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Abstract 

Tephra fall can lead to significant additional loading on roofs. Understanding the relevant geomechanical properties 
of tephra is critical when assessing the vulnerability of buildings to tephra fall and designing buildings to withstand 
tephra loads. Through analysis of published data and new experimental results on dry tephra (both natural samples 
from Ascension Island, South Atlantic and synthetic tephra made from crushed aggregates), we discuss the geome-
chanical properties of tephra relevant to roof loading, which include bulk density, grain size distribution and internal 
angle of friction. Compiled published data for deposits from 64 global eruptions reveal no clear trend in deposit den-
sities based on magma composition or eruption size. The global data show a wide range of values within single erup-
tions and between eruptions of similar compositions. Published grain size distributions near to source (≤ 10 km) vary 
widely but again there are no clear trends relating to magma composition. We used laboratory tests to investigate 
the internal angle of friction, which influences deposit sliding behaviour. For dry tephra, at the low normal stresses 
likely to be experienced in roof loads (≤ 35 kPa), we found similar values across all our tests (35.8° - 36.5°) suggesting 
that any internal sliding will be consistent across a variety of deposits. By considering different magma compositions, 
densities and grain size distributions, we have provided an envelope of values for deposit parameters relevant to roof 
loading, in which future eruptions are likely to sit. Finally, we created synthetic tephra (fine- and coarse-grained pum-
ice and scoria) by crushing volcanic aggregates and compared it to samples from Ascension and published data. Our 
results reveal that synthetic tephra successfully replicated the properties relevant to loading, potentially reducing the 
need to collect and transport natural samples.
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Introduction
During an explosive volcanic eruption, the fall out of 
tephra (ejected particles of all sizes) from the eruptive 
plume can lead to significant additional loading on roofs. 
Buildings close to an eruptive vent can sustain substantial 
damage or even collapse (e.g. Blong 2003; Jenkins et  al. 
2014; Hayes et  al. 2019). Most recently, roof collapses 

occurred following the April 2021 eruption of La Sou-
frière on St Vincent (Lesser Antilles).

The key factors that are thought to influence the 
load transferred to the roof by a tephra deposit, are 
magma composition and vesicularity, the size distri-
bution and shape of the grains, and properties of the 
roof (Fig.  1). Magma properties influence the den-
sity of individual grains, while their size distribution 
and shape influence packing (Estrada 2016; Landauer 
et  al. 2020). Deposit density depends on both grain 
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density and packing and can also increase substan-
tially if the deposit is wet (e.g. Blong 1981; Macedo-
nio and Costa 2012; Hayes et  al. 2019; Williams et  al. 
2021). The size and intensity of the eruption impact 
the height of the volcanic plume (e.g. Bonadonna and 
Costa 2013; Suzuki et  al. 2016; Cassidy et  al. 2018) 
and atmospheric processes, including wind velocity 
and precipitation, influence the transport and deposi-
tion of particles (e.g. Petersen et  al. 2012; Bonadonna 
et al. 2015; Poulidis et al. 2018). In turn, these factors 
affect the amount of tephra deposited at any location. 
The load on the roof depends on the bulk density and 
thickness of the deposit, but tephra thickness can be 
altered after deposition by drifting and sliding. These 
processes are influenced by tephra properties, such as 
the internal angle of friction and grain size distribu-
tion, as well as the material, shape and pitch of the roof 
and the coefficient of friction between the tephra and 
the roof (e.g. Hampton et al. 2015).

The aim of this study is to discuss and present the 
geomechanical properties of tephra relevant to roof 
loading. Understanding these properties is critical 

when assessing the vulnerability of buildings in areas at 
risk of tephra fall as they influence the additional load 
that is transferred to a roof and hence its likelihood 
of collapse. Estimating this additional loading is also 
important for building design, where building codes 
use a combination of historic records and experimental 
results to assess loads likely to occur within a building’s 
lifespan. Snow loading, which is fundamentally simi-
lar to loading from tephra in that it a granular air-fall 
deposit, is well characterised and routinely included in 
international design standards (e.g. British Standards 
Institution 2009; International Standards Organization 
2013; American Society of Civil Engineers and Struc-
tural Engineering Institute 2017), but tephra fall is not 
routinely taken into account, and at the time of writ-
ing is not specifically considered in any international 
design standards or building codes.

