al., 2019). Our model 
outperforms the Faster R- CNN method by a large margin, which has 
difficulty in detecting very small objects. This is particularly relevant 
for our exemplar penguin data, where the objects of interest are 
small in terms of pixels and the performance of detection methods is 
expected to degrade. Our model also shows robustness when han-
dling images with different object density levels.

2  |  MATERIAL S AND METHODS

2.1  |  Data

2.1.1  |  Data	collection

The British Antarctic Survey currently holds an archive of color 
digital aerial photography from the Antarctic Peninsula and South 
Shetland Islands acquired between November and December 2013, 
and	partially	re-	flown	in	November	2015.	The	archive	contains	im-
ages from approximately 140 Pygoscelis penguin colonies selected 
for a range of species, population sizes, and topographic settings. 
The images were acquired using a large- format Intergraph DMC 
mapping camera, with a resolution of about 12 cm or better. The 
images	each	have	a	footprint	of	about	1600	m × 1000	m	and	were	
flown with 60% overlap to allow stereo- cover. For the images to 
be useful as part of an automated penguin counting process, they 
needed significant preprocessing to geolocate them and remove 
terrain distortions inherent to the perspective view of a camera 
image. This processing comprised: (1) the stereo- images were used 
to extract a digital elevation model (DEM); (2) the images were 
ortho- rectified to the DEM to remove terrain effects; (3) the pro-
cessed images were mosaicked; and then, (4) cut into standard- sized 
(448 × 448	pixels)	 tiles	 for	counting.	This	process	ensures	 that	 the	
images are accurately located and scaled to enable accurate ground 
area measurements and hence penguin density estimates. Without 
the DEM and ortho- rectification preprocessing, the counts would 
not have a reliable ground area estimate. Stages (3 and 4) also ensure 

that each penguin only appears once in the dataset. The process to 
create the DEM is relatively complex and utilized BAE Systems Socet 
GXP photogrammetry software to generate DEMs, ortho- rectify the 
images, and prepare geo- referenced mosaics for each colony. Aerial 
imagery from the Intergraph DMC mapping camera allowed multiple 
penguin colonies to be photographed within a single survey flight on 
board a deHavilland Twin Otter. This is advantageous when synopti-
cally surveying large areas of terrain where many penguin colonies 
may occur. Pygoscelis penguins generally breed within colonies that 
comprise a single species, although on occasions there may be two 
species in close proximity where their colony boundaries interdigi-
tate (Dunn et al., 2021). Our study did not use colonies where two 
species co- occur as we only considered separate colonies of gen-
too (Pygoscelis papua), Ad'elie (P. adeliae), and chinstrap (P. antarctica) 
penguins. In contrast, surveys using UAVs may facilitate higher reso-
lution imagery, but operational constraints mean synoptic survey-
ing can be logistically challenging. For the foreseeable future, both 
types of image capture (light aircraft and UAV) are likely to remain 
important. Here, we focus upon imagery acquired using the large- 
format intergraph DMC mapping camera; future studies will also 
test the applicability of our methods to higher resolution imagery 
acquired with UAVs.

2.1.2  |  Density	map	generation

Our objective was to estimate the number of penguins in an image, 
here approached by density map estimation. The density maps are 
an intermediate representation generated from point annotations, 
with the integration of any region on these maps providing the count 
of target objects. The generation process is detailed here.

Given an image I with pixels M and a set of 2D annotated points 
P =

{

p1, p2, … , pn
}

, its ground- truth density map Dgt can be obtained 
by

 where Im denotes a two- dimensional pixel location, m = 1, 2, … M and 


(

Im; pn , �
2
n

)

 represents the nth annotated two- dimensional Gaussian 
distribution, pn is the coordinate of nth point annotation, and �2

n
 indi-

cates the isotropic variance. The setting of �2
n
 is flexible and often data-

set dependent. It can be either fixed (Lempitsky & Zisserman, 2010) or 
adaptive (distance to nearest neighbours; Zhang et al., 2016). When 
using the kernel with fixed bandwidth, we are assuming objects are in-
dependently distributed on the image plane, while the adaptive band-
width is normally used to characterize the geometry distortion led by 
the perspective effect.

