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A B S T R A C T   

Squid species show pronounced interannual variability in population size. While this may partially reflect 
changes in fisheries pressure, it is thought to be primarily the result of environmental variability. Most squid have 
an annual life cycle with only a short period dedicated to reproduction. With little overlap between generations, 
the environment can exert a major influence on stock size. In this study we explore, through a combination of 
process-based modelling and statistical analysis, whether environmental variability explains variability in catch 
of the chokka squid, Loligo reynaudii, over the Agulhas Bank off South Africa. We focus on growth and survival 
during the first two months spent as “paralarva” in the pelagic. This period has been suggested to be a key 
bottleneck and a potential predictor of catch. To describe prey availability and predation pressure, we develop a 
dynamic model of the size spectrum (1 mg–1000 kg) of the ecosystem over the Agulhas Bank, with trophic in-
teractions governed by size. In tandem, we develop a model for the growth of individual L. reynaudii, which 
specifies where in the size spectrum individual squid can be found at each stage of their development. We find a 
correlation of 0.74 between modelled biomass representative for L. reynaudii at the end of its paralarval stage and 
catch per unit effort (CPUE) in the subsequent season in the period 1995–2015. This suggests that the paralarval 
stage is indeed a bottleneck: modelled food availability and predation pressure experienced by paralarvae ex-
plains 55% of the variability in CPUE, which is a proxy for spawning stock biomass. As the paralarval stage ends 
approximately nine months before the time of spawning and maximum catch, this work could be used to develop 
catch predictor with a nine-month lag.   

1. Introduction 

Cephalopods such as squid, cuttlefish and octopus are highly effec-
tive predators and play a key role in marine ecosystems. They reach sizes 
comparable to fish but have a life cycle that is compressed into just 1–2 
years. Their strategy has been described as “live fast, die young” (Boyle 
and Rodhouse, 2005) and, in squid, “life in the fast lane” (Jackson and 
O’Dor, 2001): they grow fast, often reproduce just once, and die soon 
after. Without the multiple overlapping generations found in fish, 
cephalopod populations are thought to be particularly sensitive to 
environmental fluctuations (Pierce et al., 2008, 2010). Accordingly, 

their stocks show pronounced interannual variability. This is reflected in 
fisheries landings where it has become more obvious as cephalopods 
have been increasingly targeted (Hunsicker et al., 2010), with evidence 
suggesting that stocks may already be subject to overexploitation 
(Rodhouse et al., 2014). However, such trends are difficult to diagnose 
in the presence of pronounced natural variability in stock size. There is 
thus an urgent need to understand and predict this variability, and 
numerous studies have attempted to do this (e.g., Moustahfid et al., 
2021; Rodhouse et al., 2014). 

The extensively studied chokka squid, Loligo reynaudii, displays many 
of the features attributed to the archetypical cephalopod. It is found 

* Corresponding author. 43 Rosslyn Park Road, Plymouth, PL3 4LL, UK. 
E-mail address: jorn@bolding-bruggeman.com (J. Bruggeman).  

Contents lists available at ScienceDirect 

Deep-Sea Research Part II 

journal homepage: www.elsevier.com/locate/dsr2 

https://doi.org/10.1016/j.dsr2.2022.105123 
Received 2 July 2021; Received in revised form 26 May 2022; Accepted 1 June 2022   

mailto:jorn@bolding-bruggeman.com
www.sciencedirect.com/science/journal/09670645
https://www.elsevier.com/locate/dsr2
https://doi.org/10.1016/j.dsr2.2022.105123
https://doi.org/10.1016/j.dsr2.2022.105123
https://doi.org/10.1016/j.dsr2.2022.105123
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dsr2.2022.105123&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Deep-Sea Research Part II 202 (2022) 105123

2

along a substantial portion of the coast of South Africa, but particularly 
over the Agulhas Bank (AB) which covers an area of 29,000 square 
nautical miles (Fig. 1). Squid appear to live and grow across the Bank 
before migrating back to near-coastal spawning grounds; the proposed 
life cycle can be found in Lipiński et al. (2016). L. reynaudii is a species of 
commercial importance (Cochrane et al., 2014), with fisheries primarily 
targeting spawning aggregations in relatively shallow water (<50 m) in 
summer (Sep–Dec). 

As for many cephalopods, the stock size of L. reynaudii is highly 
variable. In fact, “the chokka squid fishery has the highest variability in 
both biomass and catches of all the South African commercial fisheries” 
(Sauer et al., 2013). Unsurprisingly, fluctuating stock raises concerns of 
overexploitation, particularly in years of poor recruitment. The sus-
tainability of the fisheries has been discussed for nearly 30 years 
(Augustyn et al., 1992) and measures to prevent overexploitation, 
including effort capping and seasonal closure, are in place (Roel and 
Butterworth, 2000). However, much of the variability in L. reynaudii 
stock is thought to be due to the environment, e.g., near-bottom 
turbidity, temperature and oxygen at the time of spawning (Roberts 
and Sauer, 1994) and changes in circulation and their impact on early 
life stages (Downey-Breedt et al., 2016; Martins et al., 2014). A pre-
dictive model linking environment and catch was proposed by Roberts 
(2005) who found a statistical relationship between catch and summer 
sea surface temperature. However, this relationship degraded when 
updated with data from recent years (Sauer et al., 2013). Similarly, Jebri 
et al. (2022) found a statistical relationship between catch and chloro-
phyll a concentration on the bank, with the latter being controlled pri-
marily by changes in wind. 