This study forms part of a wider body of research inves-
tigating the potential of roof collapse by tephra loading 
with relevance to Ascension Island and the development 
of standards to account for tephra loads in building 
design. Ascension is a volcanically active UK Overseas 

Fig. 1  Key factors influencing the load transferred to the roof by a tephra deposit. Shaded factors are the focus of this study
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Territory in the south Atlantic with an area of 98 km2 
and ~ 780 residents. Because of Ascension’s remote loca-
tion and exposure to potential volcanic hazards, build-
ings could be vulnerable to collapse from any future 
explosive activity. In addition, Ascension tephra deposits 
vary widely in grain size and composition (e.g. Winstan-
ley 2020; Preece et al. 2021), making it an ideal location 
to investigate any variation in the geomechanical proper-
ties of tephra, and whether synthetic tephra can be used 
in lieu of natural material.

In order to undertake the required laboratory tests, 
large volumes of tephra are required and these are not 
always easily obtained from natural sources due to the 
hazards associated with near-source sampling follow-
ing an eruption and the costs of transporting large vol-
umes of samples. We therefore investigated whether 
synthetic tephra (of unknown composition, made from 
crushing and sieving commercially available volcanic 
aggregates) could be used to model the properties of 
naturally occurring deposits that are relevant when 
considering roof loads (bulk density, grain size dis-
tribution and internal angle of friction). By compar-
ing synthetic tephra of a non-specific composition to 
published data and the results from tests conducted as 
part of this study on Ascension tephra, the possibility 
of using commercially available aggregate to generate 
the volumes of material required for large scale testing 
can be assessed.

We compiled published density and grain size data 
for deposits from 64 global eruptions, measured the 
grain size distributions (GSDs) of samples of pum-
ice, scoria and ash from Ascension and selected rep-
resentative GSDs for our synthetic samples. We then 
used shear box tests to measure the internal angle of 

friction of dry samples of both natural and synthetic 
material. The tests undertaken in this study were only 
performed on dry tephra and do not consider the sat-
urated state of the deposit. Results for our synthetic 
samples matched well with both Ascension samples 
and published data from a wide range of eruptions; we 
can therefore be confident in using synthetic tephra 
to investigate the properties that control loading and 
sliding.

Methods
To ensure our test samples were representative of nat-
ural deposits, we compared them to published GSDs 
from global mafic, intermediate and silicic eruptions 
(listed in Table  1), focusing on proximal samples (≤ 
10 km from source) to enable comparison with GSDs of 
samples from Ascension. The Ascension samples were 
sieved to 4 φg (63 μm) diameter, with smaller particles 
analysed by dynamic image analysis (British Standards 
Institution 2006) using a Microtrac CAMSIZER® X2. 
These samples comprised trachytic ash, lithic-rich and 
lithic-poor trachytic pumice (Preece et  al. 2021) and 
coarse-grained and fine-grained basaltic scoria (Win-
stanley 2020) from five locations shown in Fig. 2.

Bulk densities for dry deposits were compiled from 
published data for 61 eruptions at 33 volcanoes (detailed 
in the Appendix). These cover small to large eruptions 
(VEI 2–7), with mafic to silicic magma compositions, and 
include both proximal-medial (< 50 km from source) and 
distal (≥ 50 km from source) values.

Test samples were created by crushing commercially 
available volcanic material using a Proctor compactor to 
obtain a range of grain sizes. The aggregates comprised 
mafic ‘volcanic lava filtration gravel’ and silicic ‘pumice 

Table 1  Published grain size distribution (GSD), size and magma composition for eruptions with published GSDs ≤10 km from source, 
used in Fig. 3

a  Based on plume height of 26 km and erupted volume of 1.37 km3 for Unit D (Carey et al. 2010)

Eruption VEI Composition GSD distance from 
source (km)

Reference

Askja 1875 Unit D 5a Rhyolite 1—7 (Sparks et al. 1981)

Fogo A 5 Trachyte ~ 3—8 (Walker and Croasdale 1970; Pensa et al. 2015)

Eyjafjallajökull 2010 4 Trachyte 2—9.6 (Bonadonna et al. 2011)

Quizapu 1932 6 Dacite 2.5—7.4 (Hildreth and Drake 1992)

Agung 1963 5 Andesite 7 (Self and Rampino 2012)

Ruapehu 1996 3 Andesite 0.4 (Bonadonna et al. 2005)

Hekla 1991 3 Basaltic andesite 5 (Gudnason et al. 2017)

Calbuco 2015 4 Basaltic andesite 5—6 (Castruccio et al. 2016; Romero et al. 2016)

Etna 2002–3 3 Basalt 3.7—10 (Andronico et al. 2008)

Grimsvötn 2004 3 Basalt 5—10 (Oddsson 2007)

Kilauea Iki 1959 2 Basalt ~  0.5—4 (Mueller et al. 2019)
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gravel’ and ‘pumice crush’ from Specialist Aggregates 
Ltd. Samples were then sieved to 4 φg (63 μm) and finer 
grain sizes were analysed using the CAMSIZER® X2. The 
coarse (≥ − 4 φg, ≤ 16 mm) and fine (≥ 1 φg, ≤ 2 mm) 
test GSDs were selected to be consistent with published 
global data and the Ascension deposits. For each test, 
samples were oven dried and the sample mass and vol-
ume were measured and density calculated, to ensure 
that test densities were consistent with our dataset of 
published values.