The choice of �2
n
 is crucial for generating density maps, and using 

an improperly generated density map as a learning target may com-
promise the model's counting performance (Wan & Chan, 2019). 
Ideally, the pixels with density values should reflect consistent fea-
tures, which in our case means only pixels belonging to a penguin 

(1)Dgt

(

Im
)

=

N
∑

n=1


(

Im; pn, �
2
n

)
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will have density values. However, this is hard to achieve, given the 
typical	size	of	a	penguin	is	only	about	5 × 5	pixels,	while	using	a	very	
small Gaussian kernel will lead to a very unbalanced sparse matrix 
with most values of 0, and will make the network hard to train (Wang 
et al., 2020). To achieve the balance, our generation method is given 
as follows: given the penguins are almost identical in size and shape 
in aerial images, the Gaussian kernel with fixed bandwidth is applied 
to the center point of each penguin and the value of σ is set as 4. 
An example of these density maps is given in Figure 2. Although we 
don't give the location of each penguin, these density maps still re-
tain some location information, which can indicate the region where 
the penguin may exist.

2.2  |  Specification of the density map 
estimation model

2.2.1  | Model	structure

The overall model structure is shown in Figure 3. It is a simple struc-
ture with only a backbone network and two branches. Since VGG- 19 
(Simonyan & Zisserman, 2015) has good performance in most com-
puter vision tasks, such as detection and classification, and consumes 
relatively few computing resources, we adopt it as the backbone. 
However, VGG- 19 learns salient features by gradually downsampling 
the feature maps. To maintain high resolution of the output density 
map, we remove its last max pooling layer and all subsequent layers. 
Additionally, an upsampling layer is added to keep the final size of 
the output at 1/8 of the original input. Here, bilinear interpolation is 
used as the upsampling method.

The models are designed to process two tasks: density map es-
timation and segmentation. Density map estimation can be seen as 
a two- step problem by nature, first the location of regions that con-
tains objects of interest and then regress the density values. Second, 
segmentation is to classify if a pixel belongs to the object of inter-
est. These two tasks are interrelated and can assist the backbone to 
learn robust intermediate features for each other. Further, the seg-
mentation result is used to guide the density regression. Specifically, 
to prevent background features from misleading the regressor, the 

weights of these features are reduced before being fed into the re-
gressor. To achieve this, we generate a mask Md based on the pre-
dicted segmentation map:

where � is the dampening factor and 1 is the indicator function. We set 
� as 0.1 and the generated mask Md is then applied on the intermediate 
features by point- wise multiplication.

We down- sample the Dgt by aggregating the density values to 
match the output size. The resulted learning target Dtarget is further 
used in the generation of the ground- truth segmentation map (Sgt):

where ϵ	is	a	density	threshold	and	is	set	as	1 × 10−3 here.

Density branch & segmentation branch
The two branches in the model share a similar structure. They both 
consist of three convolutional layers: The first two have a kernel size 
of 3, while the last one has a kernel size of 1. These layers gradually 
reduce	the	number	of	channels	of	the	extracted	features	from	512	
to 1. The rectified linear unit (ReLU; Zeiler et al., 2013) is used as the 
activation function for the first two layers, with the activation func-
tion for the last layer of the two branches being different. The den-
sity branch is activated with the ReLU function to make sure every 
point on the output is non- negative, whereas for the segmentation 
branch, the sigmoid (Han & Moraga, 1995) function is used to limit 
the range between 0 and 1.

