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Abstract: Hyperspectral leaf-level reflectance data may enable the creation of taxonomic inventories
and diversity assessments of grasslands, but little is known about the stability of species-specific
spectral classes and discrimination models over the course of a growing season. Here, we present a
cross-seasonal dataset of seventeen species that are common to a temperate, dry and nutrient-poor
calcareous grassland, which spans thirteen sampling dates, a week apart, during the spring and
summer months. By using a classification model that incorporated waveband selection (a sparse
partial least squares discriminant analysis), most species could be classified, irrespective of the
sampling date. However, between 42 and 95% of the available spectral information was required
to obtain these results, depending on the date and model run. Feature selection was consistent
across time for 70 out of 720 wavebands and reflectance around 1410 nm, representing water features,
contributed the most to the discrimination. Model transferability was higher between neighbouring
sampling dates and improved after the “green-up” period. Some species were consistently easy to
classify, irrespective of time point, when using up to six latent variables, which represented about
99% of the total spectral variance, whereas other species required many latent variables, which
represented very small spectral differences. We concluded that it did seem possible to create reliable
taxonomic inventories for combinations of certain grassland species, irrespective of sampling date,
and that the reason for this could lie in their distinctive morphological and/or biochemical leaf
traits. Model transferability, however, was limited across dates and cross-seasonal sampling that
captures leaf development would probably be necessary to create a predictive framework for the
taxonomic monitoring of grasslands. In addition, most variance in the leaf reflectance within this
system was driven by a subset of species and this finding implies challenges for the application of
spectral variance in the estimation of biodiversity.

Keywords: semi-natural grasslands; biodiversity; hyperspectral; species classification; multi-temporal;
partial least squares discriminate analysis; spectral variation hypothesis (SVH)

1. Introduction

The conservation and management of species-rich semi-natural grasslands require
temporally and spatially detailed information on community composition [1–3]. How-
ever, these data are very difficult and expensive to collect using traditional field-based
surveys. It is now possible to create very high-resolution hyperspectral maps of grasslands
due to advances in airborne remote sensing, with pixel sizes that are comparable to leaf
sizes. Analyses of species-specific leaf and canopy spectra in herbaceous habitats have
demonstrated that there is the potential for mapping taxonomic units [4–6], phylogenetic
groups [7] and plant functional types [8,9].
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However, large variances in intra-specific leaf reflectance have been reported [10,11],
corroborating concerns about whether hyperspectral data can be used toreliably discriminate
between taxonomic units [12]. There has also been mounting evidence that the biophysical
drivers of spectral reflectance vary significantly over time as they are influenced by the
phenological stage of the plant [13] and/or leaf age [14]. In addition, variation in leaf traits
across environmental gradients, such as soil water availability [15], climate [16] and soil
fertility [17] have been found. These results suggest that when using spectral data to
predict species classes, both the temporal dimensions of the sampling campaign and the
environmental context of the plant community need to be considered. As a consequence,
the ability of spectral reflectance at specific wavelengths to predict species may be unstable
and the relative positions of species within spectral space could vary over the course
of a growing season. It seems likely that the temporal and spatial configurations of field
campaigns will affect our ability to monitor species in varied and complex ways [18].
Certainly, the use of models that are built using data that capture evolving leaf states
could improve our understanding of the spectral spaces that taxonomic classes occupy [19]
and allow the determination of optimal temporal windows within leaf phenology for
taxonomic assessments.

There is also an important link between the spectral separability of taxonomic units
and the spectral variation hypothesis (SVH), which proposes a positive correlation between
spectral variance and the number of taxonomic units or functional classes that are present
within an area at the leaf or plant scale. Variations in leaf-level spectral reflectance have been
successfully correlated with the number of species that are present [20] and functional di-
versity [21]. In forests ecosystems, where more research has been conducted, direct linkages
have been found between spectral diversity and the diversity of the biochemical properties
of leaves within taxonomically complex stands [22]. However, Feret and Asner [23] demon-
strated that the ability of spectral variation to predict species diversity and taxonomic
classes becomes saturated with a higher number of species. Recent studies on grasslands
have also demonstrated the scale [20] and temporal dependence of the SVH [24,25]. Dif-
ferent grassland types have displayed positive and negative relationships with spectral
variance [26], independent of space and time. Thus far, there has been a limited understand-
ing of these results. It is probable that spectral variation is unevenly influenced by differing
leaf and canopy properties, depending on the spatial scale of the data acquisition and the
trait space that is occupied by the community in question.

Hyperspectral data have a particular structure and contain many highly correlated
bands. These types of data have been described as having “the curse of dimensionality” and
several approaches have been used to deal with this challenge within the context of species
differentiation, namely decision trees [27], support vector machines [28,29], partial least
squares discriminant analysis [30] and neural networks [31]. Most methods used for class
determination involve projection to latent variables and/or data splitting. Some processing
chains also include an assessment of the importance of the variables, which is followed
by variable selection [32]. As the number of species classification studies has increased,
it has become possible to determine whether any consistencies in waveband selection can
be observed [33]. Although feature selection has been analysed in terms of spatial scale
(leaf or canopy) and plant group (woody or herbaceous) [34], to date, to our knowledge,
the temporal dependence of waveband selection has not been assessed.