As explanations for variability in Loligo reynaudii tend to focus on 
specific phases in its life history (e.g., spawning, hatching, early devel-
opment), we briefly review the characteristic features of its growth, 
reproduction, and survival. L. reynaudii grows from 2 mg wet mass at 
hatching (Martins et al., 2010; Vidal et al., 2005) to between 200 g 
(females) and 400 g (males) at spawning, with some males ultimately 
reaching 1 kg (Augustyn, 1990). Wet mass increases over five orders of 
magnitude in approximately one year. Much of the growth happens 
early: cephalopods grow exponentially early in life, but slower after 
(Boyle and Rodhouse, 2005; Forsythe and van Heukelem, 1987; Lip-
iński, 2002). This is characteristic for L. reynaudii as well: different 
developmental phases are thought to have very different growth rates 
(Sauer et al., 2013), with growth after hatching typically described with 
an exponential relationship (Vidal et al., 2005). Reproduction is thought 
to take place after one year, with 8,000 to 17,000 eggs (Sauer et al., 
1999) being deposited during several spawning episodes (Melo and 

Sauer, 2007). There is no evidence for mass mortality directly after 
spawning but longevity is thought not to exceed 18 months, with 15 
months being a commonly suggested expected lifespan (Augustyn et al., 
1994; Augustyn and Roel, 1998). Evidence suggests that the life cycle is 
at least partially synchronized with the seasons, with a major spawning 
peak in spring and early summer (Sep–Dec) and an occasional minor 
peak in autumn or winter (Mar–Jul) (Augustyn et al., 1994; Olyott et al., 
2007). Further indications that early summer is the main time of 
spawning are given by the pronounced decrease in the number of viable 
oocytes per female L. reynaudii during this period (Melo and Sauer, 
1998), and the fact that fisheries, which target spawning aggregations, 
simultaneously show a maximum in catch (Sauer et al., 2013). 

The life of cephalopods is punctuated by several key transitions 
(Robin et al., 2014). For squid such as L. reynaudii, perhaps most 
important of these is the transition from pelagic paralarva to a final 
demersal-by-day, pelagic-by-night lifestyle, dominated by diel vertical 
migration. While this transition is foremost an ecological one, describing 
a difference in habitat and behaviour (von Boletzky, 2003), it is not just 
that: the end of the paralarval stage coincides with changes in 
morphology and growth (Robin et al., 2014; Shea and Vecchione, 2010; 
Young and Harman, 1988). In fact, the original paper introducing the 
“paralarva” already states that it is separated from the subadult by 
“distinct early discontinuities in growth patterns” (Young and Harman, 
1988). This is important as it implies that it may be possible to infer the 
time of change in habitat, behaviour and ecology associated with the 
end of the paralarval stage from the growth curve, and vice versa – a 
feature we exploit in this study. 

The paralarval stage is thought to be a potential bottleneck in the life 
cycle of L. reynaudii. As paralarvae use their limited swimming ability 
primarily to maintain their position in the water column (Augustyn 
et al., 1994), their horizontal location is dictated by ocean currents. 
Thus, the availability of their food (small crustaceans) is the combined 
result of currents and the productivity of the local plankton food web. 
Food availability becomes critical three to five days after hatching 
(Martins et al., 2010; Vidal et al., 2005) and likely remains so during the 
remaining months spent as paralarva. Accordingly, the paralarval stage 
is a time during which the physical and biological environment can exert 
a disproportionate influence on growth and survival. It is also a time 
during which predation pressure is high: for Loligo vulgaris, paralarval 
mortality in the field was estimated at 4.8–9.6% per day (González et al., 
2010). Based on these numbers, survival at the end of the paralarval 
stage, which lasts three months in this species, would range between 
0.02% and 1%. 

Food availability and predation pressure follow from trophic 

Fig. 1. Map of the south coast of South Africa, showing the Agulhas Bank where L. reynaudii is typically found. The 200 m depth contour that delineates the bank is 
shown as dashed line. The model developed in the methods section is restricted to the central and eastern parts of the bank, shown as hatched area. Depths were 
taken from GEBCO 2020 (GEBCO Compilation Group, 2020). 
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relationships which are thus major factors ultimately determining 
cephalopod population size and catch (Rodhouse et al., 2014). These 
relationships change during ontogenetic development. Like most marine 
species, L. reynaudii and its predators are opportunistic, feeding on prey 
proportional to their own body size (Lipiński, 1992). Accordingly, prey 
preference of L. reynaudii varies with size and age: young paralarvae feed 
on small crustaceans such as calanoid copepods (Venter et al., 1999), 
juveniles on larger crustaceans (e.g., euphausiids) and larval fish (Lip-
iński, 1987), adults on large crustaceans (e.g., various species of 
shrimp), fish and cephalopods, with cannibalism being an important 
factor (Sauer and Lipiński, 1991). After the onset of diel vertical 
migration, benthic species (decapods, demersal fish) make up an 
important part of the diet (Lipiński, 1987). Quantitative estimates of 
predator-prey size ratios for squid are rarely available and sometimes 
inconclusive (Boyle and Rodhouse, 2005; Rodhouse and Nigmatullin, 
1996), though Vovk (1985) shows Loligo palei prefers prey that measures 
8–20% of its own mantle length. 

Similar size-based rules likely govern the prey preference of potential 
predators of L. reynaudii. If so, it is exposed to predation by ever larger 
predator species as it grows. However, empirical observations of pre-
dation on L. reynaudii are limited to spawning aggregations, and thus, 
adults. These are predated upon by cephalopods, teleosts, chon-
drichthyans and marine mammals (Smale et al., 2001). Predation on 

smaller individuals is generally not observed, with the ecology of 
paralarvae, in particular, remaining an important knowledge gap (Sauer 
et al., 2013). Still, given the large number of species involved in 
L. reynaudii predation, generic rules for predator-prey preference are 
likely to apply, e.g., a typical mass ratio between predator and its 
L. reynaudii prey that ranges between 100 and 1000 (Jennings et al., 
2002). 

In this study we explore the extent to which food availability and 
predation pressure during the paralarval stage of L. reynaudii can explain 
variability in catch per unit effort (CPUE), which we interpret as proxy 
of population size. We use a combination of models to investigate this 
(Fig. 2). First, we construct a dynamic model for the pelagic size spec-
trum (Blanchard et al., 2009; Cheung et al., 2018) over the Agulhas 
Bank. This model describes the temporal variation in biomass in 100 size 
classes ranging from 1 mg to 1000 kg and centres on size-based trophic 
interactions. It is driven by existing outputs of a 1/12◦ coupled 
hydrodynamic-biogeochemical model, NEMO-MEDUSA (Yool et al., 
2013). Second, we develop a bioenergetic model (Kooijman, 2010), 
describing the life history of individual L. reynaudii, and constrain this 
with empirical observations of egg development, paralarval growth, 
adult lifespan and fecundity. Predicted growth curves from this model 
are used to determine where in the size spectrum paralarvae are posi-
tioned at each stage of their development. We compute correlations 

Fig. 2. Overview of all model components and the data they exchange. The rectangle labelled “present study” encompasses all models and analyses that are run as 
part of this study. They are driven by pre-existing outputs from the NEMO-MEDUSA model, shown outside the rectangle. 
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between CPUE and outputs of the size spectrum model (abundance per 
size class) throughout the year. Using the bioenergetic model, the 
resulting patterns are interpreted in terms of implications for the life 
history of L. reynaudii and its impact on catch. 

