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Abstract
Projecting the distribution of population is critical in supporting analysis of the impacts and risks associated with climate 
change. In this paper, we apply a computational algorithm parameterised for the UK Shared Socioeconomic Pathway (UK-
SSP) narratives to create 1-km gridded urban land use and population projections for the UK to the end of the twenty-first 
century. Using a unimodal neighbourhood function, we model heterogeneity in urban sprawl patterns. The urban land use 
maps are used as weights to create downscaled population projections. We undertake a model uncertainty analysis using 500 
simulations with varying parameter settings per UK-SSP. Results illustrate how sprawl can emerge from scenario conditions 
even when population numbers decline, and irrespective of socio-economic wellbeing. To avoid negative environmental 
externalities associated with uncontrolled sprawl, such as in UK-SSP5 and UK-SSP3, planning policies will be vital. Uncer-
tainties about future population development in the UK are higher in rural areas than in urban areas. This has an effect on 
the competition for land and influences confidence in projections of broader land system change.
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Introduction

Many analyses of climate impacts and risks require pro-
jections of urban land use and population at fine spatial 
resolutions. Finely gridded urban land use and population 
data can support risk assessments of drought, flooding, and 
sea level rise. They can also be used as input to mitiga-
tion research, investigations into biodiversity threats due 
to urban sprawl, as well as informing policy interventions 
including, for example, through spatial planning, water 
resource management, and infrastructure investments.

The Shared Socio-economic Pathways (SSP) is a frame-
work of five scenarios adopted by the international cli-
mate research community in order to systematise uncer-
tainty about future socioeconomic development (O’Neill 
et al. 2020, 2017, 2014). The SSPs describe changes in 
socio-economic conditions based on challenges to climate 
change adaptation and mitigation. They include scenarios 
focusing on global sustainability (SSP1), regional rivalry 
(SSP3), inequality (SSP4), fossil-fuelled development 
(SSP5) and a middle of the road scenario (SSP2). None of 
the SSPs is a business-as usual scenario, and the framework 
is set up to be independent from climate policy assumptions 
(Kriegler et al. 2014). At the aggregated global, regional 
and country level, SSP urbanisation projections have been 
created by Jiang and O’Neill (2017) and SSP population 
projections have been created by KC and Lutz (2017) .

For local and subnational applications, various extended 
SSP narratives and quantitative projections have been cre-
ated, which include local characteristics and provide data at 
finer sectoral and spatial resolutions (O’Neill et al. 2020). 
Quantitative SSP projections at 10′ resolution for Europe 
have been created with the IMPRESSIONS dIAP model 
(http:// www. highe ndsol utions. eu/ page/ dIAP), an integrated 
cross-sectoral model capturing socio-ecological interactions 
(Harrison et al. 2016). When analysing climate risks in a 
national context and particularly when considering popula-
tion, however, a 10 arcmin. resolution (ca. 18.5 km at the 
equator, less towards the poles) can be too coarse.

To create finer resolution SSP projections, various down-
scaling methodologies have been developed and applied 
(van Vuuren et al. 2010). These include simple proportional 
scaling techniques (Boke-Olén et al. 2017; Yidan Chen 
et al. 2020a, b; Gaffin et al. 2004; Gao 2017, 2020), grav-
ity-based approaches of intermediate complexity (Grübler 
et al. 2007; Jones & O’Neill 2016; Reimann et al. 2021) and 
other approaches ranging from qualitative stakeholder input-
based methods (Rickebusch et al. 2011) to machine learn-
ing methods with resolutions as fine as 100-m grids (Yimin 
Chen et al. 2020a, b; Wolff et al. 2020). Each downscaling 
methodology comes with its own advantages and disadvan-
tages (van Vuuren et al. 2010).

The simplest approach is proportional scaling, which has 
advantages in terms of efficiency and transparency but has 
the disadvantage of being inflexible. The approach has been 
criticised for leading to unrealistically high population num-
bers in densely populated areas, since population fractions 
in each cell are held constant (van Vuuren et al. 2010). An 
early application of this method for worldwide downscaled 
population projections was made by Gaffin et al. (2004) at 
1/4° resolution. More recent studies include Gao (2017, 
2020), who used proportional scaling to downscale Jones 
and O’Neill’s (2016) worldwide population projections 
to 1-km resolution. Regional applications using the same 
approach for Africa (Boke-Olén et al. 2017) and for China 
(Yidan Chen et al. 2020a, b) have included more specificity 
by introducing a separate treatment of urban and rural areas.

