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• Synergism and antagonism complexify
the risk assessment of chemical mixtures.

• We used the GUTS framework (TKTD
models) to detect and simulate these inter-
actions.

• We tested our approach on nine different
mixtures in four different species.

• The results showed an accurate simulation
of synergistic and antagonistic effects.

• The approach provided new insights and
valuable information for the risk assess-
ment.
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The assessment of chemicalmixture toxicity is one of themajor challenges in ecotoxicology. Chemicals can interact, lead-
ing to more or less effects than expected, commonly named synergism and antagonism respectively. The classic ad hoc
approach for the assessment of mixture effects is based on dose-response curves at a single time point, and is limited to
identifying amixture interaction but cannot provide predictions for untested exposure durations, nor for scenarioswhere
exposure varies in time. We here propose a new approach using toxicokinetic-toxicodynamic modelling: The General
Unified Thresholdmodel of Survival (GUTS) framework, recently extended formixture toxicity assessment.We designed
a dedicatedmechanistic interaction module coupled with the GUTSmixture model to i) identify interactions, ii) test hy-
potheses to identify which chemical is likely responsible for the interaction, andfinally iii) simulate and predict the effect
of synergistic and antagonisticmixtures.We tested themodelling approach experimentallywith two species (Enchytraeus
crypticus and Mamestra brassicae) exposed to different potentially synergistic mixtures (composed of: prochloraz,
imidacloprid, cypermethrin, azoxystrobin, chlorothalonil, and chlorpyrifos). Furthermore, we also tested the model
with previously published experimental data on two other species (Bombus terrestris and Daphnia magna) exposed to
pesticide mixtures (clothianidin, propiconazole, dimethoate, imidacloprid and thiacloprid) found to be synergistic or
antagonistic with the classic approach. The results showed an accurate simulation of synergistic and antagonistic effects
for the different tested species andmixtures. This modelling approach can identify interactions accounting for the entire
time of exposure, and not only at one time point as in the classic approach, and provides predictions of themixture effect
for untested mixture exposure scenarios, including those with time-variable mixture composition.
cology), Paris, France.
⁎ Corresponding author at: MO-ECO2 (Modelling and data analyses for ecology and ecotoxi

.

une 2022; Accepted 25 June 2022

er B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2022.157048&domain=pdf
http://dx.doi.org/10.1016/j.scitotenv.2022.157048
mailto:sylvainbart.moeco2@gmail.com
http://dx.doi.org/10.1016/j.scitotenv.2022.157048
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv


S. Bart et al. Science of the Total Environment 843 (2022) 157048
1. Introduction

Ecosystems are subject tomany chemical inputs from agricultural, indus-
trial and domestic sources, resulting in a wide range of mixture exposure
scenarios for non-target organisms (Ballabio et al., 2018; Boxall, 2010).
Chemical mixtures appear as the dominant scenario in ecosystems, and
understanding the consequence of this is one of the major challenges in eco-
toxicology (Escher et al., 2020). Over the past decades, the joint effects of
chemicals have been studied with dose-response models. Typically, two
basic models are used: the concentration addition (CA) model for chemicals
with the same mode of action, and the independent action (IA) model for
chemicals with different mode of action (Cassee et al., 1998; Eggen et al.,
2004; Van Gestel et al., 2010). These two reference models have shown
their ability to predict simple and complex mixture effects (Altenburger
et al., 2000; Faust et al., 2001). However, deviations from predicted effects
by those models were highlighted for many chemical mixtures (Cedergreen,
2014), and in different species (Gottardi and Cedergreen, 2019;Meled et al.,
1998). This over- or under-estimation of the observed effects, commonly
named antagonism and synergism respectively, may be due to one chemical
affecting the effects of another or indeed through a more complex mecha-
nism. These interactions add complexity to the risk assessment of mixture
hazards, but it needs to be pointed out that they are identified as deviations
from a nullmodel: additivity. The assumptions underlying additivity can dif-
fer and so can the resulting additivity model (Schäfer and Piggott, 2018).
The CA and IAmodel, with the addition of a new parameter and a statistical
test, are commonly used to screen mixture effects and identify synergistic or
antagonistic interactions of chemical mixtures when observations deviate
from expected additivity (Spurgeon et al., 2010; Cedergreen, 2014). How-
ever, this framework presents two main weaknesses: first, these models
are derived from single time point dose-response curves, and so ignore the
time dimension while toxicity is a process in time (Baas et al., 2010).
Second, when joint effects deviate from either CA and IA (or both), it is
concluded interaction occurs (Cedergreen, 2014), but within the analyses,
neither model can provide an explanation for the causation of any interac-
tion, nor predict such joint effects for different scenarios (e.g., time variable
concentration) than those used to calibrate the model.