Shear box tests were used to measure the internal angle 
of friction of the test samples. These tests represent stress 
along a shear plane, as described in BS 1377–7 (British 
Standards Institution 1990) and use the Mohr-Coulomb 
equation. For dry samples (with no fluid pore pressure) 
the equation can be written as:

(1)τ = σ tan ϕf + c

where τ is the shear stress at failure along a plane, σ is 
normal stress, φf is the internal angle of friction, and c is 
cohesion.

For each test, the sample was loaded into the shear 
box and a normal force applied via a load plate. For 
the small shear box, this force came from calibrated 
weights added to a lever arm; for the large shear box, 
weights were added directly to the load plate for nor-
mal forces < 1 kN, and via a pneumatic loading sys-
tem for forces ≥1 kN. The equivalent normal stress, σ, 
was calculated from stress = force/area. The shear box 
consisted of an upper and lower section which were 
gradually moved relative to each other. The shear force 
required to move the sections was measured using a 
proving ring. Values were recorded throughout the 
test and used to calculate the equivalent shear stress, 
τ. Horizontal and vertical displacement in the sample 
were also recorded using Linear Variable Differential 

Fig. 2  Map of Ascension Island showing the locations of tephra samples used in this study
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Transformers (LVDT). The test finished when the shear 
force peaked or reached a plateau, as this represented 
the maximum shear stress in the sample before failure. 
Tests were carried out at different normal stresses (σ) 
and plotted against corresponding values of shear stress 
(τ). The internal angle of friction of the sample (φf) is 
the gradient of the best fit line through the data points 
on a σ vs τ plot (Eq. 1).

To minimise any scale effects, BS 1377–7 specifies 
that the largest grain size in the sample must be ≤ one 
tenth of the specimen height in the shear box. We used 
small shear box tests (sample size 100 × 100 × 20 mm) 
for samples ≤2 mm in diameter and large shear box 
tests (sample size 300 × 300 × 160 mm) for samples 
≤16 mm in diameter. We conducted tests at normal 
stresses of 3–35 kPa, representing deposit depths for 
our test samples of ~ 50–220 cm. These depths can lead 
to roof failure depending on the density of the deposit 
(Blong 1984; Jenkins et al. 2014).

To compare φf values for the test tephra to natural sam-
ples, small shear box tests were also used to determine 
the internal friction angle for the Ascension ash (≤ 2 mm) 
samples. The sample volumes of pumice and scoria were 
too small to enable large shear box tests to be carried out 
on these materials.

Results
Near‑source GSDs
Published proximal GSDs vary widely, even for eruptions 
with similar magma compositions (Fig.  3a-c for mafic 
(basalt, ≤ 52% SiO2), intermediate (basaltic andesite—
andesite, 52–63% SiO2) and silicic (dacite—rhyolite, 
> 63% SiO2) eruptions detailed in Table 1). The Ascension 
deposits (Fig. 3d) also show coarse to fine GSDs. When all 
the GSDs are plotted together (Fig. 4) there is a large over-
lap and, for these proximal deposits, magma composition 
does not seem to control GSD. The coarse and fine GSDs 
of the test tephra (also shown on Fig. 4) were selected to 
be representative of both published data and the Ascen-
sion Island samples. The coarse test distribution is at 
the finer end of the published range of GSDs; however, a 
maximum grain size of 16 mm was chosen because of size 
constraints of the laboratory equipment, and because we 
are interested in the properties of the bulk deposit rather 
than properties of individual large clasts.

Deposit densities
Deposit densities compiled from published data reveal 
a range of values from ~ 400 to 1500 kg m− 3 for all 
magma compositions. For individual eruptions, where 

proximal/medial and distal bulk densities are reported 
separately, distal values are usually higher, likely indi-
cating higher grain density and/or more efficient pack-
ing of finer grains. For some eruptions e.g. Fuego 1973 
(Rose et  al. 2008) textural variation in the deposits 
results in both low and high proximal to medial bulk 
densities. There is more variability in the density for 
low to medium silica content materials and some high 
silica samples have lower bulk densities. However, 
when the dataset is taken as a whole, there are no clear 
trends relating to magma composition, eruption size or 
distance from source (Figs.  5 and 6). Densities of the 
(dry) test samples are within the range of values found 
in the published data, as shown in Table 2.