2. Methods 

2.1. Modelling the size structure of the Agulhas Bank ecosystem 

To describe the time-varying size structure of the marine ecosystem 
over the Agulhas Bank, we use a recent implementation (https://doi. 
org/10.5281/zenodo.4593394) of the Community Size Spectrum 
Model (CSSM, Blanchard et al., 2009). At its core, this is a box model 
that is typically applied to large areas such as the North Sea (Blanchard 
et al., 2009) or entire Exclusive Economic Zones (Blanchard et al., 2012; 
Cheung et al., 2018). Here we use it to describe the pelagic ecosystem 
over the Agulhas Bank, defined as all waters with a depth shallower than 
200 m in the area spanning 33.8–37 ◦South, 20–27 ◦East (Fig. 1). Within 
this area the model is horizontally averaged. 

The equations describing the processes in the size spectrum model 
have been published previously (Blanchard et al., 2009, 2014); the 
specific model configuration matches earlier work (Cheung et al., 2018) 
and is summarized here. The model represents depth-integrated wet 
mass (g/m2) in individuals between 1 mg and 1000 kg, partitioned over 
100 log-spaced size classes. Unlike Blanchard et al. (2009), we model the 
pelagic size spectrum only as we focus exclusively on the pelagic life 
stage of L. reynaudii. Benthic fauna and demersal fish are therefore not 
included. Trophic interactions are governed by size-based preferences, 
which are characterised by a log-normal distribution of prey size centred 
at an optimal (median) predator: prey mass ratio of 100 (Blanchard 
et al., 2009; Hartvig et al., 2011; Scott et al., 2014). The standard de-
viation of this distribution is 1 log10 g. Food ingestion is further 
controlled by a clearance rate (volume predator− 1 time− 1) that is 
size-dependent: large predators search larger volumes of water per unit 
time. All rates are temperature-dependent with an activation energy of 
0.63 eV (Blanchard et al., 2012; Cheung et al., 2018). The gross growth 
conversion efficiency of ingested prey to predator biomass is set to 0.2 
(Blanchard et al., 2009). This combines the assimilation efficiency (the 
fraction of ingested food that is successfully assimilated, as opposed to 
egested) and the loss of assimilated mass/energy to metabolic processes. 
Fishing is prescribed as a fixed mortality of 0.4 yr− 1 for individuals 
above 1.25 g. This threshold was selected to account for catch for human 
consumption as well as fish meal production (Blanchard et al., 2012). 
Production of new individuals in the smallest size class (1 mg) is not 
controlled by stock-recruitment relationships but by continuously 
setting the biomass in lowest size class to an expected biomass obtained 
by extrapolating the plankton size spectrum (Woodworth-Jefcoats et al., 
2013). The model thus assumes the smallest sizes of predators will 
appear wherever and whenever prey for them is available. 

To provide prey for the smallest size classes in the CSSM, we pre-
scribe the (time-varying) concentration of organisms smaller than the 
minimum resolved size of 1 mg. These smaller organisms include all 
unicellular plankton (bacteria, phytoplankton, microzooplankton) and 
most multicellular zooplankton. These fields are taken from a 1/12◦

global simulation with the NEMO-MEDUSA coupled hydrodynamic- 
biogeochemical model (Yool et al., 2013). While this simulation 
covers the period 1990–2015, we only use results from 1995 onwards to 
ensure the model has reached quasi-equilibrium with a repeating annual 
cycle in productivity. We infer the plankton spectrum from the con-
centration (mmol N/m3) of each of the four MEDUSA plankton func-
tional types (PFTs): diatoms, non-diatom phytoplankton, 
microzooplankton, and mesozooplankton. Each is assumed to span a 
fixed wet mass range: 4.2 pg–4.2 ng for non-diatom phytoplankton 
(corresponding to 2–20 μm ESD for a cell density of 1 g/cm3), 4.2 ng–4.2 
μg for diatoms and microzooplankton (20–200 μm ESD), and 10 μg–1 mg 
for mesozooplankton (Andrew Yool, pers comm, 2018). The total 

biomass of each PFT is assumed to be uniformly distributed over 
log-spaced wet mass, corresponding to a Sheldon-Sutcliffe size spectrum 
(Sheldon et al., 1972). Wet mass is obtained from nitrogen by multi-
plying each concentration with MEDUSA’s C: N ratio (6.625 for phyto-
plankton, 5.625 for zooplankton; Yool et al., 2013) and an assumed wet: 
carbon mass ratio of 10 (Boudreau and Dickie, 1992). The combined 
plankton spectrum spans 4.2 pg to 1 mg in wet mass with 84 log-spaced 
size classes. 

The treatment of depth in the model merits separate discussion. The 
larger organisms described by the size spectrum model in reality control 
their vertical position in the water column and may adjust it dynami-
cally to prey availability and predator presence, e.g., through diel ver-
tical migration. This is not easily represented in a model of the entire 
pelagic community; it typically requires additional assumptions and 
explicit treatment of functional guilds (van Denderen et al., 2021). For 
the sake of simplicity, we assume instead that all the pelagic predators 
redistribute instantaneously in the vertical according to prey availability 
(Cheung et al., 2018). Since all modelled predators prefer smaller prey, 
this assumption causes predator concentrations at any depth to be pro-
portional to the smallest prey: the sum of all plankton biomass at that 
depth. This applies for any size of predator. The resulting vertical 
predator distribution c(z) can be summarized by the interaction depth, 
[
∫

c(z)dz]2/
∫

c2(z)dz, which represents the effective depth range over 
which predator-prey interactions within the predator community occur. 
As this metric depends on plankton, it will vary over time: the depth 
distribution of predators will dynamically expand and contract, similar 
to mixed layer models for plankton (Evans and Parslow, 1985). While 
this treatment of depth distribution is relatively simple, it nonetheless 
accounts for the restricted and seasonally varying depth extent of the 
energy at the base of the food web; as such, we consider it preferable 
over approaches that distribute predators over a prescribed constant 
depth or over the entire water column. The time-varying depth distri-
bution is computed from NEMO-MEDUSA outputs and is subsequently 
used to weigh depth-resolved concentrations of plankton when 
computing their depth-averaged concentration. The interaction depth 
generally ranges between 45 m (summer) and 85 m (winter) over the 
Agulhas Bank. 