Gravity-based approaches to downscaling allocate popu-
lation in a more plausible way (van Vuuren et al. 2010). The 
calculation of population potentials as a function of distance 
to certain characteristics in order to downscale population 
scenarios for climate research goes back to Grübler et al. 
(2007) and has been employed in several more recent stud-
ies (Jones & O’Neill 2016 at 7.5’ grid resolution for the 
world; Reimann et al., 2021 at 30’’ grid for the mediter-
ranean region, considering the differences between coastal 
and inland areas). These studies have in common that they 
use parameterised functions to create population potentials 
or preferences, which then determine where population is 
allocated. Parameters for these functions are calibrated from 
historical data, usually based on observed changes between 
1990 and 2000. A limitation of using gravity models to 
determine population allocation is that they naturally lead 
to agglomeration, as attractiveness increases with density 
(Grübler et al. 2007; Reimann et al. 2021).

In this study, we develop a new set of UK urban and 
population projections. Our approach offers advantages in 
terms of being consistent with the new quantitative UK-
SSP scenarios (Merkle et al. 2022), being able to simulate 
leapfrogging urban sprawl, and considering UK-SSP-spe-
cific land exclusions. Leapfrogging means that new urban 
cells can emerge at some distance from existing urban cells. 
While earlier projections that include the UK have largely 
reproduced historically observed development (Gao 2017, 
2020; Jones & O’Neill 2016), our projections provide a more 
accurate fit with the extended SSP narratives for the UK 
described in detail in Harmáčková et al. (2022) and Pedde 
et al. (2021).

The UK-SSP narratives (Harmáčková et al. 2022) and 
quantifications (Merkle et al., 2022) describe structurally 
different, plausible and coherent socio-economic scenarios 
for various sectors in the UK, for use in climate change 
impact research. In order to follow the UK-SSP narratives 
as closely as possible, we apply a gravity-based approach 
with a neighbourhood function that allows for leapfrogging 

http://www.highendsolutions.eu/page/dIAP
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(Caruso et al. 2005). As a result, we avoid enforced urban 
agglomeration, which has been identified as a limitation 
in earlier gravity-based downscaling studies (Reimann 
et al. 2021). Given the unique and unobserved nature of the 
future UK-SSPs, we make no attempt to replicate historical 
patterns of change. However, we also undertake a Monte 
Carlo simulation to demonstrate the effect of input parameter 
uncertainty on the resulting patterns of urban land use and 
population.

Methodology

UK case study area

The UK is a country of 67 million people, covering Great 
Britain and Northern Ireland. It is the third largest European 

country in terms of population (after Russia and Germany), 
and due to its comparably small geographical area, it ranks 
amongst the most densely populated countries in Europe 
(after the Netherlands and Belgium). The UK land surface 
amounts to 258,546  km2, out of which 42% are grassland, 
24% are arable land, 15% are mountains, heath and bog, 8% 
are woodland, 6% are urban and 5% are water and coastal 
(Rowland et al. 2017a, b) (Fig. 1).

Downscaling approach

The downscaling approach adopted in this study shares 
similarities with earlier gravity-based approaches but also 
incorporates novel elements. The approach was conducted 
in two steps. As is common with other land use models, 
the model allocates land according to suitability (Oakleaf 
et al. 2019) and combines top-down and bottom-up elements 

Fig. 1  UK land use baseline
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(Verburg & Overmars 2009). In the first step, 1-km gridded 
urban land use maps were downscaled from the UK-SSP 
parameterised dIAP model projections at 10′ resolution 
(Harrison et al. 2016; Terama et al. 2019), using a unimodal 
neighbourhood function to calculate allocation suitability. In 
the second step, 1-km gridded population maps were down-
scaled from the local authority district (LAD) level UK-SSP 
projections (Merkle et al. 2022), using the downscaled urban 
land use as an input to the population allocation.

The method was implemented through a computational 
algorithm in R, parameterised to reflect UK-SSP-specific 
urban development derived from the UK-SSP narratives 
and semi-quantitative trends (Harmáčková et al. 2022). The 
algorithm was applied to LADs in decadal time steps from 
2020 to 2100, thereby ensuring vertical consistency with the 
UK-SSP population projections (Merkle et al. 2022). The 
UK-SSP population projections are vertically consistent with 
the global SSP population projections (KC and Lutz 2017). 
Figure 2 provides an overview of the method.

Urban land use

Urban land use was downscaled from the regional urban 
growth (RUG) model (Terama et al. 2019), which is a 
sub-model of dIAP (Harrison et al. 2016), using a param-
eterised unimodal distribution function to allocate urban-
isation suitability weights around existing urban cells 
(Fig. 2).