A promising alternative to the classic ad hoc approach is the use of
toxicokinetic-toxicodynamic (TKTD) models which simulate the time-
course of processes leading to toxicity (Ashauer and Escher, 2010; Jager
et al., 2011). In contrast to dose-responsemodels, TKTDmodels havemean-
ingful biological parameters and can deal with concentrations that vary
over time (Ashauer and Escher, 2010; Péry et al., 2001), or when chemicals
are applied sequentially in differing order. The latter is important because
different exposure sequences of the same chemicals can lead to differences
in effects (Ashauer et al., 2017). Among TKTD models, the General Unified
Threshold model for Survival (GUTS) framework has been recently
extended to mixture toxicity based on the concept of damage dynamics
which links the internal concentration to the effects (Bart et al., 2021). In
the same way as the classic mixture models, the GUTS mixture models
may find deviations from the predicted mixture toxicity and interpret
these as synergistic or antagonistic effects (Bart et al., 2021). However,
when such interactions are observed, GUTS models (and in general all
TKTD models) have the potential to provide explanations of the synergism
or antagonism, and predictions thereafter. The interaction between
chemicals leading to synergistic or antagonistic effects may involve
toxicokinetic and/or toxicodynamic processes (Spurgeon et al., 2010),
and when the mechanisms of these interactions are understood, they can
be incorporated into GUTS models. Such next generation mixture effect
models might accurately predict mixture effects with interactions. In this
way, interactions will be recognised as artefacts of underdeveloped null
models (Schäfer and Piggott, 2018). In a recent cutting-edge study,
Cedergreen et al. (2017) used a GUTS model to simulate the synergistic
effect between azole fungicides and cypermethrin on Daphnia magna.
These authors extended GUTS by incorporating the ability of the azole fun-
gicides to decrease the biotransformation rate of cypermethrin, leading to
an increase of the internal concentration of cypermethrin and therefore a
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synergistic effect of those two pesticides. The authors used a full GUTS
model including body residues to demonstrate how TKTD models can ac-
count for interactions. Unfortunately, body residues data are scarce and
the use of GUTS reduced (RED) models, which link external concentration
to the effect, is more reasonable as a first approach for screening of many
mixtures for potential interactions and their predictions thereafter. Baas
et al. (2007) used a GUTS-REDmodel with an interaction factor, a statistical
interaction term that allows comparison of the model with and without an
interaction term using a likelihood-ratio test (models are nested). The dis-
advantage of this approachwas that the interaction factor was a descriptive
term without biological meaning (so cannot be used as a metric for risk
assessment nor used for interpretation of toxicological processes) and was
applied on the hazard rate as calculated in the stochastic death (SD)
approach, and so excluded the potential use of the individual tolerance
(IT) approach of the GUTS framework. A trade-off between a full GUTS
model and a GUTS-RED model with an additional ad hoc parameter is
necessary to improve the risk assessment of mixture hazards and improve
our understanding of synergistic and antagonistic interactions. Up to now
a GUTS model for mixture interactions was missing. As a result, the
process-based identification and interpretation of mixture interactions
was not possible, and we did not have a method to predict effects of in-
teraction mixtures for time-variable exposures with changing mixture
compositions. However, this is necessary for realistic environmental risk
assessments as such exposure scenarios are the reality.