In addition to plankton, a weighted depth average of temperature is 
derived from NEMO-MEDUSA outputs. This is, once again, a weighted- 
depth average based on the depth distribution of predators described in 
the previous section. For both plankton and temperature, depth- 
averaged values are extracted per model grid box (1/12◦ × 1/12◦) 
and subsequently averaged over the aforementioned “Agulhas Bank” 
target area. 

The size spectrum model is configured to run at a daily time step to 
fully resolve both seasonal and interannual time scales which are central 
to the question of catch variability in L. reynaudii. It should be noted that 
size spectrum models are more commonly used to assess steady state 
distributions or long-term variability on annual times scales (Blanchard 
et al., 2012). However, there is precedent for using size spectrum models 
at seasonal time scales (Datta and Blanchard, 2016). NEMO-MEDUSA 
outputs are available at 5 d resolution and are linearly interpolated 
during simulation with the size spectrum model. 

2.2. A bioenergetic model for the life cycle of L. reynaudii 

To relate predicted abundance per size class to the life history of 
L. reynaudii, we need an estimate of its wet mass at any given point 
during its life cycle. To this end, we construct a Dynamic Energy Budget 
(DEB) model (Kooijman, 2010) for L. reynaudii. This model describes 
growth, reproduction and survival from fertilization until death. It dis-
tinguishes several key life history events, including the start of feeding, 
an optional “metamorphosis” which we equate with the end of the 
paralarval stage (see next section), and the start of reproduction. The 
DEB model has a total of 13 parameters and, as such, is more complex 
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than many existing cephalopod growth models (Arkhipkin and 
Roa-Ureta, 2005; Grist and Jackson, 2004; Lipiński, 2002; O’Dor et al., 
2005). However, it has the distinct benefit of covering the entire life 
cycle, not just growth or maturity and fecundity (Macewicz et al., 2004). 
As a result, its parameters can be constrained with a wide range of ob-
servations from any life stage. The model also inherently accounts for 
the effect of food level and temperature on every aspect of life history. 

We use the “abj” extension of the standard DEB model (Kooijman, 
2014) which allows for a period of fast exponential growth directly after 
the start of feeding. This matches the initial exponential growth phase 
exhibited by most cephalopods (Forsythe and van Heukelem, 1987). In 
the model, the exponential phase ends at “metamorphosis”, after which 
growth conforms to the von Bertalanffy equation if food availability is 
constant. Thus, the model can capture the characteristic two-phase 
growth of cephalopods (Boyle and Rodhouse, 2005). It should be 
noted that DEB parameters for cephalopods are generally chosen such 
that the asymptotic size implied by the von Bertalanffy equation is never 
reached; instead, individuals grow rapidly until (programmed) death, 
which typically occurs long before growth would saturate (Kooijman, 
2010). Nevertheless, some slowing down of growth around the time of 
maturation can still be seen in these models which qualitatively agrees 
with a third, slower growth phase (Lipiński, 2002) that has been pro-
posed for L. reynaudii (Sauer et al., 2013). 

In the DEB model, hatching by default coincides with the start of 
feeding. This does not apply to paralarvae of L. reynaudii: they are not 
fully developed when they hatch and survive on the remainder of the 
yolk for the first three to five days (Vidal et al., 2005). During this 
period, they do not feed. To represent this, we introduce a new 
parameter for maturity at hatching. This parameter does not affect the 
behaviour of the model but allows us to align model predictions with 
experimental results defined relative to the time of hatching (Oosthuizen 
et al., 2002; Vidal et al., 2005). By defining hatching by a maturity 
threshold (as opposed to, e.g., a fixed number of days before the start of 
feeding), we can directly account for the influence of temperature and 
the initial energy content of eggs on both the time of hatching and the 
time delay between hatching and feeding. It also implies that while the 
time of hatching is temperature-dependent, the state of the newly 
hatched paralarva (e.g., yolk content) is not. This agrees with observa-
tions (Martins et al., 2010). 

Every aspect of the behaviour of DEB models is directly or indirectly 
influenced by food availability which is measured by the value of the 
functional response f (0–1). In the absence of detailed information about 
this variable, we use f = 0.6 when simulating growth and development 
of L. reynaudii in the field; this value is thought to represent the average 
food level across the marine ecosystem (Hartvig et al., 2011). A different 
value of f = 1 is used while calibrating the DEB model against results 
from paralarval growth experiments (Vidal et al., 2005) to account for 
the fact that these experiments were conducted at replete food. 

A Bayesian approach (Haario et al., 2001) is used to parameterise the 
model. First, a multivariate prior distribution is obtained through 
phylogenetic inference (https://deb.bolding-bruggeman.com, Brugge-
man et al. subm., Bruggeman et al., 2009). This approach estimates DEB 
parameters from a dataset of DEB models for over 2000 parameterised 
species (https://debtheory.fr/add_my_pet/, Marques et al., 2018), 
including 19 cephalopods. The inferred prior distribution is combined 
with several observational datasets specific to L. reynaudii to derive the 
posterior probability of DEB parameters. The following datasets are 
used:  

• Duration of egg development at different temperatures (Oosthuizen 
et al., 2002)  

• Growth of paralarvae in the first 22 days since hatching (Vidal et al., 
2005)  

• A wet mass between 200 g (female) and 400 g (male) at an age of one 
year (Augustyn, 1990)  

• An expected lifespan of 15 months (Augustyn et al., 1994)  

• A maximum lifetime reproductive output of 17,000 (Sauer et al., 
1999). This is taken to be achieved at an age of 18 months (Augustyn 
and Roel, 1998). It is worth noting that as this age exceeds the ex-
pected lifespan, it will be reached by a minority of individuals only. 

The posterior probability is characterised by an ensemble of 500,000 
parameter sets. For each of these, time series of growth, reproduction 
and survival over an 18-month period are simulated. In these simula-
tions, temperature is set to 17.3◦C (the long-term average of tempera-
ture in the size-spectrum model for the AB) and food availability was set 
to f = 0.6 (Hartvig et al., 2011). Results are visualized as the 2.5, 25, 50, 
75, 97.5 percentiles of these 500,000 simulations. 