We parameterised the RUG sub-model of dIAP with 
sprawl control assumptions that ensured smooth trends 
and consistency with the UK-SSP narratives (Harmáčková 
et al. 2022). We assumed increasing levels of planning 
control in SSP1 and SSP4, and decreasing levels of plan-
ning control in SSP3 and SSP5. SSP2 was created as a 
weighted interpolation between SSP1 and SSP3. All 
parameter settings are reported in supplementary mate-
rial 1.2. The dIAP output was reprojected from 10′ grid 
cells to 1-km grid cells, and then to the LAD polygons by 
taking the mean across 1-km cells in each LAD.

Fig. 2  Downscaling process encompassing an urban land use component and a population component. Yellow boxes for input data, blue boxes 
for models, green boxes for output data. LAD, local authority districts
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As a baseline for the downscaled projections, we used 
the UKCEH Land Cover Map (LCM) 2015 at 1 km resolu-
tion (https:// www. ceh. ac. uk/ servi ces/ land- cover- map- 2015) 
(Rowland et al. 2017a, 2017b). To exclude some areas from 
being urbanised, we applied UK-SSP specific masks for 
unsuitable land (e.g. marsh), protected areas (nature con-
servation) and flood risk zones. With these exclusions, the 
allocation of urban cells was more constrained in UK-SSP1 
and UK-SSP2 than in the other scenarios, reflecting assump-
tions about the strictness of the implementation of land use 
planning. These assumptions are not explicit climate policy 
assumptions and so we relate them to the SSPs rather than 
the Shared climate Policy Assumptions of Kriegler et al. 
(2014). All exclusions are reported in supplementary mate-
rial 1.3.

The number of new urban cells to be added per time step 
in every LAD and every scenario was a function of the num-
ber of urban cells in t0 and the growth in urban area from t0 
to t1 as projected by dIAP. New urban cells were assigned to 
the most probable location according to a suitability meas-
ure, which was based on proximity to existing urban cells in 
the previous timestep. We used a unimodal neighbourhood 
function with an exogenously selectable mode parameter to 
model the highest urbanisation suitability distance, and an 
exogenously selectable kurtosis parameter to model how 
quickly suitability decreases with distance from the mode. 
The underlying basis is a Kumaraswamy density function, 
transposed to make beta endogenous. With this framework, 
we could capture UK-SSP-specific sprawl assumptions 
about the extent of leapfrogging, which cannot be modelled 
with the negative exponential function that is usually used 

in gravity-based downscaling (Reimann et al. 2021). Our 
framework provides the possibility for greenspace or agri-
culture to develop between new urban cells, and controls the 
scatter of urban development (Caruso et al. 2005). All steps 
to derive the urbanisation suitability function are described 
in supplementary material 1.4.

We predetermined the shape of the suitability function for 
each UK-SSP to make them reflect the UK-SSP narratives. 
We assumed that urbanisation likelihood is highest at mod-
erate distance from current urban cells and then decreases 
with distance. The functions for each scenario are plotted 
in Fig. 3. The left end of the plot [0;0] is an urban cell, 
which has no suitability for urbanisation because it is already 
urban. Suitability then increases quickly with distance in all 
scenarios and reaches its maximum at between 2 and 3.5 km 
from existing urban cells, depending on the scenario.

In the rare case where there is no cell available, the algo-
rithm assigns a new urban cell to an excluded cell with the 
highest rank. We accepted this behaviour as rogue urbani-
sation, assumed to occur because of imperfections in the 
planning process. The approach resulted in 1-km gridded 
maps of urban land use for each UK-SSP and each decade 
from 2020 until 2100.

Population

Population was downscaled from the LAD level UK-SSP 
population projections (Merkle et al. 2022), using the urban 
land use maps to weight the allocation of population change.

The baseline was created from a constrained top-down 
estimated dataset created by the WorldPop project (www. 
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Fig. 3  Urbanisation suitability functions capturing UK-SSP-specific 
sprawl assumptions. Vertical lines denote cell boundaries when 
moving horizontally or vertically across the grid. The functions are 
derived from a Kumaraswamy distribution and provide urbanisation 
suitability for non-urban cells. We assume a neighbourhood boundary 
of 10 km — beyond this radius, no systematic urbanisation is likely. 
We assume the kurtosis parameter to be equal to 3, in order to have a 
smooth allocation of weights across the neighbourhood. UK-SSP 1: 
urban sprawl parameter set to 2  km. Dense development but allow-

ing for green space. A lower value would imply that non-urban cells 
between two urban cells would be highly unlikely. UK-SSP2: urban 
sprawl parameter set to 2.5 km. Development less dense than in UK-
SSP1. UK-SSP3: urban sprawl parameter set to 3  km. Second-larg-
est sprawl after UK-SSP5. UK-SSP4: urban sprawl parameter set to 
2.5 km. Dense development but some sprawl due to the development 
of ghettos outside of city centres. UK-SSP5: urban sprawl parameter 
set to 3.5 km. Largest sprawl amongst all scenarios