Peak stress and internal angle of friction
Results from the shear box tests (Figs.  7 and 8) reveal 
that after initial compaction, the synthetic sam-
ples dilated and shear stress reached a peak value. In 
comparison, the Ascension ash samples compacted 
throughout the tests (negative vertical displacement) 
and shear stress reached a plateau rather than peaking. 
No breaking or crushing of the grains was observed, 
with changes in volume achieved by rearrangement of 
deposit packing.

On plots of normal stress vs peak shear stress, for both 
pumice and scoria the coarse and fine GSDs plot on the 
same line (Fig.  9). The friction angles (φf), calculated 
using Eq. (1), are very similar for the test samples and the 
Ascension ash, at between 35.8 and 36.5° (Table 3). These 
results suggest that the internal angle of friction is inde-
pendent of both tephra composition and grain size at the 
low normal stresses of these tests.

Discussion
Near‑source grain size distribution data
Typically GSDs of deposits become finer with increasing 
distance from the vent, as larger particles fall out close to 
source and finer particles remain in the plume (Koyagu-
chi and Ohno 2001a). However, the GSD of a proximal 
deposit depends on many factors which influence the 
eruption, transport and sedimentation of tephra. The 
magma fragmentation process influences the total grain 
size distribution of the erupted products (e.g. Kueppers 
et  al. 2006; Cashman and Rust 2016), while sedimenta-
tion is affected by particle aggregation (e.g. Mueller et al. 
2018; Rossi et al. 2021), plume dynamics (e.g. Scollo et al. 
2017) and atmospheric conditions (e.g. Genareau et  al. 
2019; Poulidis et  al. 2021). Our results reflect this com-
plexity as eruptions of similar compositions show a wide 
range of near-source GSDs, while there is a large overlap 



Page 6 of 17Osman et al. Journal of Applied Volcanology            (2022) 11:9 

between samples with different compositions and from 
eruptions of different sizes. The Ascension samples are 
not fresh (with last known eruptions ≥500 y ago) and 
may have been reworked, however, the Ascension GSDs 
are consistent with the published data for proximal sam-
ples from 11 eruptions (Table 1).

Deposit densities
Bulk density is influenced by both the density of indi-
vidual grains, degree of saturation and the deposit pack-
ing. The latter depends on grain size distribution as 
this affects the extent to which voids between coarser 
grains can be filled by finer particles. A small number of 

Fig. 3  Grain size distributions for proximal (≤ 10 km from source) samples from published data (Table 1) from a) mafic eruptions, b) intermediate 
eruptions and c) silicic eruptions. d Presents trachytic pumice and ash, and basaltic scoria samples from Ascension Island
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eruptions have published data on both proximal/medial 
and distal bulk densities, with some having higher distal 
values (e.g. Thorarinsson and Sigvaldason 1972; Walker 
1980; Todde et al. 2017), likely due to distal deposits hav-
ing a higher crystal content or higher pumice density, 
as smaller particles have a relatively lower proportion 
of vesicles. However, this pattern is not followed for all 
eruptions (e.g. Thorarinsson 1954; Rose et al. 2008), par-
ticularly where the range of proximal densities is wide. 
Uncertainties with these data include the impact of 
changes over time, both short-term (compaction) and 
long-term (weathering), as well as the different methods 
used to measure deposit density. As noted in the intro-
duction, tests in this study were only performed on dry 
samples, and the degree of saturation may add further 
uncertainly. The wide range of reported bulk densities 
and the lack of a clear trend relating to magma composi-
tion, eruption size or distance from source suggest these 
factors alone cannot reliably be used to estimate tephra 
loading.

Properties of synthetic samples
The GSDs and internal angles of friction of our synthetic 
samples matched well with the natural samples from 
Ascension for the grain sizes we considered (≥ − 4 φg, ≤ 
16 mm) and the densities of the synthetic samples (412–
1532 kg m− 3) lie within the range of published deposit 
densities. These important findings provide confidence 
that we can use synthetic samples to test the geome-
chanical behaviour of tephra deposits and so avoid the 
difficulties and costs associated with collecting and trans-
porting natural samples.