2.3. From size spectra to catch 

2.3.1. Catch per unit effort 
Total catch of L. reynaudii and man hours fished for 1995–2017 were 

obtained from the South African Department of Forestry, Fisheries and 

Fig. 3. Monthly catch of the squid L. reynaudii as fraction of total annual catch. 
The annual catch is computed as centred running total, i.e., for each time point, 
the corresponding total is computed by taking the sum over all catches from 6 
months before to 6 months after. Each bar represents the average value between 
1990 and 2016. 

Fig. 4. L. reynaudii catch per unit effort between 1995 and 2016. Each annual 
value represents the period covering April until March the following year to 
ensure it fully encompassed a single spawning/catch season (Nov–Jan). 

J. Bruggeman et al.                                                                                                                                                                                                                             

https://deb.bolding-bruggeman.com
https://debtheory.fr/add_my_pet/


Deep-Sea Research Part II 202 (2022) 105123

6

the Environment (DFFE). The catch per unit effort (CPUE) is defined as 
total catch (kg) per man hour fished (Roel, 1998). For each calendar 
year, values are reported separately for Jan–Mar and Apr–Dec. How-
ever, as shown in Fig. 3, the peak in catches generally falls in Dec–Jan. 
These two months are part of the same late spring-early summer 
spawning season but belong to different reporting intervals. As a metric 
for annual CPUE, we combine these intervals in an Apr–Mar average 
(Fig. 4), which encompasses a single spawning season and thus the 
output of a single generation of squid. Other studies have used CPUE or 
catch averaged over a calendar year (Jan–Dec), but as this metric com-
bines the output of two non-overlapping generations of squid, it is likely 
not easily explained in terms of a single, biologically plausible annual 
driver. The validity of combining Mar–Dec and the subsequent Jan–Mar 
is demonstrated by the fact that CPUE values in Jan–Mar are generally 
more similar to CPUE in Apr–Dec the year before (r = 0.70) than 
Apr–Dec of the same year (r = 0.47). In the remainder of this work, we 
will attempt to explain the interannual variability in CPUE, shown in 
Fig. 4, in terms of the variability in the size spectrum model introduced 
in the previous section. 

2.3.2. Correlation analysis 
The outputs of the community size spectrum model – time series of 

total predator biomass (g/m2) in 100 size classes between 1 mg and 
1000 kg – are treated as potential predictors of CPUE of L. reynaudii. As 
we focus exclusively on the pelagic paralarval stage, we narrow this 
down to size classes with individual mass below 100 g, and the 150 
d period between 2 December – 31 May which should include the 
paralarval stage of individuals produced as part of the Sep–Dec 
spawning season. 

We use Spearman rank correlation (as opposed to Pearson correla-
tion) to quantify the relationship between candidate predictors and 
catch. This metric is designed to identify relationships that are mono-
tonic, but not necessarily linear. That is ideal for our purpose as any 
monotonic relationship (linear, saturating, exponential, etc.) would be 
helpful to predict catch. 

Fig. 5. The modelled size spectrum (4.2 pg–1000 kg) for the period preceding low catch per unit effort for L. reynaudii (1 June 2012–31 May 2013), bottom panel, 
along with a snapshot for a single day (March 26, 2013), top panel. Both plots show the biomass per bin (expected slope = 0, Sheldon et al., 1972) instead of the 
biomass density (expected slope = − 1) in order to highlight variability. In the bottom panel, the x axis denotes time, indicated with the initial letter of each month. In 
the snapshot, the blue line shows the plankton biomass taken from MEDUSA (non-diatoms, diatoms + microzooplankton, mesozooplankton), the orange line shows 
the biomass in the 100 size classes of the community size spectrum model. The y axis of the bottom spectrum matches the x axis of the snapshot. 
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Fig. 6. Correlation between L. reynaudii catch per unit effort and biomass in single class of the size spectrum model, as a function of size class and season. This is 
based on correlation coefficients computed on a grid of 56 size classes (1 mg–100 g, y-axis) and 150 times (− 30 to 120 d since 1 January, daily resolution, x-axis). The 
top panel shows the maximum positive (red) and negative (blue) correlation across the size spectrum (y axis of the bottom panel – note that this axis shows the 
absolute value of the correlation coefficient and thus only takes non-negative values). 
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3. Results 

3.1. Community size spectrum 

The 1995–2015 average of the slope of the modelled biomass density 
spectrum is − 1.03 (range: − 1.05 to − 1.02) though this differs slightly 
between the plankton (− 0.99 to − 0.90) and the predator communities 
(− 1.12 to − 1.05). These values are close to the slope of − 1 expected for 
a classic Sheldon-Sutcliffe spectrum (Sheldon et al., 1972). The seasonal 
variability of the spectrum becomes apparent when we plot the biomass 
per bin (expected slope 0), as done for the period 1 June 2012–31 May 
2013 in Fig. 5. This shows plankton blooms in November and February 
that propagate as waves through the predator spectrum, being delayed 
and dampened as they progress upward (in mass) and rightward (in 
time) through the size spectrum. These waves fade out around a biomass 
of 100 g. The biomass of large individuals is less variable in time. 

3.2. Correlation between predicted biomass and catch 

Fig. 6 shows the Spearman rank correlation between observed CPUE 
and modelled biomass in the smaller size classes (1 mg–100 g, y axis) for 
the period of December till May (x axis). The correlation coefficient 
reaches a maximum of 0.74 on day 85 and an individual mass of 0.37 g. 
This point is surrounded by a larger region with high (>0.5) correlation 
coefficients which can be seen to start from the lower left (earlier in 
time, lower biomass), e.g., 0.003 g around day 40, 0.03 g on day 60. The 
upward (increase in mass) and rightward (increase in time) trends in 
correlation contours is the result of growth of individuals over time. 

Fig. 7 shows the CPUE prediction obtained for the highest correlation 
coefficient. For each year, it shows CPUE (y-axis) plotted against the 
modelled biomass in individuals with a mass of 0.37 g on day 85 (x-axis). 

3.3. Simulated growth and life history of squid 

Fig. 8 shows the ensemble of growth curves of L. reynaudii simulated 
with 500,000 realisations of the bioenergetic model. Corresponding 
statistics per parameter are given in Table A.1. Wet mass is well con-
strained throughout the simulation, not just during early development 
where observations are available (Fig. A.2). The increase in wet mass 
during the first 80–90 days is approximately exponential (linear in 
Fig. 8a, which uses a log-transformed y-axis); after that, growth slows 
down. 