https://www.ceh.ac.uk/services/land-cover-map-2015
http://www.worldpop.org
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world pop. org) (Bondarenko et al., 2020). WorldPop data are 
based on official census data, downscaled statistically using 
satellite data on land surface, nightlight, road infrastructure 
and other ancillary inputs (Nieves et al., 2020). It is one of 
the most accurate population data sources available (Leyk 
et al., 2019). We aggregated these data to a 1-km grid reso-
lution, clipped it to the UK LCM 2015 for consistency and 
scaled cells proportionally by LAD in order to align the data 
with the UK-SSP 2020 baseline.

As an input to the population downscaling process, we 
transformed the UK-SSP urban surface maps into urban 
weight maps (Fig. 4). Urban weight was defined as a func-
tion of distance to the nearest urban cell, adjacent urban 
cells and density of urban cells within circle neighbourhood 
windows of 5 km, 50 km and 150 km radius. The weighting 
function is described in supplementary material 2.2.

As with the urban land use downscaling approach, the 
population downscaling algorithm was applied to the LADs 
with a decadal time step for each scenario. The constrained 
nature of the baseline dataset implied that cells without pop-
ulation exist. In order to account for the possibility of unpop-
ulated cells becoming populated, the algorithm evaluated 
eligibility according to exclusion criteria and urban weight 
changes. The amount of newly populated cells was assigned 
according to the existing populated extent and an exogenous 

sprawl parameter. This rule ensured that population sprawl 
occurs in accordance with urbanisation, while taking the 
existing extent of population of the LAD into account. The 
assignment process for newly populated cells is described 
in supplementary material 2.3.

The algorithm then allocated LAD-level population 
change from Merkle et al. (2022) to each cell as a func-
tion of total population change and a cell’s weight changes. 
This allocation mechanism is comparable to earlier gravity-
based approaches (Grübler et al. 2007) and ensured that new 
gridded population took the projected urbanisation patterns 
into account, while remaining perfectly consistent with 
the LAD level projections. Population fractions depend on 
weight fractions and thus are able to change. The population 
allocation function is further described in supplementary 
material 2.4.

Key parameter assumptions

We translated the qualitative UK-SSP elements from 
Harmáčková et al. (2022) into paramater settings through 
an iterative process of expert reviews. All parameter settings 
are given in supplementary material 1.2, 1.3, and 3.1. We 
summarise these assumptions qualitatively in Table 1.

Fig. 4  Urban weight map 
examples as calculated in the 
framework

http://www.worldpop.org
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Analysis of uncertainty due to input parameters

We analysed the variability of the projections for urban 
area and population per UK-SSP when parameter settings 
are changed. We applied a Monte Carlo approach similar 
to Brown et al. (2014), running 500 simulations (n = 500) 
for each scenario, with combinations of randomly drawn 
settings. Parameter ranges were defined around the scenario-
specific reference values, sampled from uniform distribu-
tions and varied simultaneously, rather than varying only 
one parameter at a time (Saltelli et al. 2019). We computed 
distributions of population sprawl, share of population on 
urban land, average population density and unevenness of 
population density, captured by the Gini coefficient (Dun-
can 1957). Finally, we computed the coefficient of variation 
for each cell to elicit where population allocation is most 
uncertain. Details about parameters and ranges for the analy-
sis are provided in the supplementary section.

Results

Scenario runs

The UK-SSP narratives suggest significant urban and popu-
lation sprawl patterns in UK-SSP3 and UK-SSP5 (scenar-
ios with high challenges to climate change mitigation), and 
more dense development in UK-SSP1, UK-SSP2 and UK-
SSP4 (scenarios with low to medium challenges to climate 
change mitigation) (Harmáčková et al. 2022). The model 
results presented here are consistent with this general picture 
and are summarised in Table 2 and in Figs. 5 and 6.

In UK-SSP1, the sustainability scenario, there is strong 
land use regulation leading to the exclusion of a large part 
of the UK from urban development in protected areas and 
flood risk zones. Even though total population increases by 
27%, the model projects only a 22% increase in urban land 
cover between 2020 and 2100 due to planning controls. 