Fig. 4  Summary of published grain size distributions (GSDs) for 
eruptions listed in Table 1 and presented in Fig. 3, plus GSDs for the 
Ascension samples and the test samples used in this study

Fig. 5  Variation of bulk density with magma composition. Values are for proximal-medial samples (< 50 km from source), distal samples (≥ 50 km 
from source) or the whole deposit. Dotted lines indicate a range of values was reported. Proximal-medial and distal values from the same eruption 
are linked by a solid green line



Page 8 of 17Osman et al. Journal of Applied Volcanology            (2022) 11:9 

Internal angle of friction
In plots of peak shear stress vs normal stress, results for 
coarse and fine GSDs plotted on the same line for both 
synthetic pumice and scoria (Fig.  9). This suggests that 
the friction angle is independent of grain size at the low 
normal stresses likely to be experienced in roof loads, 
where field surveys indicate that collapse can occur at 
~ 1–10 kPa (Jenkins et  al. 2014). This contrasts with 
results at higher normal stresses (> 100 kPa) where the 
internal angle of friction has been shown to vary with 
grain size (e.g. Hamidi et  al. 2009; Mostefa Kara et  al. 

2013; Alias et  al. 2014). At higher normal stresses the 
largest grains may provide a greater barrier to movement 
than found in our study.

Values of the internal angle of friction were very simi-
lar for pumice and scoria (36.5° and 35.8 ° respectively) 
suggesting that the friction angle is also independent of 
magma composition and deposit density. This implies 
that any internal sliding of the deposit will be consist-
ent across a range of different compositions and grain 
sizes, at least for the compositions and GSDs tested here. 
This in turn is important, as tests at one GSD could pro-
vide information about the friction angle of other GSDs. 
However, these results should be confirmed by labora-
tory sliding tests.

The peak shear stresses for the volcanic ash from 
Ascension Island were lower than values for the syn-
thetic samples at similar normal stresses. The ash also 
compacted throughout the tests, whereas the synthetic 
samples mainly showed dilatory behaviour after initial 
compaction. This is thought to be due to the natural 
sample having a higher proportion of very fine grains, 
which more easily reorganised and compacted into void 
spaces between the larger grains when stresses were 
applied. However, despite these differences in behav-
iour, the angle of friction of the Ascension ash (36.4°) 
was similar to the synthetic samples (36.5° and 35.8 °) 
and consistent with values for a range of volcanic rocks 
at similar normal stresses (Heap and Violay 2021). This 

Fig. 6  Variation of bulk density with eruption size (VEI). Values are for proximal-medial samples (< 50 km from source), distal samples (≥ 50 km from 
source) or the whole deposit. Dotted lines indicate a range of values was reported. Proximal-medial and distal values from the same eruption are 
linked by a solid green line

Table 2  Dry densities of test samples, and published data listed 
in the Appendix. Coarse and fine grain size distributions are 
shown in Fig. 4

Sample Grain size distribution Mean 
density 
(kg m− 3)

Synthetic pumice Fine 602

Coarse 412

Synthetic scoria Fine 1532

Coarse 1223

Ascension ash Fine 1019

Published data All 400–1500
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Fig. 7  Results of small shear box tests for particles ≤2 mm, horizontal displacement vs shear stress (left column) and horizontal vs vertical 
displacement (right column). a Synthetic pumice, b Synthetic scoria, c Ascension ash. These tests are limited by the maximum amount of travel 
available for the sample in the shear box. The rate of change of shear stress vs time has been examined and this shows the rate of change peaking 
early in the test and then subsiding to alternate between small positive and negative values oscillating around 0. Therefore, we are confident that 
the peak shear stress value measured is representative
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Fig. 8  Results of large shear box tests for particles ≤16 mm, horizontal displacement vs shear stress (left column) and horizontal vs vertical 
displacement (right column). a Synthetic pumice, b Synthetic scoria

Fig. 9  Peak shear stress vs normal stress for synthetic pumice and scoria and Ascension Island ash. Open markers indicate small shear box tests for 
particle diameters ≤2 mm, filled markers indicate large shear box tests for particle diameters ≤16 mm
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indicates that this friction angle is applicable across dif-
ferent tephra compositions and grain sizes, including 
the synthetic deposits.

The angle of repose and the internal angle of friction 
(φf) may not be the same, as the failure plane is con-
strained when φf is determined using shear box tests. 
However, they are both related to the frictional proper-
ties of the grains. Tests on a range of granular materials 
(with maximum grain size ~ 6 mm) found that the angle 
of repose after consolidation closely matched the inter-
nal friction angle and was independent of grain size dis-
tribution (Metcalf 1966). This suggests that our results 
are relevant when considering the minimum roof pitch at 
which tephra will slide.