The bioenergetic model makes explicit predictions about stage du-
rations and the timing of life history events. These predictions are 
summarized in Table 1. The probability distribution of the duration of 
the paralarval stage and its final wet mass are shown in more detail in 
the inset panel of Fig. 8. In short, the paralarval stage is expected to last 
76 d (62–96 d), which means it would end 103 d (95% C.I. 88–122 d) 
after fertilization. At this time L. reynaudii wet mass is expected be 0.74 g 
(0.35–1.60 g). Probability distributions for duration of egg 

development, duration of the non-feeding stage, age at the end of the 
paralarval stage, and age at maturity are shown in Fig. A.4. Physiolog-
ical rates in the bioenergetic model are temperature-dependent; conse-
quently, predicted timings of life history events are too. As the model 
captures the observed temperature dependence of egg development 
(Fig. A.1), its temperature response appears to be appropriate for at least 
the early life stages of L. reynaudii, and thus, suitable for predicting the 
timing of associated life history transitions. 

4. Discussion 

4.1. An ecologically plausible predictor of CPUE? 

The highest correlation between 1995 and 2015 CPUE and the 
modelled size spectrum over the Agulhas Bank is found on day 85 of the 
year (26–27 Mar): that day shows a correlation of 0.74 between 
observed CPUE and the simulated density (g/m2) of individuals of 0.37 
g. Does this size and timing relate in a meaningful way to the life cycle of 
Loligo reynaudii? The bioenergetic model predicts that a L. reynaudii 
individual of 0.37 g has hatched 68 days ago (95% confidence interval: 
62–78 d) from eggs that were deposited 95 days ago (95% CI: 87–105 d) 
(Fig. 8). Thus, the hatching peak that produced 0.37 g individuals on day 
85 would be centred on 17 Jan, and the associated spawning peak on 21 
Dec. As correlations are based on a 90-day running mean of size spec-
trum predictions, this broadens to 90-day long hypothetical spawning 
and hatching periods: 6 Nov – 4 Feb and 3 Dec – 2/3 Mar respectively. 
Results could suggest that the fate of paralarvae produced during this 
period ultimately explains 55% of the variability in CPUE. This timeline 
is summarized in Fig. 9. 

At first glance, this correlation is ecologically plausible: the hypo-
thetical timing of the spawning that underpins the correlation (6 Nov – 4 
Feb) overlaps with the Sep–Dec spawning season (Augustyn et al., 1994; 
Melo and Sauer, 1998) that can be expected to produce the bulk of all 
paralarvae. Yet this overlap is only partial: spawning starts two months 
earlier in reality. Why would a predictor for CPUE not account for this 
early spawning? It is important to realise that our annual CPUE metric 
(total annual catch/total annual effort) is biased towards periods of high 
catch, notably Dec and Jan, which together make up over one third of 
annual catch (Fig. 3). Thus, the best predictor for CPUE will naturally 
emphasise the role of processes (e.g., spawning episodes) that contribute 
to the Dec–Jan stock. As the L. reynaudii life cycle is approximately 
annual (one year between fertilization and peak reproduction), the in-
dividuals that make up Dec–Jan stock may be expected to have been 
produced during spawning that happens close to 12 months earlier, i.e., 
precisely the period around the end of December pointed to by our CPUE 
predictor. This does not yet explain why the reported Sep–Dec spawning 
is not clearly reflected in catch statistics (Fig. 3). Likely, this is due in 
part to the annual closures that the L. reynaudii fishery is subjected. 
These typically include the last week of Oct until mid Nov (Cochrane 
et al., 2014; Roel et al., 1998). 

The above suggests that our CPUE correlation arises because the size 
spectrum model captures the conditions (food availability and predation 
pressure) during the first 68 days of L. reynaudii development. Accord-
ingly, Fig. 6 shows that, over this period, the model’s predictive skill (the 
correlation coefficient) gradually increases in time (x-axis) and indi-
vidual size (y-axis). However, this begs the question of why the corre-
lation peaks at day 85 and does not continue to increase. To answer this, 
it is insightful to note that this peak occurs for individuals of 0.37 g: 
approximately the minimum wet mass of L. reynaudii at the end of its 
paralarval stage (95% CI: 0.35–1.60 g; Table 1, Fig. 8c). As our model-
ling is exclusively focused on the pelagic environment, it is not expected 
to have predictive power after the onset of diel vertical migration and 
part-demersal feeding that defines the end of the paralarval stage (Shea 
and Vecchione, 2010; Young and Harman, 1988). Thus, a natural upper 
mass limit on the model’s predictive power would lie between 0.35 and 
1.60 g in the size spectrum. It is encouraging that this threshold emerges 

Table 1 
Timing of life history transitions of the squid L. reynaudii, inferred by a Dynamic 
Energy Budget model. All values are percentiles over an ensemble of 500,000 
parameter sets drawn from the posterior distribution. Food availability (the 
value for the functional response) was set to 0.6 (Hartvig et al., 2011) and the 
ambient temperature to 17.3◦C. Ages refer to the time since fertilization; dura-
tions to the time since hatching.  

Life history statistic Median (95% conf. int.) Figure 

Age at hatching (duration of egg development) 26 d (24–28 d) A4.a 
Age at start of feeding 30 d (28–32 d)  
Age at end of paralarval stage 103 d (88–123 d) A4.c 
Age at maturity 296 d (157–482 d) A4.d 
Duration of non-feeding stage 3.8 d (2.6–5.0 d) A4.b 
Duration of paralarval stage 76 d (62–96 d) 8b 
Wet mass at end of paralarval stage 0.74 g (0.35–1.60 g) 8c  
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in Fig. 6. The fact that the maximum correlation is found at the 
maximum wet mass expected for paralarvae suggests that it is food 
availability and predation pressure over the entire 76-day long paral-
arval phase (Table 1), not just the first few days, that determines the next 
spawning stock (cf. Roberts, 2005). 

4.2. Possible mechanisms 

What mechanisms ultimately explain the interannual variability in 
the modelled number of individuals emerging from the paralarval stage? 
To answer this, it is particularly informative to review what phenomena 
the models cannot (faithfully) represent. First of these is the production 
of the eggs that produce the paralarvae. The size spectrum model does 
not include a stock-recruitment relationship: production of the smallest 
size class of predators is determined only by the availability of their 
plankton prey, not by the presence of larger-sized, reproducing in-
dividuals. While the absence of a a stock-recruitment relationship is a 
common feature of models that represent the entire community of 
predator species with a single size spectrum (Blanchard et al., 2009; 
Woodworth-Jefcoats et al., 2013), it implies that variation in spawning 
stock cannot influence the next generation of juveniles. When we 
interpret model results in terms of L. reynaudii abundance, we thus 
effectively assume that egg production each year is sufficient to obscure 
any relationship between spawning stock and paralarval recruitment. 
This is supported by the fact that stock-recruitment relationships are not 
usually observed in cephalopods; environmental variability, particularly 
during early life stages, is expected to underlie variability in stock size 
(Pierce et al., 2008). 