2.2.2  |  Loss	function

Our overall loss function consists of two parts. First, we adopt the 
structural loss (SL) proposed by Rong and Li (2021) to supervise the 
density branch, defined as:

(2)Md = 1
(

Spred ≥ 0.5
)

+ 𝛼1
(

Spred < 0.5
)

,

(3)Sgt = 1
(

Dtarget > 𝜖
)

,

(4)SL =
1

N

N
∑

i=1

(

1 − SSIM
(

Pooli
(

Dpred

)

,Pooli
(

Dtarget

)))

,

F I G U R E  2 Left	is	a	random	image	
(penguins are labeled with red dots) 
picked from the dataset and its 
corresponding density map is on the right.
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    |  5 of 11QIAN et al.

where Dpred represents the predicted density map, and Pool stands for 
average pooling which downsamples the map by a factor of 1

2i−1
. SSIM is 

short for the Structural Similarity Index Measures (Wang et al., 2004) 
that can describe the similarity of two images, expressed as:

where μ and σ denote mean and variance while �XY represents the co-
variance of X and Y. C1 and C2 are constants, set to 0.01 and 0.03 by 
default. The higher the SSIM index, the more similar the two images 
are. N is set as 3 following Wang et al.'s work.

The SL function improves the structural similarity between the 
prediction and the target by SSIM of high- resolution maps, and the 
count accuracy is ensured by SSIM of the pooled density maps. 
Further, we make a minor change on the original loss function to 
improve counting accuracy, expressed as:

where ⊙ denotes point- wise multiplication. This change eliminates the 
contribution to the loss value from points which have negligible val-
ues on the density maps. The original SL function pushes the value of 
each pixel on the predicted density map as close to the corresponding 
value on the target map as possible. However, in aerial images, if points 

are classified into two categories based on whether they have nonzero 
density values, the two classes are imbalanced. Most of the points are 
small values, or even zero, and since they are common the regressor 
will favor their estimation, meanwhile underestimating points with 
large density values. Noting large density values contribute most to the 
count, the counting accuracy will be harmed in unduly accommodat-
ing the low- density regions. By masking points with small values, the 
regressor focus is on large density values and reduces their influence. 
During the inference stage, when integrated with the segmentation, 
we can safely discard the regressor's predictions on these points with 
small values and set them to 0.

The segmentation branch is supervised by the cross- entropy (CE) 
loss function. We adjust it to minimize the impact of the imbalance in 
the number of positive and negative samples in the dataset:

where ym and pm is the corresponding value of location m in the image 
on the ground- truth segmentation map and the predicted probability 
map. h is a constant, used for balancing the contribution of positive and 
negative	samples	to	the	loss	value	and	is	set	as	0.5	in	our	experiments.

The final loss function is a weighted sum of the above two loss 
functions:

(5)SSIM(X ,Y) = 1 −

(

2μXμY + C1

)(

2σXY + C2

)

(

μ2
X
+ μ2

Y
+ C1

)(

σ2
X
+ σ2

Y
+ C2

) ,

(6)SL∗ =
1

N

N
∑

i=1

(

1 − SSIM
(

Pooli
(

Dpred ⊙ Sgt
)

,Pooli
(

Dtarget ⊙ Sgt
)))

,

(7)CE =
1

M

M
∑

m=1

−
(

ymlog
(

pm
)

+ h∗
(

1 − ym
)

log
(

1 − pm
))

(8)Loss = SL∗ + �CE

F I G U R E  3 This	figure	shows	the	overall	structure	of	our	density	map	estimation	model.	The	backbone	extracts	features	from	the	input	
image, and these intermediate features are further fed to two branches to predict density map and segmentation map.
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6 of 11  |     QIAN et al.

with λ set to 0.1 since the density estimation is the main task of the 
model.