Table 1  Overview of assumptions for the UK-SSP scenarios, based on Harmáčková et al. (2022)

UK-SSP 1 UK-SSP 2 UK-SSP 3 UK-SSP 4 UK-SSP 5

Key narrative com-
ponents

Moderate population 
growth coupled 
with strict plan-
ning regulations 
and continued 
attractiveness of 
rural lifestyles 
leads to the growth 
of compact, green 
cities

Increasing urbanisa-
tion with strong 
centralised spatial 
planning leads to 
city-states by 2100

Breakdown in gov-
ernance leads to 
uncontrolled urban 
sprawl and slums 
until 2070 then 
urban areas cease 
to grow as declin-
ing population

Strong govern-
ance of the elite 
coupled with high 
inequality results 
in moderate urban 
growth but with an 
increase in ghet-
tos to 2070 after 
which the UK 
population ceases 
to grow

Strong sprawled urban develop-
ment, resulting from weak 
spatial planning policy and 
high population increase

Exclusions for new 
urbanisation and 
new population 
(baseline maps)

Protected areas and 
flood risk areas are 
excluded from new 
development

Protected areas are 
excluded from new 
development

No exclusions other 
than unsuitable 
land surface

No exclusions other 
than unsuitable 
land surface

No exclusions other than 
unsuitable land surface

Planning control for 
dense areas (dIAP 
parameter)

Strongly increasing 
planning control in 
dense areas

N/A (not explicitly 
modelled by dIAP)

Decreasing planning 
control in dense 
areas

Strongly increasing 
planning control 
in dense areas

No change in planning control 
in dense areas

Planning control for 
areas of intermedi-
ate density (dIAP 
parameter)

Strongly increasing 
planning control in 
suburban and rural 
areas

N/A (not explicitly 
modelled by dIAP)

Strongly decreasing 
planning control in 
suburban and rural 
areas

No change in plan-
ning control in 
suburban and rural 
areas

Slightly decreasing planning 
control in suburban and rural 
areas

Urban sprawl 
(urbanisation 
downscaling algo-
rithm parameter)

Very low setting, but 
allowing for green 
space between 
artificial surface 
cells

Low setting, urban 
development 
slightly less dense 
than in UK-SSP 1

Medium–High set-
ting, second larg-
est urban sprawl 
after UK-SSP 5

Low setting, dense 
development but 
some sprawl due 
to development of 
ghettos outside of 
city centres

High setting, largest urban 
sprawl of all scenarios

New populated land 
(population down-
scaling algorithm 
parameter)

Medium setting, less 
urban population 
than in UK-SSP 2, 
therefore slightly 
more population 
sprawl

Low setting, given 
that scenario 
assumes high 
urban population 
share

Medium–High 
setting, due to sub-
stantial population 
sprawl and no land 
use regulation

Low setting, given 
that scenario 
assumes high 
urban population 
share

High setting, higher than UK-
SSP 3, due to massive sprawl 
and low land use restrictions
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Consequently, we observe an increase in average popula-
tion density by 7%, as well as some sprawl into previously 
unpopulated land, due to rural livelihoods becoming more 
attractive (Harmáčková et al. 2022). The model suggests that 
populated land increases by 18%.

UK-SSP2, the middle of the road scenario, shares simi-
larities with UK-SSP1, as population grows by 27%, and 
is allocated in a comparably dense way. Flood risk areas 
are not excluded, and urban sprawl is slightly larger than 
in UK-SSP1, while protected land is still excluded from 
urban development. Population sprawl is lower than in UK-
SSP1, as development is focused on cities. As a result of the 
low number of eligible unpopulated cells to become newly 
populated, population density increases by 15%, which is 
more than in UK-SSP1, and reflects the narrative’s focus 
on increased housing density in already populated areas 

and movement of people from rural to urban environments 
(Harmáčková et al. 2022). Populated land increases by 10% 
— the smallest increase amongst all scenarios.

In UK-SSP3, the regional rivalry scenario, population 
declines by 26% as living conditions dramatically decrease, but 
urban land cover still increases. This development results from 
a lack of planning control and subsistence lifestyles requir-
ing more space (Harmáčková et al. 2022). As many people 
become self-supporting, the model projects large population 
sprawl into unpopulated areas, as populated area increases by 
49%. As illustrated in Figs. 5 and 6, only a few areas, mostly in 
rural Wales and Scotland, remain without population. Average 
population density decreases by 51%, which arises from the 
combined effect of population decline and sprawl.