Relevance to tephra loading on roofs
The load transferred to a roof depends on the depth 
and density of a tephra fall deposit. Our results show 
that bulk density varies widely, even within a sin-
gle eruption, and cannot be reliably estimated from 
magma composition or eruption size. Hence when 
assessing building vulnerability or designing new 
buildings to withstand tephra fall it is important to 
understand the range of loads likely to be experi-
enced. This study has considered mafic and silicic 
deposits, with low to high bulk densities and coarse 
and fine GSDs and so our results are likely to be rel-
evant when considering roof loading from future 
eruptions. However, our dataset should be supple-
mented where possible with relevant data from his-
toric eruptions.

Limitations
This work only considered dry tephra and the addition 
of water would change the properties of the deposit 
considerably. Deposit densities have been reported 
to increase by 45–100% following rain (Blong 1981; 

Macedonio and Costa 2012; Hayes et al. 2019; Williams 
et  al. 2021) and further work is needed to consider 
how water affects bulk densities and friction angles. As 
our shear box tests were limited to grains ≥ − 4 φg (≤ 
16 mm), we did not consider how larger particles may 
affect the internal angle of friction within a deposit. 
Aspects other than simple gravitational sliding (e.g. 
drifting) may also change the distribution of material 
on a roof and these also need further investigation. In 
order to understand more about tephra sliding behav-
iour and how this impacts the load transferred to a 
roof, the effect of roof properties, for example, mate-
rial and pitch, must also be considered. This should be 
the focus of future work that will allow development of 
standards to account for tephra loads in building design 
and risk analysis.

Conclusions
We combined published data and experimental results 
to investigate key geomechanical properties of tephra: 
bulk density, grain size distribution and internal angle of 
friction. These properties influence roof loading and are 
therefore important when assessing the vulnerability of 
buildings to collapse.

Published tephra deposit densities and near-source 
grain size distributions (≤ 10 km) vary widely but there 
are no clear trends when considering eruptions of differ-
ent compositions and sizes that can be used when assess-
ing vulnerability.

Our laboratory experiments revealed that, at the low 
normal stresses likely to be experienced in roof loads 
(≤ 35 kPa), values of the internal angle of friction were 
very similar across all our tests (35.8° - 36.5°). As the 
friction angle influences deposit sliding behaviour, this 
suggests that any internal sliding of the deposit will be 
consistent across a range of different magma composi-
tions, deposit densities and grain sizes.

We have shown that synthetic tephra samples, made 
from crushing and grading volcanic aggregates, can 
be used to represent natural tephra deposits in tests 
of geomechanical properties relevant to roof loading, 
regardless of eruption type or composition. This is of 
particular importance given the difficulty of sourcing 
the required volumes of natural tephra.

We considered deposits with a wide range of magma 
compositions, densities and grain size distributions and 
so we have provided an envelope of values for param-
eters relevant to roof loading (Tables 2 and 3), in which 
future eruptions are likely to sit.

Table 3  Internal angle of friction from shear box tests for 
synthetic pumice and scoria and Ascension Island ash

Friction 
angle 
(°)

Synthetic pumice 36.5

Synthetic scoria 35.8

Ascension ash 36.4
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Appendix
Bulk density of tephra
Data used in Figs. 5 and 6. VEI and eruption magnitude 
from (Crosweller et al. 2012; Venzke 2013).

Eruption VEI Magnitude Composition SiO2% Bulk density (kg m−3) Reference

Agua de Pau, Fogo A 4945 BP 5 5.6 Trachyte 59–62 500 (proximal–medial) (Walker and Croasdale 
1970; Widom et al. 1992)

Agung, Bali 1963–4 5 5 Basaltic 
andesite

56 1170 (proximal) (Self and King 1996; Self 
and Rampino 2012)

Apoyeque, Chiltepe 1.9 ka BP 6 6.3 Dacite 64–68 460–530 (proximal-medial) (Kutterolf et al. 2011)

Apoyeque, Mateare Tephra 
3–6 ka BP

5 5 Andesite–dacite 57–65 650–750 (proximal-medial) (Kutterolf et al. 2007)

Apoyeque, Xiloa Tephra 6105 
BP

5 5.3 Dacite 64–65 560 (proximal-medial) (Kutterolf et al. 2007)

Apoyeque, Los Cedros Tephra 
2–4 ka BP

5 5 Dacite 65–66 510 (proximal-medial) (Kutterolf et al. 2007)

Apoyeque, Upper Apoyeque 
Pumice ~ 12.4 ka BP

5 5.6 Rhyodacite 71 430–550 (proximal-medial) (Kutterolf et al. 2007)

Apoyeque, Lower Apoyeque 
Pumice ~ 17 ka BP

5 5.6 Rhyodacite 71 520 (proximal-medial) (Kutterolf et al. 2007)

Apoyo, Lower Apoyo Tephra 
~ 29 ka BP

6 6.9 Dacite 68–69 440 (proximal-medial) (Kutterolf et al. 2007)

Apoyo, Upper Apoyo Tephra 
~ 29 ka BP

6 5.8 Dacite 67–68 460–570 (proximal-medial) (Kutterolf et al. 2007)

Askja 1875 5?
3?