In this study, we collected the leaf-level hyperspectral reflectance spectra of a complex
community of herbaceous species, which is characteristic of UK calcareous grasslands,
throughout a growing season. Our principal aims were to:

(1) Determine whether the species within the community could be separated using
classification models and to what extent the classification of these species changed
over time;

(2) Explore the temporal stability of band selection during classification and test the
transferability of classification models across sampling dates;
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(3) Test whether the species that were more easily classified displayed particular leaf
traits or were more phylogenetically distant from other species within the community;

(4) Examine the importance of the biochemical traits of a leaf in classification over time.

2. Materials and Methods
2.1. Experimental System

A species-rich ancient grassland with a calcareous rendzina soil type, which is called
“Wrotham Water” and is situated in the North Downs in Kent, southeast England (51◦19′15” N,
00◦20′04” E), was selected as the study site. Plants within this system are either special-
ists that have adapted to low nutrient and water regimes or more plastic species that
undergo dwarfism. To characterise the site, we used the Ecological Flora of the British Isles
database [35], which contains the ecological traits of species, to acquire Ellenberg’s indi-
cator values. These values can be interpreted as follows: species light demand from low
to high (1–9); moisture demand from low to high (1–12); soil pH from very acid to very
alkaline (1–9); and nitrogen demand from the least to excessive (1–9). These values provide
evidence of the environmental niche within which these species are typically found. We
also used the CRS (competitor/ruderal/stress-tolerator) functional strategy framework
that was developed by Grime [36]. Thirteen out of the seventeen species in this study have
been provided with autecological accounts [37]. We used these accounts to understand the
extent to which the species were obligate stress tolerators or more plastic species that had
adapted to this environment.

To situate our sampling dates within a temporal context in terms of precipitation and
seasonal vegetation development, we used the Enhanced Vegetation Index (EVI), surface
soil moisture values (both of which were derived from Copernicus Sentinel data) and
regional precipitation data. All three time series were created for the period day of year 90
to 260. A site-based EVI time series was obtained from Sentinel-2 to describe the green-up
trajectory. The EVI was derived of 60 pixels at a 10-m resolution over 10 cloudless dates.
A time series of surface soil moisture derived from Sentinel-1 Synthetic Aperture Radar
data at a 1-km pixel resolution was also created. The temporal resolution of the product was
between 2 and 5 days and resulted in 99 measurements. Daily regional precipitation records
were also sourced from the UK Met Office Hadley Centre observations database [38].

2.2. Leaf Spectra Acquisition and Pre-Processing

Seventeen species that are typical of the habitat were selected from the grassland
(Figure 1A). Starting in the spring, on day of year 119 (29 April 2021), bi-directional leaf-
level reflectance spectra were collected using a spectrometer that was fitted with a fibre optic
cable and leaf clip over the visible, NIR and SWIR regions of the spectra (SVC HR2024i
spectroradiometers, Spectra Vista Corporation, Ploughkeepsie, New York State, USA).
Data were collected approximately every seven days over three months of the growing
season until day of year 204 (23 July 2021). The intention was to capture the period of leaf
thickening and maturation but avoid the period of the year in which leaves begin to senesce.
In total, 13 dates were sampled, which represented a multi-temporal spectral signature
for each species. On each sampling date, a single leaf from five separate plants that were
situated along transects was cut for each of the 17 species. Leaves that were trampled,
insect damaged or otherwise unhealthy were avoided, as were shaded plants. Within a few
minutes of the leaves being collected, three leaf clip readings were taken for each sample
and the average of these readings was used in the analysis. The spectra were examined
after capture and filtered for erroneous measurements [39]. Reference readings were taken
regularly throughout the sampling campaigns using a Spectralon white panel. In three
instances, less than five acceptable mean spectra were available (Inula conyza n = 2 and
Fragaria vesca n = 4 on DoY 174 and Brachypodium sylvaticum n = 4 on DoY 126). We included
these data in the analysis but the results for these dates and species must be treated with
caution. The sampling campaign resulted in 1100 averaged leaf spectra.
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Figrue 1 

 
  Figure 1. (A) The 17 grassland species that were involved in this study; (B) a plot of 13 of those

species within the Grime strategy space, where data were available; (C) the phylogenetic relationship
between species; (D) the morphological and phenological characteristics of the leaves; (E) Ellenberg’s
indicator values for light, moisture, pH and nitrogen.
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The spectra were pre-processed through the removal of sensor overlap using SVC HR-
1024i PC data acquisition software. They were then smoothed using a Savitzky–Golay filter.
Different filter lengths were applied to the spectra and the optimal smoothing was obtained
using a filter length of 55. The spectra were trimmed to 340–2500 nm and resampled
to a 3-nm resolution (720 wavebands). The nominal bandwidth of the spectrometer was
≤1.5 nm in the region of 350–1000 nm, ≤3.8 nm in the region of 1000–1890 nm and
≤2.5 nm in the region of 1890–2500 nm. 3 nm was chosen so as to exploit the maximum
spectral information without overly replicating information in neighbouring bands. All
pre-processing was carried out using the HSDAR package in R [40]. Example spectra at
each stage of pre-processing are provided in the Supplementary Materials, Figure S1.