UK-SSP4, the inequality scenario, has the lowest urban 
land cover growth and lowest population sprawl, largely 

Table 2  Urban and population downscaling results

Indicator Baseline 2020 UK-SSP 1 2100 UK-SSP 2 2100 UK-SSP 3 2100 UK-SSP 4 2100 UK-SSP 5 2100

Excluded land (exogenous parameter) 9.16% 36.48% 32.19% 9.16% 9.16% 9.14%
Urban land cover (exogenous, from 

dIAP)
5.92% 7.23% 7.27% 7.53% 7.08% 14.17%

Remaining potential land for urbanisa-
tion (endogenous)

84.92% 56.28% 60.55% 83.31% 83.77% 76.69%

Total population (exogenous, from 
global SSPs)

66.8 m 84.7 m 84.7 m 49.2 m 63.3 m 128.3 m

Populated land (endogenous) 50.0% 59.2% 55.2% 74.6% 57.7% 83.5%
Population on urban land (endogenous) 74.3% 73.9% 74.6% 72.6% 73.5% 78.1%
Population density across populated 

cells [people/km2] (endogenous)
519 556 596 256 427 597

Fig. 5  Urban land use baseline and scenarios — UK
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due to a declining population and an economic focus on 
cities. As visible in Fig. 6, ghetto development around cit-
ies (Harmáčková et al. 2022) could be inferred, e.g. around 
Aviemore and Fort William in the Scottish Highlands.

UK-SSP5, the fossil-fuelled development scenario, is a 
scenario of massive urban sprawl and population growth, 
due to a near doubling of total population numbers and 
materially intensive growth of the economy (Harmáčková 
et al. 2022). The model projects a 139% increase in urban 
areas. Due to the large population sprawl, average population 
density reaches a similar level to UK-SSP2. As visible in 
Figs. 5 and 6, the development of “city-states” (Harmáčková 
et al. 2022) can be inferred around, e.g. Liverpool, Man-
chester, Sheffield and Birmingham, but also in other areas 
such as around Bristol/Cardiff and Glasgow/Edinburgh. 
With some exceptions in the Scottish Highlands and Islands, 
almost no part of the UK remains unpopulated.

Analysis of uncertainties due to model parameters

The Monte Carlo simulations with changes in input param-
eters per UK-SSP show that the number of populated cells, 
population on urban cells, population density and the hetero-
geneity of individual densities vary, which signifies uncer-
tainty within the scenarios. Violin plots in Fig. 7 illustrate that 
the distributions of the output indicators are largely skewed, 
meaning that the effects from parameter changes are not lin-
ear. Correlation plots of parameter changes against indicator 
changes are provided in supplementary material 3.1.

Uncertainty ranges regarding the extent of populated 
land (top left plot, Fig. 7) and population densities (bottom 

left plot, Fig. 7) are largest in UK-SSP 3 and UK-SSP 5 — 
an outcome from the high setting of the population sprawl 
parameter and large uncertainty range assumed for the 
parameter sample. While uncertainty on the extent of popu-
lated land (top left plot, Fig. 7) is negatively skewed in the 
majority of scenarios, uncertainty about urban population 
(top right plot, Fig. 7) is positively skewed in all scenarios 
and high outliers exist. Lowest uncertainty for the population 
share on urban cells is found in UK-SSP 5 — the scenario 
with the largest urban land cover extent. Uncertainty ranges 
on average population densities (bottom left plot, Fig. 7) are 
positively skewed and largest in UK-SSP 5. Heterogeneity 
of population density across cells (bottom right plot, Fig. 7) 
is generally high with a Gini coefficient ranging between 
0.8 and 0.9. Heterogeneity is highest in UK-SSP3 and UK-
SSP5, the scenarios assuming the highest level of urban and 
population sprawl.

The scenarios remain quite different from one another, 
despite the overlapping parameter ranges in the uncertainty 
analysis. Negative skewness of populated cells (top left 
plot, Fig. 7) is associated with reaching ceilings of areas 
that can become newly populated: given upper ceilings of 
available land that can realistically become populated, the 
relation between population and populated cells is not linear, 
but asymptotic. Therefore, more runs achieve higher rates 
than lower rates. Density has a reciprocal relationship to the 
extent of populated land, which is why we observe positive 
skewness of average density (bottom left plot, Fig. 7). Aver-
age density does not increase linearly with higher population 
numbers, because there is a tendency to populate new cells, 
which are constrained by availability. The population share 

Fig. 6  Population baseline and scenarios — UK
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on urban cells is much less uncertain than the extent of pop-
ulated land. This is particularly the case in UK-SSP5, where 
several LADs become fully urbanised. The distributions of 
the population share on urban cells in UK-SSP1–4 are mul-
timodal. As revealed by the correlations shown in supple-
mentary material 3.2, this outcome is related to low settings 
of the sprawl parameter, determining the level of urban land 
agglomeration in highly populated areas, and therefore alter-
ing the population share on urban land significantly.

For a spatial visualisation of uncertainties, we have cal-
culated the coefficient of variation on population density 
(Fig. 8).