Next, the model only includes a limited representation of environ-
mental variability and its impact on paralarvae. For example, the size 
spectrum model we use for higher trophic levels, including L. reynaudii, 
is horizontally averaged. Thus it cannot account for spatial patterns over 
the Agulhas Bank, e.g., mismatches between L. reynaudii and its prey, 
nor can it account for local currents. Therefore, transport of newly 
hatched larvae to nursing grounds, as proposed by the “Western 
Transport Hypothesis” (Martins et al., 2014; Roberts, 2005), cannot 
contribute to our explanation for 55% of CPUE variability. Moreover, 
the size spectrum model does not consider transport of L. reynaudii over 
the boundaries of the Agulhas Bank domain. Thus, loss of paralarvae due 
to off-shelf advection (Downey-Breedt et al., 2016; Roberts et al., 2012; 
Roberts and van den Berg, 2002; Jacobs et al. under rev) cannot feature 
as part of the explanation. 

To better understand the interannual skill of our predictor, it is worth 
revisiting the representation of temporal variability in the model and, in 
particular, its sources of interannual variability. The size spectrum 
model uses a relatively simple set of rules to extend the plankton spec-
trum to higher trophic levels. All calendar-date specific forcing is taken 
from NEMO-MEDUSA. While this, in turn, is a highly detailed model in 
many respects, notably spatially, its calendar-date-specific inputs are 
limited to meteorological conditions taken from reanalysis (Brodeau 
et al., 2010; Dussin et al., 2016). This implies that any realistic patterns 
in modelled interannual variability must ultimately originate from 
meteorology. What is more, only some of the processes described by 
NEMO-MEDUSA depend in pronounced, predictable ways on meteoro-
logical conditions. For instance, the timing of wind-driven upwelling 
and its impact on primary production can be captured correctly, 
whereas mesoscale variability, e.g., meanders in the Agulhas current, 
cannot be accurately captured due to its intrinsically chaotic nature 
(Jacobs et al., 2020, 2022; Robinson et al., 2016; Srokosz et al., 2015). 
We hypothesise that weather-driven interannual variability in upwelling 
over the Agulhas Bank (Jebri et al., 2022) leads to predictable changes in 
the size structure of the plankton community (total biomass and/or the 
ratio of small to large plankton types). These changes then lead to a 
response in the size spectrum of higher trophic levels, notably the 1 
mg–1 g wet mass range that the size spectrum model reliably re-
produces. At that point, it may come down to the smallest predators, e. 

g., paralarvae, trying to catch a wave in the plankton spectrum that is 
just not present every single year (Pope et al., 1994). 

It is worth emphasising that the above discussion on potential 
mechanisms is specifically about the best predictor we have identified 
(biomass in individuals of 0.37 g on day 85). This predictor explains 
55% of the variability. While this is promising, it also leaves 45% of 
variability unexplained. Thus, other mechanisms that have previously 
been proposed to explain interannual variability in L. reynaudii catch, e. 
g., the influence of temperature and turbidity on spawning (Roberts and 
Sauer, 1994) and of currents on early life stages (Roberts, 2005), may 
still have a role to play. As several of these variables are primarily 
wind-driven, they can potentially be faithfully described by models such 
as NEMO-MEDUSA. It is therefore conceivable to ultimately combine 
our size-spectrum-based predictor with these variables in a multivariate 
predictor with greater skill. 

4.3. Life history of L. reynaudii 

While the bioenergetic model makes wide-ranging predictions about 
the growth, reproduction, and survival of L. reynaudii (Fig. A.3), our 
interpretation of the CPUE correlation depends exclusively on the pre-
dicted growth curve and the duration of the paralarval phase (Fig. 8). 
These model features are robust; they are constrained by experimental 
observations of egg development (Oosthuizen et al., 2002) and paral-
arval growth (Vidal et al., 2005). Perhaps the most central prediction is 
that the duration of the paralarval phase (i.e., the initial exponential 
growth phase) is 76 d at 17.3 ◦C (Fig. 8b; Table 1). This metric indicates 
the time spent as planktonic larva in the pelagic and has important 
implications, for example, Lagrangian modelling studies (Down-
ey-Breedt et al., 2016; Martins et al., 2014; Jacobs et al. under rev). Our 
predicted value agrees closely with the two to three months reported for 
L. vulgaris (González et al., 2010; Mangold-Wirz, 1963). It also differs 
markedly from the value of 40 d adopted by earlier modelling studies 
(Downey-Breedt et al., 2016; Martins et al., 2014). However, their value 
was based on experiments with Doryteuthis opalescens. While this species 
does have a paralarval phase lasting 35–45 d (Vidal et al., 2018), its 
lifespan is markedly shorter than that of L. reynaudii (6–9 months vs. 
15–18 months) (Butler et al., 1999). The duration of its paralarval stage 

Fig. 7. Correlation plot for the best predictor of L. reynaudii catch (maximum 
correlation in Fig 6), showing catch per unit effort for individual years (each 
value repesentative for April till March the following year) as a function of 
modelled biomass in the best predicting size class (0.37 g). The line shows the 
running mean with a window size of 0.15 g; the shaded area shows the cor-
responding running standard deviation. 
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is therefore likely less than that of L. reynaudii. 
The bioenergetic model presented here could potentially describe the 

entire life history of L. reynaudii in the field, from fertilization to 
maturity, reproduction and death. The model already describes these 
features (Fig. A.3), although it would benefit from additional observa-
tions on reproduction rate and longevity to further constrain repro-
ductive output and survival. Several further advances would be required 
to describe the complete life cycle of squid in the field, however. First, it 
would require explicit representation of the temporal variation in food 
availability and predation pressure within the bioenergetic model. This 
could be achieved by dynamically coupling it to the size spectrum 
model, though we note such coupling is non-trivial to implement and, in 
all likelihood, considerably more computationally costly to run. Thus, 

detailed exploration of model uncertainty, achieved here with an 
ensemble of 500,000 parameterisations, may no longer be possible. 
Moreover, use of such a coupled model beyond the paralarval stage 
would require a more detailed representation of the vertical structure of 
the community represented by the size spectrum, and of the vertical 
positioning of L. reynaudii after it starts diel vertical migration and 
demersal feeding. Such developments are feasible (Petrik et al., 2019; 
van Denderen et al., 2021) but they would unavoidably produce models 
that are more complex and dependent on numerous additional as-
sumptions. Still, the use of coupled models also has advantages as it 
would allow for explicit representation of the differences between squid 
and the fish that make up most of the background community, for 
instance, in growth rate (squid grow faster than fish) and prey selectivity 
(squid take a wider range of prey sizes). 