2.3. Spectral Dissimilarity within and between Species

The spectral distances between pairs of mean spectra were measured using two differ-
ent algorithms: the Spectral Angle Mapper [41] and the Euclidean distance. We wanted to
ascertain whether the distance between pairs of intra-specific spectra was generally smaller
than the distance between pairs of spectra from our target species and the other species
(inter-specific distance) at certain times of the year. The two chosen distance metrics repre-
sent slightly different things: SAM measures the differences in angles for a pair of spectra
and, therefore, minimises the effects of illumination and albedo; the Euclidean distance is
calculated as the square root of the sum of the squared differences between two vectors.
The distribution of the intra-specific distances was compared to the distribution of the inter-
specific distances for each species at each time point (see Supplementary Materials S1 and S2
for the distributions). A two-sided Kolmogorov–Smirnov test [42] was performed on the
two distributions and the statistic D was reported to ascertain whether the two distributions
were likely to be made up of samples from the same population. Lower levels of D indicated
that the distributions were the same and higher values indicated that the distributions were
likely to be different. The p values for the test were also calculated.

2.4. Sparse PLS-DA for the Class Determination of Species

To establish how easily species could be separated from each other, we used a sparse
partial least squares discriminant analysis (sPLS-DA), which is a supervised version of the
classic partial least squares regression. In the sPLS-DA approach, a sparsity assumption is
made that only a limited number of variables (wavebands within this context) arenecessary
for the classification of samples [43]. Non-sparse PLS models tend towards the creation of
independent latent variables (also known as components), which each contain very small
amounts of information from multiple original variables. The sparse approach ensures that
variables that makevery small contributions to the model are excluded from the analysis,
which is in line with other so-called “lasso” approaches [44]. In the context of leaf-level
hyperspectral reflectance, variability in optical leaf traits has a cross-spectral effect [45];
however, reflectance at neighbouring wavelength values is highly correlated, which makes
much hyperspectral data redundant. The minimum waveband selection from the sparse
approach had several advantages within this context. Firstly, it enabled a wavelength
selection comparison across the sampling dates, which was vital for the aims of this
study. Secondly, it has been demonstrated more generally that the ratio of samples to
variables affects the performance of PLS-DA models [46]. Hence, by reducing the number
of wavebands, we minimised the magnitude of this ratio and increased the likelihood of
producing more reliable results. Thirdly, hyperspectral imaging devices that are capable of
very high spatial resolution often require prior band selection. This is because of the time
that is needed to capture many simultaneous bands. Therefore, results from the sparse
approach are more useful for transferability to imaging systems.

A sPLS-DA was performed for each of the thirteen sampling dates in the dataset for
each of the seventeen species classes. The classes were dummy coded and linear combina-
tions of the Y classes and X variables (the spectral data matrix) were created to maximise
the co-variance. Each model was tuned, whereby both the number of latent variables
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(components) and the number of wavebands that were required for classification were
minimised. To tune the model, three criteria were required: (1) the optimal distance metric
for the assignment of new samples into classes during the cross-validation process (a choice
of maximum distance, Mahalanobis distance or centroids distance); (2) the number of com-
ponents; and (3) the number of wavebands to be used in each component (more generally,
the minimum number of X variables that were necessary to explain the variance in the
Y classes). The optimal number of components was selected by observing the stabilisa-
tion of the error after the introduction of an increasing number of latent variables. The
waveband selection was based on the stability and frequency of the wavebands that were
selected during model permutations. The distance metric was selected by the optimisation
of the model error that was achieved by the use of the three metrics. One of the main
limitations of PLS models is that they are prone to overfitting [47]. Therefore, this model
optimisation was achieved by M-fold cross-validation and an evaluation of the RMSE of
the model. The number of folds was selected as the number of classes plus two (17 + 2 = 19)
and 50 runs were performed within each model. When the specified number of folds
was too large, the number of folds was reduced until cross-validation became possible.
The whole process was repeated 10 times (over 10 model runs) for each sampling point. The
sPLS-DA, model tuning and performance assessment were executed using the mixOmics
package [48] in R [49]. Detailed instructions on the procedure for the above approach can
be found in Lê Cao et al. 2011 [50].

2.5. Assessment of Waveband Selection and Model Stability

To assess the stability of the wavelength selection at each time point, the frequency
with which each waveband was selected in the 10 model runs was determined. Wavebands
that were consistently selected, both between runs and between times, could be said to have
cross-seasonal importance for discrimination. Other wavebands that were consistently
selected within a sampling point for all model runs but were not always selected for all
sampling dates could be said to have temporally dependent importance.

To assess the extent to which models that were trained using data from a single time
point were over-fitted, we used the model that was trained using one time point to predict
species from the data that were collected on the other sampling dates. By examining the
mean model error of the 10 model runs, we could determine whether the wavelength
selections were temporally dependent. When models performed better on neighbouring
data than on data that were further away in time, we could say that the relative position of
the species within spectral space was evolving with leaf age and phenology.