The coefficient of variation on population density for 
each cell across the Monte Carlo simulation results shows 
that uncertainty is generally low (< 1%) in urban centres 
such as London, and in areas with very little possibility of 
changes. It is zero in areas that do not become populated 
in any simulation, either due to extreme remoteness (e.g. 
Uist in Scotland) or excluded land (e.g. northern Highlands 
in Scotland). Uncertainty is high in rural areas with higher 
allocation possibilities. Highest uncertainties prevail in UK-
SSP3 and UK-SSP5, where population sprawl allows for 
more possibilities than in the more land use planning con-
trolled scenarios. There are clear uncertainty hotspots, some 
of which occur across all scenarios. These include Ceredi-
gion in Wales, Fermanagh and Omagh in Northern Ireland, 

Inverness and Moray in Scotland and the Scottish Borders. 
The uncertainty hotspots have in common that they start off 
with low population numbers. Some of them are furthermore 
bound by large surrounding areas of unsuitable land.

Discussion

Using the downscaling process reported in this paper, we 
have created 1-km gridded UK-SSP projections of urban 
land use and population distributions. The downscaled pro-
jections cover the intermediate level between supranational 
projections (e.g. Gao 2017, 2020; Harrison et al. 2016; Jones 
& O’Neill, 2016; Reginster & Rounsevell 2006) and local 
projections at fine resolution (e.g. Fontaine & Rounsevell, 
2009). The spatial patterns reflect the UK-SSP narratives 
reported in Harmáčková et al. (2022).

Uncertainties

The SSPs were developed to systematise uncertainty about 
future socio-economic development trends. While there is 
uncertainty about which SSP trajectory the future is likely 
to follow, if any, there is also uncertainty within each SSP 
and the tools used to explore them. Model outputs rely on 

Fig. 7  Uncertainty distributions on selected indicators, plotted as 
violin plots. UK-SSP1 in green, UK-SSP2 in blue, UK-SSP3 in red, 
UK-SSP4 in yellow and UK-SSP5 in violet. The vertical extent of 
the plots shows the uncertainty ranges (bandwidths). The violin plots 
graphically show the distributions of results. Fat bottom ends means 

positive skewness, and fat upper ends mean negative skewness. The 
horizontal lines inside the violin plots provide the 25th, 50th and 75th 
percentiles of the distribution. The black points in each plot indicate 
the result of the scenario reference run
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model structure, parameters and other inputs, all of which 
are not ontologically true (Rounsevell et al. 2021). Instead, 
they are subject to normative decisions about what reality 
the model should simulate.

To reduce uncertainty about parameter settings, many 
urbanisation and population scenario studies such as Merk-
ens et al. (2016) calibrate parameter settings from historic 
observations. This makes parameterisation reproducible, but 
it has the limitation that the model reproduces spatial pat-
terns for future scenarios that replicate the patterns from 
an observed period in the past, e.g. 1990–2000 (Merkens 
et al. 2016). Hence, there is no scope to produce novel 
urban patterns that differ from what occurred in the past. 
The parameter settings used here were not calibrated with 
historical data, since this allows future projections to deviate 
from historical patterns, in line with the UK-SSP storylines. 
We defined parameter settings based on scenario narratives, 
which are also uncertain, but have been co-created with 
stakeholder input (Harmáčková et al. 2022). We analysed 
uncertainties associated with the interpretation of these nar-
ratives (Rounsevell et al. 2021), showing how results vary 
when parameters settings per UK-SSP are changed. Similar 
to Reimann et al. (2021), we find that population alloca-
tion in urban areas is more certain than in rural areas. This 
reflects that rural LADs are larger than urban LADs, and 
therefore, the number of different possible urban land use 
and population allocations is larger in rural areas. However, 
the uncertainty in the urban model parameters did not sub-
stantially erode the differences between the scenario out-
comes in terms of population distributions. This suggests 
that the general urbanisation characteristics are robust reflec-
tions of the broader scenario storylines.

Novelty

While some earlier population downscaling studies have 
employed proportional scaling techniques (Boke-Olén 
et al. 2017; Yidan Chen et al. 2020a, b; Gao 2017, 2020), 
we adopted a gravity-based approach (Grübler et al. 2007) 
with a specific parameterised urban allocation function that 
allowed for increased urban sprawl specified by the scenario 
narratives. The approach allows, therefore, for more spatial 
heterogeneity between scenarios. While some earlier down-
scaling approaches assumed fixed urban extents (Merk-
ens et al. 2016), we add to the growing body of downscal-
ing studies that consider changing urban extents (Jones & 
O’Neill 2016; Reimann et al. 2021). Using an urban suitabil-
ity function derived from the Kumaraswamy distribution, the 
downscaling model circumvents the agglomeration limitation 
of earlier gravity-based approaches (Reimann et al., 2021), so 
we can model more disaggregated urbanisation leapfrogging 
patterns. A further improvement of the approach presented 
here compared to some earlier gravity-based downscaling 
studies is that the UK-SSP-specific masks for urban and pop-
ulation sprawl take flood risk into account. The downscaled 
population projections are UK context-specific and more up to 
date than, e.g. Gao (2017, 2020), as they are based on recent 
historical baseline data from 2020 and on new LAD-level 
population projections (Merkle et al. 2022).