We here aimed at extending the approach proposed by Baas et al., 2007
through the use of a more mechanistic module that is i) able to account for
synergism and antagonism, and ii) working for both, the SD and the IT
approach. In a previous paper (Bart et al., 2021), we fully described the
extension of GUTS models to assess mixture effects with dedicated experi-
ments and data extracted from the literature. We here used this framework
to implement an interaction module allowing simulation and prediction of
binary synergistic or antagonistic mixture effects. We tested the interaction
module with dedicated experiments with two different species, and on data
extracted from literature with two other species exposed to mixtures
reported to be synergistic or antagonistic.

2. Material and methods

2.1. Species, chemicals and experimental design

Enchytraeus crypticus (Enchytraeidae, Oligochaeta, Annelida) were orig-
inally sourced from the laboratory of the Department of Ecological Science,
Vrije Universiteit, Amsterdam, The Netherlands, and were maintained in
culture at the UK Centre for Ecology and Hydrology, Wallingford (UK).
The cultures were kept on 1.5 % agar, made up with artificial fresh water
with the following concentrations: CaSO4 0.12 g/L, MgSO4 0.246 g/l,
NaHCO3 0.192 g/L and KCl 0.008 g/L. These were maintained in a climate
room at a constant temperature (20± 1 °C) in darkness. Diet was prepared
using oatmeal (150 g), dried baker's yeast (50 g), baby formula milk pow-
der (50 g), and fish oil (50 ml), which was heated with 400 ml milk until
boiling. Cultures were fed ad libitum. For all experiments, adult individuals
were exposed for 96 h at 15 °C in darkness, in 1 ml of artificial fresh water
(Roembke and Knacker, 1989) in 24 well plates, with one individual per
well, so 24 individuals monitored per treatment. Survival was monitored
at 3, 6, 24, 48, 72 and 96 h. Individuals were classified as dead if they did
not respond to repeated touching with a pin.

Mamestra brassicae larvae were from a culture maintained at the UK
Centre for Ecology and Hydrology. The cultures were kept as larvae in
rearing boxes containing artificial diet (see recipe in the supplementary
material); and as adults in flight cages on a 10 % honey water solution.
Both the adult and larvae culture were maintained in a controlled climate
room at a constant temperature of 20 ± 1 °C and a 16:8 light:dark pattern.
For all experiments, 4th instar larvae were exposed to 1 ml of pesticide
stock solution spiked at the concentration required to give the appropriate
exposure level within the artificial diet (see supplementary material) and
kept at 20 ± 1 °C in darkness for 96 h. Experiments used 12 well plates,
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with one individual larvae perwell. Survival was recorded at 24, 48, 72 and
96 h. Larvae were classified as dead if they did not respond after 5 s of stim-
ulation on the second segment behind the head with a fine paintbrush.

We selected two binary mixtures for E. crypticus: imidacloprid (IMI,
CAS: 138261-41-3, purity ≥98.0 %) and prochloraz (PCZ, CAS:
67747-09-5, purity ≥98.0 %), and azoxystrobin (AZX, CAS: 131860-
33-8, purity ≥98.0 %) and PCZ. We chose these two mixtures because
they may show synergistic effect due to PCZ inhibition of cytochrome
P450 monooxygenases, that leads to reduced detoxification of co-
occurring substances via biotransformation decrease (Fu et al., 2018;
Rosch et al., 2017). ForM. brassicae, we tested the mixture cypermethrin
(CYP, CAS: 52315-07-8, purity≥98.0 %) + PCZ for the same reason. In
addition, we selected for this species the mixture CYP + chlorothalonil
(CHL, CAS: 1897-45-6, purity >99 %), which is suspected to be a syner-
gistic combination, and CYP + AZX and CYP+ chlorpyrifos (CLP, CAS:
2921-88-2, purity >99 %) to test the modelling approach on mixtures
that have not yet been tested.