2.6. Grounds for the “Ease” of Species Separation

We defined a “well-classified” species as a species for which a classification error
rate of less than 0.1 (10%) was obtained. Each species was assigned a value at each time
point, which was based on the number of latent variables that were required to achieve this
classification accuracy (see Supplementary Materials Figure S4). We equated this value to
the “ease” of the classification of a species within our framework. In some cases, it was not
possible to classify species to this level of accuracy, so those classes were dummy coded
with a value of 25 so that they could be included in the analysis. The mean and standard
error of these values across the time points were also calculated.

To assess the possible causes of the “ease” of the classification of a species, we tested
several hypotheses:

(1) Species that were taxonomically or phylogenetically more distinctive were easier
to classify;

(2) Species with smaller, and therefore harder to measure, leaves were harder to classify
(due to increased noise within the leaf clip dataset);

(3) The leaf longevity that is typical of this species affected the ease of species classification;
(4) The leaf surface defence mechanisms affected the ease of species classification;
(5) The amount of bi-directional leaf reflectance affected the ease of species classification;
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(6) The spectral distance between pairs of species-specific spectra compared to inter-
specific spectral distances (as denoted by the Kolmogorov–Smirnov statistic D) was a
good predictor of the ease of species classification.

To test Hypothesis 1, a phylogeny for the 17 species was generated using the phylo-
maker software in R [51]. From this phylogeny, a relative measure of phylogenetic distance
was created for each species within the community. To test Hypothesis 2, the relative leaf
sizes of the species were judged according to observations in the field and ranked from
smallest (1) to largest (17). It has been shown that leaf surface properties can be contribut-
ing factors to reflectance [52]. To test Hypotheses 3 and 4, we used the Ecological Flora
of the British Isles database [35] to access species traits on leaf longevity (whether leaves
were evergreen, semi-evergreen or spring emerging (aestival)) and leaf surface properties
that are related to defence (whether the leaves are glabrous, hairy or covered in spikes).
Sims and Gamon [52] observed that reflectance at 445 nm is almost entirely driven by leaf
surface properties. Here, reflectance at 445 nm was used as a proxy for leaf specular re-
flectance and these values were used to test Hypothesis 5. Hypothesis 6 was tested using the
data that were mentioned in Section 2.3. For all hypotheses, a linear regression model was
used to test the proposed relationship and when the dependent variable was categorical,
Tukey post-hoc tests were used to determine the differences between the groups.

2.7. Use of the PRO-COSINE Radiative Transfer Model to Understand the Biochemical Basis of
Shifting Waveband Importance

As the PROSPECT model [53] was developed for use with hemispherical reflectance
data that were measured with an integrating sphere, it may not be appropriate for under-
standing wavelength selection in bi-directional reflectance data that were collected using
a leaf clip. PRO-COSINE offers an approach for unifying the PROSPECT-4 model with
data that were collected using a leaf clip to enable a mechanistic understanding of the
results [54]. The principal additional factor that needed to be accounted for was the specular
reflection of the leaves through the bspec parameter. The bspec ranges in value from −0.2 to
0.6 (unitless) and increases in value with increased specular reflectance, which influences
reflectance in strong absorption regions (around 400 nm and at 1930 nm and 2500 nm).
Studies so far have shown that specular reflectance can be explained to some extent by the
species [55,56]. It has also been demonstrated that the impact of specular leaf properties on
reflectance is relatively small compared to the variance within and between individuals of
the same species [10]. Values ranging from 0 to 0.10 were used as the parameters for the
bspec input of the model. N was constrained to the range of 1–2, following the method of
Jacquemoud and Baret [53], which are the values that are suitable for healthy leaves that
are not in senescence. The additional model inputs of chlorophyll content (Cab), leaf mass
area (LMA) and equivalent water thickness (EWT) were not parameterised.

We wanted to understand the biochemical relevance of the wavelength selections
across time. Traditionally, leaf chemical assays have been used to determine variance parti-
tioning in conjunction with radiative transfer models [23]. However, this approach is time
and effort prohibitive and has only been attempted for woody species and never over time.
Here, we used an alternative method: we performed a global sensitivity analysis (GSA) of
PRO-COSINE using the Saltelli method and the ARTMO toolbox V1.14 in MATLAB [57].
The total sensitivity effects (the first-order effect plus interactions with other input variables)
were calculated for each of the model input variables for each spectral band. We then used
the waveband selection of each of the sPLS-DA models, which were trained using data from
each time point, to extract from the results of the GSA, thus representing the probability of
relative trait importance for each of the first six components per sampling point.

3. Results
3.1. Ecological Context of the Plant Community and Timing of Sampling Campaign

The species-specific CSR strategies revealed a community comprising of mainly stress
tolerating specialists. A few species were more competitive (Arrhenatherum elatius and
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Origanum vulgare) or more ruderal in their preferences (Plantago lanceolata, Inula conyzae and
Hypericum perforatum). In terms of the four Ellenberg’s indicators, the species were all light
demanding and suited to either neutral or high pH soils. Their preferences for water and
nitrogen were more variable (Figure 1).