Rhyolite 73 365 (mean value – unit D)
671 (mean value – unit B)

(Sparks et al. 1981; Carey 
et al. 2010)

Calbuco 1929 3 Andesite 59 1016 (distal, freshly fallen) (Larsson 1936)

Calbuco 2015 4 Basaltic 
andesite

55 997, 1115 (mean values) (Romero et al. 2016; Hayes 
et al. 2019)

Cerro Negro 1971 3 Basalt 50–53 1350 (mean value) (Rose et al. 1973)

Chaitén 2008 4
4

4.9
4.5

Rhyolite 75
74–76

997 (distal, collected after 
rain)
1250 (prox-medial lithic-rich 
Layer β)

(Watt et al. 2009)
(Alfano et al. 2011)

El Chichón 1982 5 5.1 Trachyandesite 58 500 (uncompacted); all 
medial-distal

(Varekamp et al. 1984)

El Chinyero 1909 (Tenerife) 2 Basanite 44 700–1000 (proximal) (Di Roberto et al. 2016)

Cordón Caulle 2011 5 5 Rhyolite 71 560, 600 (different units, 
prox-distal)

(Bonadonna et al. 2015; 
Seropian et al. 2021)

Etna 2002–3 3 Basalt 47 1067 (mean value) (Andronico et al. 2005; 
Andronico et al. 2008)

Fuego 1973 4 4.4 Basalt 47–53 460–1400 (proximal–medial)
1100–1280 (distal, mean 
1140)

(Rose et al. 2008)

Grímsvötn 2004 3 Basalt 50–51 1020–1290 (proximal) (Oddsson 2007; Jude-Eton 
2013)

Gubisa Formation, Kone cal-
dera Ethiopia

5 5.3 Rhyolite 69–72 600 (proximal) (Rampey et al. 2014)

Hekla 1104 5 5.1 Dacite 69–70 400 (mean proximal–distal) (Janebo et al. 2018; Geist 
et al. 2021)

Hekla 1300-D 4 4 Andesite 59–60 740 (mean proximal–distal) (Janebo et al. 2018; Geist 
et al. 2021)

Hekla 1693 4 4.3 Andesite 59–60 560 (mean proximal–distal) (Janebo et al. 2018; Geist 
et al. 2021)

Hekla 1766 4 4.3 Andesite 56–60 420 (mean proximal–distal) (Janebo et al. 2018; Geist 
et al. 2021)
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Eruption VEI Magnitude Composition SiO2% Bulk density (kg m−3) Reference

Hekla 1947 4 4.1 Andesite-dacite 60–63 520–1000 (proximal-medial, 
mean 640); 580–880 (distal, 
mean 800)

(Thorarinsson 1954)

Hekla 1970 3 Basaltic 
andesite

55–56 600 (proximal)–800 (distal) (Thorarinsson and Sigval-
dason 1972)

Hudson 1991 5 5.8 Trachyandesite 60–65 650–950 distal (Scasso et al. 1994; Kratz-
mann et al. 2009)

Katla 1755 5? 5 Basalt 47 1050 (distal) from laboratory 
tests

(Thorarinsson 1958)

Masaya San Antonio Tephra 
~ 6 ka BP

6 6.3 Basalt 50–52 750 (proximal-medial) (Kutterolf et al. 2007)

Masaya Fontana Tephra ~ 60 ka 
BP

6 6 Basaltic 
andesite

52 720–810 (proximal-medial) (Kutterolf et al. 2007)

Masaya Masaya Triple Layer 
~ 2120 BP

5 5.7 Basalt 50 700 (proximal-medial) (Kutterolf et al. 2007)

Mount St Helens 1980 5 4.8 Dacite 63–64 450 (mean distal, 50–600 km) (Sarna-Wojcicki et al. 1981)

Öraefajökull 1362 5 5.4 Rhyolite 69–70 560 (distal) 900 when com-
pacted from laboratory tests

(Thorarinsson 1958)

Pinatubo 1991 6 6.1 Dacite 65 1000; 1250 (different units - 
no change with distance from 
vent)

(Bernard et al. 1996; Koya-
guchi and Ohno 2001b)

Quizapu 1932 freshly fallen >  5 6 Dacite 64–70 588–644 (distal uncom-
pacted)

(Larsson 1936)

Sakurajima 1914 Taisho erup-
tion

4 4.7 Andesite 59–62 535, 765, 980 (prox., medial, 
distal)

(Todde et al. 2017)

Samalas 1257 (Lombok) 7 Trachyte 64 539, 603 mean medial–distal 
of different units.