For all tested binary mixtures, we first exposed the individuals to chem-
ical A separately (single), chemical B separately (single), and then amixture
of chemical A and B. The single exposures were designed to cover the toxic
effect, from no effect to 100 % mortality (based on a pilot study), to cali-
brate the GUTS mixture models. The mixture exposures were design to
cover the potential interactions between the two chemicals, and estimate
the parameters zI and bI as robustly as possible, and their uncertainties
(if interactions occur). For that purpose, we selected different ratios of the
two chemicals (based on a pilot study). In addition, we selected only
concentrations that were in the single exposures to reduce variability in
the experimental set-up and in the model calibration. A summary of the
concentrations applied is presented in Table S1.

In addition to the bespoke experimental studies, we also extracted pre-
viously published data from the literature to assess if the new interaction
module is able to account for interactions occurring within further species
and substances. We used data from Robinson et al. (2017) who exposed
Bombus terrestris to single and mixture treatments of clothianidin (CLO)
and propiconazole (PRP), and CLO and dimethoate (DIM), and reported
synergism and antagonism interactions for those mixtures, respectively.
We also used data from Loureiro et al. (2010) who exposed Daphnia
magna to single and mixture treatments of imidacloprid (IMI) and
thiacloprid (THI) and reported a synergistic effect. Finally, we tested our
modelling approach with data from Cedergreen et al. (2017) whomodelled
the synergistic effects between CYP and propiconazole (PRP) on Daphnia
magnawith a GUTSmodel including body residues.We only used the exter-
nal concentrations and survival data over time from the latter study.

2.2. Toxicokinetic-toxicodynamic modelling

2.2.1. The GUTS framework and the extension for mixture effects
The GUTS models simulate the time-course of processes leading to

the death of an organism (Jager et al., 2011; Jager and Ashauer, 2018).
They account for the accumulation of, and recovery from, damage (the
toxicodynamics, TD), which results due to the bioaccumulation, distribu-
tion, biotransformation and elimination of the chemicals in the organisms
(the toxicokinetics, TK). In the absence of body residues data, the TK and
TD are combined. The models using this approach are commonly named
the GUTS reduced (RED) models. In GUTS-RED models, the dominant
rate constant ‘kd’ describes the dynamics of the ‘scaled’ damage and
will represent the one-compartment approximation of the “true” two-
compartment behaviour (TK and damage dynamics). To describe the
death mechanism related to the damage, two causations of the process
affecting survival are formalised: the stochastic death (SD) and individual
tolerance (IT) approach. The SD approach assumes that individuals are
identical and have a probability to die upon chemical stress, which
increases with increasing damage once some threshold damage has been
exceeded. The IT approach assumes that individuals have differences in
their sensitivity to chemical stress, and when the damage exceeds an indi-
vidual's threshold it dies instantly.
3

The GUTS framework was extended for mixture effects, and is fully pre-
sented in Bart et al. (2021). Two models were developed: the GUTS-RED
damage addition (DA) to account for the mixture effects of chemicals
with the same mode of action, and the GUTS-RED independent action
(IA) to account for chemicals with different mode of action. To summarize,
in both models, each chemical keeps its one dominant rate constant. Then,
the DAmodel considers chemicals leading to the same form of damage and
therefore it is based on the addition of their scaled damage with a weight
factor accounting for the difference in toxic potency. Therefore, the
chemicals share the related mortality parameter. In the IA model, each
chemical keeps its own GUTS parameters and the overall survival probabil-
ity is obtained by multiplying the survival probability due to each chemical
in the mixture. The DA model can be considered only when chemicals can
share their relatedmortality parameter. This allows the simultaneous fits of
the single chemical exposures to predict the mixture effect thereafter. Both
mixture models can be used with the SD, and IT approach. The equations of
the GUTS mixture model are presented in the supplementary material.