The start of the sampling season (DoY 119) was preceded by very low rainfall in
the region and low surface soil moisture (Figure 2A,B). Later in the season, the peaks
and troughs in surface soil moisture were driven by precipitation events throughout the
sampling period and there was evidence of the repeated wetting and drying of the soil.
A likely consequence of the very dry conditions in the spring was the slowing of the
green-up. The first five sampling dates (DoY 119, 126, 132, 140 and 147) appeared to be
during the green-up period of the grassland prior to the period of peak biomass (Figure 2C).
Unfortunately, due to frequent cloud cover during 2021, the Sentinel-2 time series was
sparse; so, the end of the green-up period was speculative but appeared to occur around
DoY 160. The remaining eight sampling events took place during peak biomass.
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(B) regional daily precipitation averages; (C) the site-based green-up trajectory using EVI (Sentinel-2)
at a 10-m resolution. The 13 field sampling dates are shown as red triangles.

3.2. Spectral Distance over Time

The lowest cumulative Euclidean distance and SAM value between pairs of spectra
across all species occurred on day of year 174 (13 July 2021) and the highest occurred on day
of year 204 (2 June 2021). There was a moderate to strong correlation between the pairwise
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spectral distances, whether calculated using SAM or the Euclidean distance (Spearman’s
rank correlation = 0.7142857; p value = 0.008143).

The mean intra-specific distances for each species and time point were smaller than
the mean inter-specific distances for both distance metrics (bar Sanguisorba minor at DoY
153, 194 and 204). This indicated that the leaf samples that shared the same species were
generally more spectrally similar (see Supplementary Materials Figures S2 and S3 for the
distributions and means of the distances). The Kolmogorov–Smirnov test statistic (D) was
used to determine whether the distribution of the intra-specific distances was significantly
different from that of the inter-specific distances for each species at each time point. The
values of D and their associated p values are presented in Figure 3. The values of D
for five of the species (Primula vulgaris, Inula conyza, Fragaria vesca, Cirsium arvense and
Agrimonia eupatoria) were always significant, regardless of the sampling point or distance
metric. The values of D that were calculated using SAM were more stable in two of the
species (Brachypodium sylvaticum and Cirsium arvense) than those that were calculated using
the Euclidean distance. However, overall, there appeared to be no advantage to using
either metric in terms of species separability from the single sampling point perspective.
In contrast, the value of D was equivalent or larger for SAM than the Euclidean distance
across all sampling dates for all species except Primula vulgaris and Inula conyza. So, cross-
seasonally, SAM may be a more useful metric to use for species discrimination problems.

3.3. Performance of PLS-DA over Time: Waveband and Model Stability

The sPLS-DA models at each time point performed well, with overall model errors
ranging from 0.02 on DoY 174 (23 June) to 0.12 on DoY 182 (1 July) (Table 1). The number
of independent components that were required to obtain these low errors was quite high,
ranging from 15 components on DoY 140 (20 May) to 21 components on several of the other
dates. The number of wavebands that were used to obtain this level of classification ranged
from 300 to 683, with 42–95% of available bands being exploited. In other words, even
when using the sparse approach, a large proportion of the spectra was required to classify
the 17 species for some time points and model runs.

Table 1. A summary of the results of the cumulative spectral distances and sPLS-DA models for each
sampling date.

Sampling
Date Date Day of Year

(DoY)

Cumulative
Distance

(Euclidean)

Cumulative
Distance (Spectral

Angle Mapper)

Model Error
(Range of

10 Runs; 2 d.p.)

Number of
Components

(Range of 10 Runs)

Number of Unique
Wavelengths

(Range of 10 Runs)

1 29 April 119 12,398,267 4970 0.1–0.11 18–20 467–576

2 6 May 126 12,504,256 4874 0.09–0.1 20–21 444–541

3 12 May 132 11,961,457 4889 0.07–0.11 18–20 518–663

4 20 May 140 13,740,155 5087 0.07–0.11 15–21 438–630

5 27 May 147 13,645,126 5041 0.04–0.04 16–17 439–554

6 2 June 153 12,610,071 4940 0.08–0.11 20–21 436–555

7 10 June 161 11,830,265 4778 0.08–0.08 19–20 442–658

8 16 June 167 12,367,520 4824 0.04–0.08 18–20 493–621

9 23 June 174 11,581,843 4691 0.02–0.05 20–21 582–683

10 1 July 182 12,825,589 5014 0.08–0.12 16–19 403–545

11 7 July 188 12,582,159 5119 0.04–0.08 19–20 463–574

12 13 July 194 12,329,164 5104 0.05–0.08 19–21 583–641

13 23 July 204 13,851,285 5146 0.05–0.07 19–20 300–593
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Figure 3. The value of D (the Kolmogorov–Smirnov statistic): a test of whether the distributions
of the intra-specific and inter-specific distances were different from each other at each time point
and across all sampling dates for each species class. The results are shown for both the Spectral
Angle Mapper and the Euclidean distance. The values of D ranged from 1–0, with higher values
representing distributions that were more distinct. A p value = 0.01 for the test is shown by a dashed
line. Values above the line denote significantly different distributions.