(Vidal et al. 2015)

Santa María, Guatemala 1902 6 6.3 Dacite 66 600 (proximal) – 1200 (distal) 
(average 1100)

(Williams and Self 1983; 
Andrews 2014)

Soufrière de Guadeloupe 1530 2–3 Andesite 55–59 1160 (mean compacted 
value)

(Boudon et al. 2008; 
Komorowski et al. 2008; 
Pichavant et al. 2018)

Tarawera 1886 5 5.3 Basalt 52 900 (proximal) – 1100 
(medial)

(Walker et al. 1984; Rowe 
et al. 2021)

Taupo 232 CE 6 6.7 Rhyolite 74 450 (proximal) – 650 (distal) (Walker 1980; Sutton et al. 
1995)

Tecolote, Mexico 27 ka BP 3–4 Basalt 49 757; 894 (proximal–medial, 
2 units)

(Zawacki et al. 2019)

Tungurahua 2006 2–3 Andesite 58–59 770–1360 (proximal-medial) (Eychenne et al. 2013)

Vesuvius 1944 3 Tephrite/ 
phono-tephrite

45–50 1200 (mean value) (Cioni et al. 2003; Pap-
palardo and Mastrolorenzo 
2010)

Vesuvius 1906 3 Tephrite/
phono-tephrite

45–50 1100 (mean value) (Cioni et al. 2003; Pap-
palardo and Mastrolorenzo 
2010)

Vesuvius 1631 5 Phono-tephrite/ 
tephri-pho-
nolite

52 1000 (mean value) (Cioni et al. 2003; Pap-
palardo and Mastrolorenzo 
2010)

Vesuvius PM1–6 (6 eruptions 
512–1570)

3 Tephrite/
phono-tephrite

45–50 900 (mean value) (Cioni et al. 2003; Pap-
palardo and Mastrolorenzo 
2010)

Vesuvius Pollena 472 5 Phono-tephrite/ 
tephri-pho-
nolite

46–49 900 (mean value) (Cioni et al. 2003; Pap-
palardo and Mastrolorenzo 
2010)

Vesuvius Pompeii White 
pumice 79

5–6 Phonolite 57 500 (proximal and distal) (Cioni et al. 2003; Pap-
palardo and Mastrolorenzo 
2010)
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Eruption VEI Magnitude Composition SiO2% Bulk density (kg m−3) Reference

Vesuvius Pompeii Grey pumice 
79

5–6 Tephri-pho-
nolite

58 1000 (proximal and distal) (Cioni et al. 2003; Pap-
palardo and Mastrolorenzo 
2010)

Vesuvius AP5 4 Tephri-pho-
nolite

55–60 1500 (mean value) (Andronico and Cioni 2002; 
Cioni et al. 2003)

Vesuvius AP4 4 Tephri-phono-
lite / phonolite

52–60 1300 (mean value) (Andronico and Cioni 2002; 
Cioni et al. 2003)

Vesuvius AP3 ~ 2.7 ka BP 4 Tephri-phono-
lite / phonolite

52–60 1500 (mean value) (Andronico and Cioni 2002; 
Cioni et al. 2003)

Vesuvius AP2 ~  3 ka BP 4–5 Tephri-phono-
lite / phonolite

52–60 1500 (mean value) (Andronico and Cioni 2002; 
Cioni et al. 2003)

Vesuvius AP1 ~  3.2 ka BP 4–5 Tephri-phono-
lite / phonolite

52–60 1500 (mean value) (Andronico and Cioni 2002; 
Cioni et al. 2003)

Vesuvius Avellino White pum-
ice ~ 3.8 ka BP

5 Phonolite 55 400 (mean value) (Cioni et al. 2003; Pap-
palardo and Mastrolorenzo 
2010)

Vesuvius Avellino Grey pumice 
~ 3.8 ka BP

5–6 Tephri-pho-
nolite

54 800 (proximal and distal) (Cioni et al. 2003; Pap-
palardo and Mastrolorenzo 
2010)

Vesuvius Mercato ~ 8 ka BP 5–6 Phonolite 52–60 600 (proximal and distal) (Cioni et al. 2003; Pap-
palardo and Mastrolorenzo 
2010)

Villarrica 2015 2–3 Basaltic 
andesite

53–55 500–880 (proximal-medial) (Romero et al. 2018)
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