Consistency

We used a definition of urban land based on land 
cover rather than population density, and so the 

Fig. 8  Coefficient of variation plots
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urbanisation projections presented here are not consist-
ent with the global SSP urbanisation scenarios (Jiang & 
O’Neill 2017), which work with a population density 
definition. In this case, the land cover-based definition of 
urban area was predicated on the availability of the exist-
ing dIAP-RUG urbanisation model (Harrison et al. 2016; 
Terama et al. 2019). The population projections, however, 
are consistent with the LAD level UK-SSP population 
scenarios (Merkle et al. 2022), which have been created 
to be consistent with the global population scenarios (KC 
and Lutz 2017). Population projections are therefore con-
sistent across SSP scales.

Policy implications

Quantitative UK-SSP scenarios can be used in various ways 
to explore socio-economic uncertainties about the future 
and analyse the impacts of climate change (Harmáčková 
et al. 2022; Merkle et al. 2022). They are not forecasts, and 
likelihoods are not associated to the scenarios. A general 
limitation of the SSP framework is that climate change 
impacts are not considered, which is an important limitation 
for population scenarios (Jones & O’Neill 2016). If certain 
areas of the UK were, for example, to become increasingly 
prone to drought or flooding, then the population might be 
expected to migrate away from these areas. This cannot be 
considered without making assumptions about the impacts 
of climate change. Nevertheless, our projections can be used 
to inform policy about potential future environmental pres-
sures and risks.

A comparison of the UK-SSP3 and UK-SSP5 results 
illustrates how large urban and population sprawl can 
develop, in the case of both population growth (UK-SSP5) 
and population decline (UK-SSP3). In UK-SSP5, sprawl 
is associated with a highly materialistic and expansive 
lifestyle, which assumes that socio-economic welfare is 
not dependent on the state of the natural environment 
(Harmáčková et al. 2022; Merkle et al. 2022). This sce-
nario implies massive growth in transport infrastructure, 
to support a UK population that is nearly twice as large as 
today and has a resource-intensive economic metabolism. 
In UK-SSP3, sprawl is associated with poverty and the 
rise of an informal economy, which is resource-intensive 
due to inefficiencies associated with subsistence living. 
Both UK-SSP5 and UK-SSP3 are scenarios of weak land 
use planning policy, where people are free to settle any-
where, and there is no environmental protection to limit 
urban growth. UK-SSP1, UK-SSP2 and UK-SSP4 show 
that urban development can also be more constrained if 
stronger planning policy is in place, and similarly, this can 
occur for both a growing population (UK-SSP1, UK-SSP2) 
and a declining population (UK-SSP4).

Outlook

More precision in the model presented here could be 
achieved by adding more suitability variables, capturing 
for example elevation, slope and coastal proximity. While 
some preferences, e.g. coastal proximity, are considered 
in the dIAP RUG model underlying the urban projections 
(Terama et al. 2019), they are not explicitly considered in 
the downscaling process. More precision, requiring more 
input data, could be achieved by using spatially disag-
gregated data on economics, cultural and social features 
of interest, and including preferences for these features in 
the allocation algorithm (Li et al. 2016). Nevertheless, this 
should be done without compromising the transparency of 
model behaviour. The separation of model steps relating 
to urban change and population change, with each of their 
associated processes, can support this development.

Conclusion

The gridded urban land use and population projections 
presented in this study follow the UK-SSP narratives for 
spatially explicit challenges to climate change mitigation 
and adaptation in the UK. The downscaling approach takes 
leapfrogging explicitly into account and is therefore able 
to avoid unconstrained agglomeration patterns in scenarios 
where they do not fit the storylines developed with stake-
holders. Urban and population sprawl can be modelled in 
scenarios of population growth as well as in scenarios of 
population decline. Strong land use planning leads to only 
moderate urbanisation in UK-SSP 1, even though popula-
tion grows. Very dense development also occurs in UK-
SSP 2 and in UK-SSP 4 as a result of the narratives’ focus 
on city living. Even though population declines in UK-SSP 
3, there is substantial sprawl into previously unpopulated 
land due to poverty and lack of planning. UK-SSP 5 is a 
scenario of massive sprawl into city states, where nearly 
no land remains available for nature. Projection uncertain-
ties are shown to be higher in rural areas than in urban 
areas. These results highlight the vital importance of land 
use planning policies to avoid unsustainable futures.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10113- 022- 01963-7.
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