2.2.3  | Model	inference

Our model adopts a fully convolutional design, which means it has 
no strict size constraints on the input image. However, there are four 
max- pooling layers with kernel size of 2 in the backbone structure, 
which may result in pixel dropout. To prevent this, the input image 
has to be enlarged to the smallest size divisible by 16. The output 
density map Dout integrates the predictions from both branches and 
can be obtained by:

2.2.4  |  Experiments

We randomly split our dataset into three parts in a ratio of 3:1:1. 
The largest part serves as the training set, and the remaining parts 
are used for the purpose of validation and test, respectively. The 
detailed statistics of these three datasets are shown in Table 1. 
Notably, these datasets show drastic change in density distribution 
and all contain a few samples that are only backgrounds.

In	our	experiments,	we	adopt	random	cropping	(256 × 256)	and	
random horizontal flipping as data augmentation strategies for train-
ing the model. The parameters of the backbone are initialized with 
the VGG- 19 pretrained on ImageNet (Deng et al., 2009) and others 
are randomly initialized from a Gaussian distribution with a stan-
dard deviation of 0.01. We train the network for 600 epochs with 
a batch size of 16 using the Adam optimizer (Kingma & Ba, 2015). 
We	fix	the	learning	rate	as	1e−5	and	the	weight	decay	as	1e−4,	with	
validation starting after the 100th epoch. The model with the best 
performance on the validation set is used to report the final result 
on the test set.

For comparison, we also implement a Faster- RCNN model, the 
detailed training process is provided in the Appendix A.

All experiments were conducted on a single 16 GB Tesla P100 
GPU, with methods implemented with Pytorch. The whole training 
process	takes	approximately	3 h.

3  |  RESULTS

To evaluate our method, we use the mean absolute error (MAE) and 
root mean squared error (RMSE) metrics, defined as:

where N is the total number of the images, Cpred

i
 and Cgt

i
 is the predicted 

count and the ground- truth count of i- th image, respectively.
Mean absolute error gives the average error between predicted 

and target values, which can provide direct evidence of the accu-
racy of a model. However, it is not sufficiently sensitive to unde-
sirable large errors. Therefore, RMSE is used as another evaluation 
metric since RMSE gives a relatively high weight to large errors. 
MAE and RMSE can be used jointly to diagnose the performance of 
a model. The larger the difference between them means the greater 
the variance in the individual errors in a dataset. It is unclear which 
one of these metrics is more important; hence, we simply define the 
model which has the lowest sum of MAE and RMSE on the valida-
tion data as the best model. This model's performance on the test 
set is shown in Table 2. To better illustrate our model's performance, 
we provide the results from a Faster- RCNN model for comparison. 
In addition, separate average performance on images with different 
count	levels,	L0	(0),	L1	(1–	100),	L2	(101–	500),	L3	(501–	1000),	and	L4	

(9)Dout = Dpred ⊙ 1
(

Spred ≥ 0.5
)

(10)MAE =
1

N

N
∑

i=1

∣C
pred

i
− C

gt

i
∣

(11)RMSE =

√

√

√

√
1

N

N
∑

i=1

(

C
pred

i
−C

gt

i

)2

TA B L E  1 Statistics	of	the	training,	validation,	and	test	set.

Dataset Number of images L0 L1 L2 L3 L4 Total Max Average

Training set 446 118 140 137 34 17 87,654 2682 196

Validation set 146 35 61 34 14 2 23,918 1361 164

Test set 146 39 59 36 6 6 23,707 1580 162

Note:	L0,	L1,	L2,	L3,	and	L4	represent	the	number	of	images	containing	0,	1–	100,	101–	500,	501–	1000,	and	1000+ penguins. Total gives the total 
number of penguins in the dataset, while Max and Average show the maximum and average number of penguins in one image in the dataset, 
respectively.

TA B L E  2 Evaluation	result	of	our	model	and	the	Faster-	RCNN	on	the	test	set.