Within each time point, the variable selection across the 10 model runs was consistent for
some wavebands but not for others (Figure 4). There were also multiple different solutions
for the model at any one time in terms of waveband selection.
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  Figure 4. (A) The position within the spectra of components (latent variables) that were used for

species–class determination for the 13 dates (day of year presented in the banner header). The darkest
greys indicate components that captured more variations in the spectral data. (B) The selection rate
of wavebands for model runs within each sampling date. Red bars represent wavelengths that were
consistently selected in 10/10 runs; yellow bars are those that were only selected for some of the
model runs.
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The wavebands that were consistently selected in all 10 models runs within a time
point are shown in Figure 5. The number of times that these same wavebands were selected
out of the 13 sampling dates is also shown. In total, 70 wavebands were selected in all model
runs and time points (i.e., in 13 × 10 = 130 models) and 65 of these were in the visible part
of the spectrum. The overlaid example spectrum in Figure 5 reveals the consistent general
importance of wavelengths in both the visible and red-edge regions. Other important
features can be seen at 1000 nm, the minimum points of reflectance in the SWIR at 1400 nm,
1950 nm and 2500 nm, the peak of 1800 nm in the SWIR and the slopes on either side of the
peak at 2200 nm. The conformity of selection in the rough locations of important spectral
features can also be observed. In contrast, there was a large variability in the exact location
of band selection between sampling dates. Figures 4 and 5 show the need to exploit much
of the spectra to classify the taxonomic units.
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Figure 5. The number of times within each of the 13 sampling dates that wavebands were consistently
selected in all model runs. A reference leaf spectrum (red line) is superimposed on the plot for
contextualisation.

To assess model transferability across time, we tested the ability of the models that
were trained using data from each sampling date to predict species using data from each
of the other sampling dates (Figure 6A). We also used the model that was trained using
all of the data to predict the species for each individual date (Figure 6B). In both cases,
there was an observable increase in temporal dependence in the models after DoY 153.
This stabilisation correlated with the end of “green-up” (see Figure 2C). When using the
model that was trained using the cross-temporal data, the error rates were noticeably lower
in the second half of the sampling campaign, which further indicated the stabilisation of
waveband selection for species classification later in the growing season.
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Figure 6. (A) Confusion matrix of the mean errors of the 10 model runs that were trained using data
from single sampling dates and tested using data that were collected on the other sampling dates.
The temporal dependence of the data was higher after DoY 153. (B) The error of the model that was
trained using data from all sampling dates and tested using data from single sampling dates. The
error bars show the standard error of the mean model error after 10 runs.

3.4. Ease of Species Separability

We noted that 99% of the spectral variance in the single date models was explained
by only six independent components (see Figure 7A, the “scree plot” of the models). This
was the case in all model runs and at all time points. The species classification error was
examined for each species across time. With the recommended number of components
in the model, all species achieved a satisfactory error rate (<0.1) for at least seven of the
sampling dates. Three of the species (Cirsium acaule, Fragaria vesca and Sanguisorba minor)
were well classified at all time points (Figure 7C). A very high error rate was found for Inula
conyza on DoY 174. This was due to the low number of samples (n = 2) that was obtained
for this species on this date. The class-based error rate of the 99% spectral variance and the
six components was very stable across model runs within time points but overall, it was
very temporally dependent (Figure 7B). Using this reduced number of components, almost
all species (apart from Centaurea scabiosa) were well classified at certain times, but none of
the species were consistently well classified, irrespective of the time point. The classification
error was high for most species, which suggested that very small differences in spectral
reflectance were responsible for most of the class differentiation of species within this
community throughout the season.

We used the number of components that were required to achieve a classification
error of less than 0.1 as an indicator of the “ease of classification” for each species. The
mean value of the standard errors across all time points and models runs (n = 130) per
species is presented in Figure 8A. Fragraia vesca and Cirsium acaule were clearly the easiest to
classify according to our criteria. The other species all showed large standard errors around
the mean, which implied that the ease of classification was more temporally dependent.
The same evaluation was carried out for the sPLS-DA model that was trained using the
cross-seasonal data (Figure 8B). These results provided a clearer picture, with six species
requiring under 10 components to be well-classified, five species requiring between 10
and 20 components and the remaining six species being impossible to classify to the
desired level of error. When the species were ranked from the easiest to hardest to classify,
the means of the results from the single time points and the model that was trained using
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the cross-seasonal data were well correlated (Spearman’s rank correlation = 0.8). In the
further analyses, the classification “ease” metric from each of the single time point models
was used.
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error of less than 0.1 as an indicator of the “ease of classification” for each species. The 

Figure 7. (A) The “scree plot” of the models at each time point, i.e., the variance in the X variable
as explained by the model latent variables/components. The grey reference line represents the
99% variance in the X variable that was captured by six components, irrespective of sampling time;
(B) species classification error over time with six components; (C) species classification error with the
chosen number of components (i.e., the final model for each time point). Mean error is shown for
each time point over the 10 model runs (the S.E. of the model runs was very small and is not shown).
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Figure 8. The “ease” of classification, defined as the number of components (latent variables)
produced from the sPLS-DA models that were required to classify a species to a <10% error rate.
Species are ranked from easiest to hardest to classify (left to right); (A) the mean and SE of the models
across sampling dates; (B) the results from the model that was trained using the cross-seasonal
dataset. Shaded bars show the species that were not classifiable to the required error rate.