2.2.2. The interaction module, hypothesis and formulation
In situations where interaction occurs between chemicals, the GUTS

mixture model will over- or under-estimate the survival probability over
time. Therefore, the model needs an extension to be able to account for in-
teractions and provide amore accurate prediction of the survival over time.
An extension of the model to account for interaction between chemicals
must i) be able to change the final effect on survival (increase or decrease),
and ii) reflect the chemical/biological/biochemical processes of the inter-
action. From a modelling perspective, there are two possibilities to change
the output value of the GUTS-RED mixture model (i.e., the survival proba-
bility): a change in parameter values, which leads to a change in model
variables, or a direct change in variables.

Change in parameter values (model parameters remain constant through a
simulation). There are five parameters in the GUTS-RED models: the back-
ground hazard rate hb that we did not consider changing because it is not
related to a toxicological process, the dominant rate constant kd, themedian
of the threshold distributionmw, the killing rate bw for the SD approach and
the spread factor of the threshold distribution Fs for the IT approach.

The dominant rate constant (kd) governs the time needed for the dam-
age density to reach steady state with the external concentration. A change
in the kd value would assume that the interaction leads to a change in the
toxicokinetics and/or toxicodynamics. An increase in kd would reflect a
synergistic interaction, which will lead to steady state between the external
concentration and the scaled damage being reached more rapidly. How-
ever, increasing this parameter would not be able to increase the damages
beyond this steady state. In other words, the effects could appear faster in
the simulation, but could not scale beyond the default model without inter-
action. Therefore, we discarded a change in kd.

The median of the threshold accounting for the effect (mw) is part of the
death mechanism and has the units of an external concentration in the
GUTS-RED model. A lower threshold would lead to stronger effects, but
the concept of a threshold for effect is rather vague mechanistically and it
is hard to link this parameter to any biochemical process or measurement
to support this hypothesis. In addition, mw is different between the SD
and IT approach, so the change would be different between the two
approaches. Therefore, we also discarded a change in mw as a solution.

The Fs and bw parameters are part of the death mechanism of the IT and
SD approach respectively, which would mean that any changes in these
parameters will be specific to the chosen approach. In addition, a change
in Fs would mean that some individuals will become more sensitive, but
others more resistant at the same time. This possibility is not logical in
terms of observed synergistic and antagonistic effect. Therefore, we also
discard a change in Fs or bw.

Change in variables (variable values change through the course of a model
simulation). There are two variables in the GUTS-RED model: the scaled
damage Dw(t), and the Survival probability S(t). Any change in S would
be mechanistically meaningless because we would deal only with the
final effect, while the survival probability is intended to be the result of
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toxicological mechanisms, as described in the GUTS framework. Therefore,
we assumeDw as the best candidate to account for interactions in GUTS-RED
models. The interactions between chemicals can be driven by effects on
seven processes (or groups of processes) that can drive toxicity of a chemi-
cal: the bioavailability, uptake, internal transportation, metabolization,
excretion, binding at the target site and the Adverse Outcome Pathway
(AOP) at the individual level (i.e., excluding the population scale and higher
tier processes) (Groh et al., 2015; Spurgeon et al., 2020) (Fig. 1).We assume
that any change in those processes, will lead to a change in the scaled dam-
age (Fig. 1), and therefore to the simulated effect as described by the death
mechanism in the GUTS-RED model (SD or IT). Therefore, we choose to
change the scaled damage Dw variable as the proxy for the interaction.