Models

Overall MAE RMSE

MAE RMSE L0 L1 L2 L3 L4 L0 L1 L2 L3 L4

Our model 19.9 39.4 7.2 10.8 31.1 65.6 78.8 32.4 16.2 43.0 70.4 111.3

Faster- RCNN 54.8 78.9 20.0 51.7 74.4 89.7 158.2 44.0 64.4 95.2 110.6 177.9
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(1000+), are also calculated. Overall, our model has an outstanding 
performance on this task and outperforms the Faster- RCNN model 
in all aspects. It is also worth mentioning that the count error at the 
dataset level for our model is +186.6 (+0.8%) while for Faster- RCNN 
is 4741 (+20.0%).

Some of the estimated density maps are presented in Figure 4. 
Although the prediction's resolution is only one- eighth the resolu-
tion of the generated ground- true density map, it exhibits similar 
characteristics at the image level.

4  |  DISCUSSION

The algorithmic counting of objects in aerial images in ecological 
studies is currently dominated by detection algorithms. However, 
we have shown here that our model has various advantages over 
these methods.

Overall, our model has four main advantages over detection 
methods beyond markedly better performance on our data. First, 
our method is able to count extremely small objects. In the case of 
aerial images, the object of interest in an image is likely to be very 
small, especially for ecological surveys— in our case, only about 
5 × 5	pixels.	Our	experiments	show	even	the	two-	stage	detection	
algorithm Faster- RCNN fails to detect most of the penguins. The 
reason is as follows: No matter what detection methods, a back-
bone structure is essential for extracting features. However, the 

current mainstream deep network structure, often used as the 
backbone, will downsample the image to a certain extent, for ex-
ample, the downsampling ratio of VGG series is 16, while 32 for 
ResNet series (He et al., 2016). With a high downsampling ratio, 
the representation of a small object on the final feature maps may 
not be abundant enough for subsequent neural networks to pre-
dict the location and classification simultaneously. In contrast, our 
density estimation model only focuses on the counting of loca-
tions on the feature map instead of individuals, which provides 
better count accuracy.

Second, our model only requires point annotation, which means 
annotators need only to mark the same part of each object with a 
dot, quite similar to the way human counts. In contrast, detection 
algorithms require bounding box annotations and the quality of 
these will have a large impact on their performance (Russakovsky 
et al., 2015). For each object, a high- quality bounding box is charac-
terized as one with the smallest area but covers all the visible parts 
of that object. To create such annotation is laborious compared with 
point annotation, which only requires a point be drawn on the object 
and need not be especially accurate. This simplicity is exemplified in 
the generation of the ground- truth density maps— the size of each 
penguin is not required, we need only apply the same normalized 
Gaussian kernel on every penguin.

Third, the density map estimation method can better han-
dle objects located at the edge of the image. It is often the case 
that the images are of large size, with considering GPU memory 

F I G U R E  4 Some	visualization	results	
of the estimated density maps. The three 
images in each row, from left to right is 
the input, the Gaussian- smoothed ground- 
truth density map and the prediction. 
The corresponding count is given in the 
lower right corner of the density map. The 
difference between the ground- truth and 
the estimated counts is highlighted.
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constraints, researchers therefore have to crop them into digest-
ible pieces for the deep learning networks. It is inevitable that 
some objects are also split into pieces, scattering them over sev-
eral image patches. Such a situation results in a complex detection 
result where objects are undetected due to incomplete feature 
representations, or are repeatedly detected across multiple image 
patches. However, this will not pose a problem to the density es-
timation model, where the count of an object is not necessarily 
integer, thanks to the Gaussian smoothing. Hence, there will not 
produce redundant counts when summing up two nonoverlapping 
neighboring image patches.

Lastly, our model can utilize negative samples (images with zero 
counts) during training phase, which makes it more robust than the 
detection model when dealing with backgrounds. For some survey 
footage, there will be many images that are completely background, 
that is, no objects. However, detection algorithms cannot use them 
since they require every training sample to contain at least one ob-
ject of interest. This is a fundamental short- coming of the detec-
tion algorithms. Meanwhile, our model can fully use these images to 
improve its ability to differentiate the foreground and background. 
This also explains the large difference in performance of these two 
models on images of count level, L0.