3.5. Phylogenetic and Morphological Drivers of Species Separability

We used linear models to test whether the ease of classification was related to the
phylogenetic and morphological aspects of the community (see Figure 1C–E). Firstly, we
tested whether smaller phylogenetic distances between pairs of species made them more
difficult to separate. We found that phylogenetic distance was very weakly correlated
with the ease of classification within this community (r2 = 0.05, slope = 0.03, p = 0.00287),
with species that had smaller evolutionary distances being slightly harder to classify. We
proposed that species with smaller leaves would be harder to measure using the leaf clip
and that the measurements of these leaves would be subject to increased noise. However,
we found no effects of leaf size on the ease of classification. We found bi-directional leaf
reflectance at 445 nm to be very weakly correlated with the ease of separation; however,
this finding was driven by two species (Helianthenum nummularium r2 = 0.36, slope = −119,
p < 0.001 and Sanguisorba minor r2 = 0.168, slope = −98, p < 0.001). The more specular
the reflectance, the easier these two species were to classify. We performed an ANOVA
and a paired Tukey test to test whether leaf longevity or leaf surface mechanisms had any
effects on classification ease. We found that aestival (spring emerging) leaves were harder
to classify than evergreen and semi-evergreen leaves (ANOVA: F = 4.445, p < 0.05); the
post hoc Tukey test showed that aestival leaves differed significantly from the other two
groups at p = 0.03 and p = 0.01. We also found that species with spines were easier to
classify than those with glabrous or hairy leaves (ANOVA: F = 8.552, p < 0.0001); post hoc
Tukey test showed that spines differed significantly from the other two groups at p < 0.0001
and p < 0.001. However, this latter result should be treated with caution as only one species
in the community had spines (Cirsium acaule).

By using the GSA of PRO-COSINE and the waveband selections from the sPLS-DA
models, we were able to understand which leaf traits were likely to be the principal drivers
of spectral variations within the plant community (Figure 9A). The consistent results
for Component 1 (Figure 9B) highlighted the importance of the SWIR water feature in
explaining the variances between species. Regardless of the sampling date, the wavebands
that accounted for the largest amount of independent variation (between 49–61%) were
situated in the region of Cw maximum, around 1410 nm. The second most variable region
(21–35%) was represented by wavelength selections in the NIR at all time points, except
for one (DoY 132). This is the region where the structural parameter of the leaf, N, is most
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strongly expressed. Component 3 represented variations in the visible region and hence,
the region of chlorophyll expression. In the second half of the sampling season (DoY 161,
174, 182, 188 and 204), specular reflectance (bspec) also became an important trait for certain
sampling dates. Components 4–6 captured variations in Cm that only represented between
1 and 5% of the total spectral variance.

 

3 

Figure 9 

 
Figure 9. (A) The global sensitivity analysis of the radiative transfer model PRO-COSINE for leaf
clip data with overlaid waveband selection for the first six components for two example time points
(DoY 153 and 161); (B) the probability of the importance of traits for each of the six components over
time using the wavelength selection from the best performing sPLS-DA models for each sampling
date. The range of variance between model runs for each model component is presented in the
panel header.
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4. Discussion

Using the sparse PLS-DA approach with leaf clip data, species were classifiable to a
very good error rate of 0.1% in most cases across the season. This result was obtained using
a small sample size (n = 5) per species per time point and it was possible to collect these sam-
ples for 17 species within a single sampling day. However, the models that were produced
were complex and required between 15 and 21 components, depending on the sampling
date and model run. These results suggest that species classification within complex com-
munities will not be an easy task. In addition, 99% of the spectral variance for any one
of the sampling dates was explained by only six model components. All model runs and
sampling dates were very consistent in this respect. After the application of six components,
most species displayed an unsatisfactory error rate for any single sampling date. This
meant that a large amount of the discriminatory ability of reflectance data for the species
was based on extremely small differences between spectra, which probably resulted from
the complex co-varying relationships between the leaf optical traits.

The results from across the growing season showed that some species were consis-
tently easy to classify using a small number of components. Another group was possible to
identify but required more components, most of which represented a very small amount
of the total spectral variance. The final group of species was impossible to classify to the
desired error rate of 10% across time, but at certain time points, the species were well
classified. For sampling campaigns in which data are collected during a single day, there
is the possibility that species discrimination results from sampling errors and instrumen-
tal noise when it is based on very small differences in leaf spectra. It has been shown
through simulation studies that when there are more than twice as many classes as samples,
the PLS-DA readily finds a hyperplane that is stochastic in nature [43]. We showed that for
species that are easy to classify, the model that was produced from cross-seasonal sampling
merely confirmed the results of the models that were produced from single time points;
however, for species that are more difficult to classify, it could provide confidence when
discriminating between noise and biological signals.. We may be able to understand the
reasons for the variations in classification error over time in some cases. For example, we
saw that for two of the species examined here (Helianthenum nummularium and Sanguisorba
minor), variations in specular reflectance over the course of a growing season strongly
affected the ease of classification.