4.4. Predicting catch of cephalopods 

There is a long history of modelling relationships between environ-
ment and squid catch for the purpose of prediction or forecasting 
(Moustahfid et al., 2021; Rodhouse et al., 2014). In most of this work, 
however, the emphasis lies on empirical statistical relationships be-
tween stock size (or CPUE) and environmental variables, e.g., temper-
ature (Roberts, 2005; Waluda et al., 2001) or chlorophyll (Jebri et al., 
2022). The use of process-based models is less common and often takes 
the form of highly complex end-to-end ecosystem models such as Eco-
path with Ecosim (Gasalla et al., 2010) or Atlantis (Jackson et al., 2007); 
a comprehensive overview is given by de la Chesnais et al. (2019). In 
contrast to these approaches, our core model is a parameter-sparse, 
non-spatial, size-based ecosystem model (Blanchard et al., 2009; 
Cheung et al., 2018), revolving around trophic interactions and their 
impact on food availability and predation pressure. This makes it 
different from most other approaches (Rodhouse et al., 2014). 

There is at least a seven-month delay between our predictor with 
highest correlation (biomass in individuals of 0.37 g between 7 Feb and 
8/9 May) and the peak in catches (Dec). It therefore has the potential to 
serve as an early warning indicator of bad catch periods. For instance, a 
simple threshold could be used to classify model predictions into good 
catch and bad catch years (e.g., by separating at x = 0.6 in Fig. 7). Such 
an early warning system would not need to be model-based. For 
example, our results indicate that valuable information may be gleaned 
from paralarval abundance, and more specifically, their size distribu-
tion. This could be determined through repeated field surveys, e.g., in 
Feb, Mar, Apr, as our predictor performs best when based on 90 day 

Fig. 8. Growth of the squid L. reynaudii in its first 18 
months, predicted by a Dynamic Energy Budget 
model. Results are based on simulations with an 
ensemble of 500,000 parameter sets drawn from the 
posterior distribution. Solid lines show the median 
result; shaded areas show the 2.5–97.5% (light) and 
25–75% (dark) confidence intervals. Food availability 
is represented by a value for the functional response 
of 0.6 (Hartvig et al., 2011); the ambient temperature 
is set to 17.3◦C. Inset panels show histograms of the 
estimated (b) duration of the of the paralarval stage 
and (c) wet mass at the end of the paralarval stage. 
For exact values, see Table 1.   

Fig. 9. Proposed timeline for L. reynaudii life history. This timeline combines 
results of the size spectrum and bioenergetic models to explain the emergence 
of a maximum correlation between predicted abundance of individuals of 0.37 
g at day 85 of the year and catch per unit effort over the subsequent period 
(primarily Dec-Jan). All numbers are subject to uncertainty; confidence in-
tervals are given in the main text and Table 1. 
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means of biomass. 
Alternatively, the size spectrum model presented here could be run 

operationally to deliver near-real time projections for the state of the 
Agulhas Bank ecosystem. The main challenge for such an approach is to 
source the data to drive this model: depth-resolved temperature and 
biomasses of different size classes of plankton over the Agulhas Bank. 
These variables could come from a coupled hydrodynamic- 
biogeochemical model such as NEMO-MEDUSA, but no model with 
sufficiently high spatial resolution and sufficient detail in its represen-
tation of the plankton community is currently run operationally for the 
Agulhas region. Instead, we can attempt to quantify the variables 
driving the size spectrum model through remote sensing (Appendix B), 
but this presents multiple challenges due to the need for depth-resolved 
information about the structure of the plankton community. These 
challenges may be overcome in the future thanks to the development of 
new satellite products and sensors such as hyperspectral ocean-colour 
sensors that provide further insight into plankton community structure 
(Cael et al., 2020) and Lidar-based observation of zooplankton (Beh-
renfeld et al., 2019). Overall, the greatest promise is held by further 
integration of in-situ observations, remote sensing observations and 
operational models (Brewin et al., 2021), for instance, the use of oper-
ational hydrodynamic-biogeochemical models with Plankton Functional 
Type based data assimilation (Skákala et al., 2018). 

5. Conclusions 

We find a correlation of 0.74 between annual Loligo reynaudii catch 
per unit effort (CPUE) and modelled abundance of pelagic organisms of 
0.37 g at the end of March over a 21-year period (1995–2015). 
L. reynaudii individuals of this size are estimated to be near the end of 
their paralarval stage and to have hatched from eggs deposited 103 days 
earlier. This suggests that the fate of paralarvae produced from Dec 
spawning can explain 55% of the interannual variability in next year’s 
CPUE. As CPUE is weighted towards the time of peak catch – Dec–Jan – 
the pattern we found suggests that: (1) the life cycle L. reynaudii is 
predominantly annual, with 12 months between fertilization and peak 
reproduction, and (2) the bottleneck for the population is the paralarval 
stage (mid Jan-end Mar), with food availability and predation pressure 
during this period being the principal factor that determines spawning 
stock biomass and CPUE the following spring/summer. Our results 
imply that over half the variability in CPUE can be predicted from the 
model’s main drivers: the size structure and depth distribution of the 
phytoplankton and zooplankton community. As these properties are not 
easily observed over large areas, catch predictions would benefit from 
the development of operational hydrodynamic-biogeochemical models 
covering the Agulhas Bank. 
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Lipiński, M., van der Vyver, J., Shaw, P., Sauer, W., 2016. Life cycle of chokka-squid 
Loligo reynaudii in South African waters. Afr. J. Mar. Sci. 38, 589–593. https://doi. 
org/10.2989/1814232X.2016.1230074. 
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