In this work, we propose a CNN- based density map estimation 
model to count extremely small penguins in aerial images, espe-
cially those acquired by manned aircraft surveys. Compared with 
the traditional two- stage detection method, Faster- RCNN (Ren 
et al., 2016), our model shows a significant improvement in count-
ing accuracy when faced with small objects— specifically, marked 
improvements	in	MAE	and	RMSE	of	63.7%	and	50.1%,	respectively,	
and at the dataset level where the count error is reduced by 19.2% 
to be almost zero. Furthermore, our model outperforms the Faster- 
RCNN model over all levels of object density. Although the precise 
location of each object is not obtained with our model, it still indi-
cates areas where objects may exist. In the event, object counting 
needs to be very precise— necessitating a human counter— our model 
aids by excluding regions that do not need detailed consideration. 
Overall, we expect our research to help researchers who are han-
dling small objects with low resolution in aerial ecological surveys.
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APPENDIX A

A.1 | Specification of the Faster- RCNN model
In this section, we provide the detailed training process of the 
Faster- RCNN model and display full evaluation results.

A.2 | Experiments
Faster- RCNN has many hyper- parameters, in our experiments, 
most of them are kept in consistent with the original work (Ren et 
al., 2016)— we only highlight the differences here. The input im-
ages are enlarged by four times to ensure every object is larger than 
16 × 16	 pixels	 and	 detectable.	 The	 number	 of	 anchor	 boxes	 is	 re-
duced from 9 to 6 since the small variation in the size of objects. The 
size of these boxes are set as much as possible to match the size of 
the objects in the dataset— specifically the area of the anchor boxes 
are	16 × 16	and	24 × 24	with	aspect	ratios	of	0.9,	1,	1.1.

For fair comparison, we use the pretrained VGG- 19 as backbone 
in the Faster- RCNN model. The data augmentation technique used 
here is only random horizontal flipping. The batch size is set as 1. A 
total	of	25	epoch	are	trained	with	the	stochastic	gradient	descent	
(SGD) optimizer (Ruder, 2017).	The	initial	learning	rate	is	set	as	1e−3	
and	 decays	 to	 1e−4	 at	 the	 twelfth	 epoch.	 Only	 images	 without	
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A.3 | Results
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 where TP is the true positive, FP is the false positive, and FN is the false 
negative.

Here, we report the results of the best detection model on the 
test set. The detection results are varied with the intersection over 
union (IoU) threshold and the confidence threshold. The IoU thresh-
old is fixed as 0.3 in our experiments, and we only adjust the con-
fidence threshold. For better understanding, we still present the 

performance of the detection model with MAE and RMSE metrics 
and the full results are displayed in Table A1.

We visualize some detection results in Figure A1 under the confi-
dence level of 0.2. As shown in the graph, the detection model gives 
precise location of each prediction; however, it is very vulnerable to 
the complex scenes and varied count levels.

Confidence level MAE RMSE Count error Precision

0.1 97.97 123.55 13,387	[56.47%] 0.56

0.2 54.79 78.93 4741	[20.00%] 0.68

0.3 53.02 103.24 −1107	[−4.67%] 0.75

0.4 64.21 151.27 −6405	[−27.02%] 0.80

0.5 92.63 226.50 −12,525	[−52.83%] 0.83

0.6 131.42 301.72 −18,907	[−79.75%] 0.84

TA B L E  A 1 Results	of	the	Faster-	RCNN	
model on the entire test set. The IoU 
threshold is fixed as 0.3.

F I G U R E  A 1 Visual	examples	of	the	Faster-	RCNN	model	when	
setting the IoU threshold to 0.3 and the confidence threshold to 
0.2. In the left image, the ground- truth bounding boxes are red, and 
the prediction boxes are green. The corresponding detailed statistic 
is given on the right.
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