The result that 99% of the spectral variance classified only six species to less than
a 10% error rate across time suggested that the ability of the SVH to hold at the leaf-
level in single date sampling campaigns depended on the extent to which the community
was composed of species that were “easy” to detect. SVH, as an unsupervised form of
biodiversity assessment, assumes that cross-spectral variance in reflectance can account
for the diversity of taxonomic units. However, from the results that are presented here, we
could not infer that spectral variance was necessarily correlated with species numbers or
their abundances.

The global variance decomposition that resulted from the radiative transfer modelling,
alongside the waveband selections that were required for each model run, revealed that leaf
EWT was the most important and consistent driver of spectral variance that was related
to species classification, followed by N, Cab, bspec and LMA (although the relative impor-
tance of these traits was more temporally dependent). The importance of the wavebands
that related to EWT did not vary with sampling date nor seasonal soil moisture content,
as simulated by Sentinel-1. Grime’s CSR strategy and Ellenberg’s indicator values for the
species that were examined here revealed a plant community that was dominated by stress
tolerators and adapted to high pH soils. However, the moisture and nitrogen demand of
these species was more variable. Similar sampling campaigns that involve the collection of
leaf-level water content alongside leaf-level reflectance may help us to better understand
why this feature is so important and whether this is limited to this type of stress tolerator
system. The transferability of the models during the sampling period (day of year 161 to
204) could also coincide with the trait stabilisation of the leaves and, in turn, the stabilisa-
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tion of the spectral representation of traits (waveband selection). Yang et al. [13] found that
in tree leaves, LMA and chlorophyll a/b content increase with green-up and then remain
steady until leaf fall.

The detection of leaf traits using reflectance data is optimal when using a leaf clip and
integrating sphere [58], which provides both reflectance and transmittance. In contrast,
bi-directional reflectance data that are obtained using a leaf clip result in the over-estimation
of cross-spectral reflectance due to surface reflectance of the leaves. The application of the
results of this study (and others that take a similar approach) in close range imaging
spectroscopy requires a consideration of additional sources of variation that relate to
anisotropy (light incident angle and illumination zenith angle). These variables can also
be modelled using the COSINE radiative transfer model [54] but would be additional
sources of uncertainty in species determination. Reflectance variance in grasslands at the
very high-resolution canopy scale has already been attributed to non-taxonomic properties,
such as the vertical complexity of the sward [59], the presence of mature leaves [25] and
pixels containing soil [60]. In this work, we avoided sampling plants that were growing
in shaded environments, but there is also evidence that chlorophyll levels vary between
leaves that are in the sun and those that are in the shade [61]. These additional sources of
variation are likely to further increase the difficulty of species discrimination using close
range imaging spectroscopy.

Feature selection and classification model specifications over time could also be af-
fected by methodological choices in the analysis. Here, we applied the sPLS-DA approach
to data that were pre-processed using a Savitzky–Golay filter. When utilising close range
imaging spectroscopy, spectra are likely to contain more noise than when using a leaf clip.
Therefore, the type and optimal amount of spectral smoothing need to be examined in
more detail and within differing instrumental contexts. Here, spectra were resampled to a
3-nm bandwidth; however, when optimising classification, the bandwidth choice within
differing spectral regions could vary. Finally, sPLS-DA is only one modelling approach for
classification and feature selection. In order to develop more robust species discrimination
models over time, it is likely that more advanced methods would also need to be tested
and compared [62,63].

5. Conclusions

To date, species discrimination tasks using hyperspectral data have generally been
focused on woody species. Despite their conservation status and importance, herbaceous
species are less studied and when they are, observations are mostly confined to the domi-
nant species rather than attempting to capture the full botanical composition of the sward.
Plant trait studies have shown that the spectral determination of the leaf properties of
herbaceous species may be more difficult to obtain than that of the leaf properties of woody
species [64]; therefore, we should practice caution when applying results from studies
that are performed in forests to grasslands and we should instead conduct similar workon
grassland communities.

In this study, we found that some species within a community framework were
easier to discriminate across the season than others. This pointed to a relative distinction
in their leaf reflectance properties. Other species that were more difficult to discriminate
required complex waveband combinations, which fluctuated across time. Cross-seasonal
sampling, even with small sample sizes, could help to verify which species are driving
measures of spectral diversity. Studies that explore species-specific chemical and structural
leaf properties and relate these to leaf spectral signatures [65] are needed to help us to
explain with more certainty why some species are easier to distinguish than others and to
create a predictive framework for species monitoring and diversity assessment using leaf
reflectance. We recommend further studies that explore functional trait frameworks when
making predictions of species classes and exploit GSMs and RTMs, alongside biochemical
assays, to estimate the importance of traits across different scales and instruments.
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