2.2.3. How to characterize the modification of the scaled damage dynamics due
to the interaction?

The GUTS reduced model combines the toxicokinetics and the damage
dynamics (i.e., the toxicodynamics), with an unknown partition coefficient
KDw between the external concentration and the damage level. Any change
in toxicokinetics and/or toxicodynamics due to the changes in processes
driving the toxicity should lead to a change in KDw accordingly. For an an-
tagonistic interaction, KDw will decrease leading to a decrease in the scaled
damage, and for a synergistic interaction,KDwwill increase leading to an in-
crease in the scaled damage. In a GUTS-RED model, KDw is unknown (and
effectively scaled out), therefore, a factor must be applied directly to the
scaled damage. We propose the introduction of an interaction factor ‘I'
which will increase or decrease the scaled damage, reflecting this change
in KDw. Considering a mixture of two chemicals A and B, and that the
toxicokinetic and/or the toxicodynamic of the chemical A is affected by
the chemical B, it leads to the following equation:

dDwA

dt
¼ kdA CwA tð Þ � DwA tð Þ IBð Þð Þ (1)

where A and B refer to two chemicals, Dw(t) is the scaled damage [with an
external concentration unit, e.g., mg L−1 or μM], Cw(t) is the external con-
centration [e.g. mg L−1 or μM], kd is the dominant constant rate [d−1] and I
is the interaction factor [unitless]. We assume that IB will depend on the
characteristic of the chemical B which creates the interaction. It has been
suggested that interaction is concentration dependent and in most situa-
tions a threshold above which the interaction occurs (Cedergreen, 2014).
Therefore, we assumed that the compound creating the interaction (B) is
characterized by i) a concentration threshold from which the interaction
starts (i.e., a certain quantity of chemicals is required to start creating an in-
teraction), and ii) an interaction strength which is multiplied with the
external
concentra�on

over �me
Toxicokine�c

Scaled damage in r
external

concentra�on
over �me

Bioavailability
Uptake

Internal transporta�on
Metaboliza�on

Excre�on
Processes that may be 
affected by interac�on 
between chemicals

Fig. 1. High-level conceptualisation of the processes involved in toxicity that can be a
Unified Threshold Model of Survival). A change in any of these processes will lead to a
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concentration above the threshold. We have translated this into Eq. (2)
with two new parameters that describe IB as follows:

IB tð Þ ¼ max 0, 1þ bI_B max 0,CwB tð Þ � zI_Bð Þð Þ (2)

where bI_B is the strength of the interaction created by the compound B [1/
external concentration, e.g., 1/mg L−1], CwB(t) is the external concentra-
tion of the interacting compound (B), and zI_B is the threshold from which
the interaction starts [with an external concentration unit, e.g., mg/L−1].
In a situation where CwB(t) < zI_B, IB (t) = 1, and will not change the scaled
damage of chemical A. In the case of an interaction where CwB(t) > zI_B; if
bI_B > 0 ➔ IB (t) > 1 ➔ IB (t) will increase the scaled damage, reflecting
the situation currently named synergism. And, if bI_B < 0 ➔ 0 < IB (t) < 1
➔ IB (t) will decrease the scaled damage reflecting the situation currently
named antagonism. The value of the bI_B parameter will reflect the strength
of the interaction (for synergism, with bI_B positive, or antagonism, with bI_B
negative). The Fig. 2 presents how this parameter will change the scaled
damage and how it can bring it beyond the non-interaction scaled damage
steady state for a synergistic mixture.

The interaction in a binary mixture can come from chemical A acting on
chemical B, or B on A, or a double interaction. For each tested binary mix-
ture and species, we tested these three situations. In the situation of a dou-
ble interaction, the bI_A and bI_B parameters must be constrained to be both
positive or both negative to avoid a situation where the two could cancel
each other out.

2.3. Workflow and assessment of the interactions

The first step was to predict the mixture effect based on the calibration
on single exposures with the sameworkflow presented in Bart et al. (2021).
Wefirst assessed if the GUTS-RED DAmodel is suitable by testing if the two
chemicals can share the mortality related parameters and assessing the si-
multaneous fits. Then, we simulated predictions of the mixture effects
with all models (GUTS-RED-SD IA, GUTS-RED-IT IA, and, if applicable,
GUTS-RED-SD DA and GUTS-RED-IT DA).

The second step was the fit of the interaction module with the three dif-
ferent configurations (Amodifies B, Bmodifies A, or double interaction) on
the mixture data with all models. In this step, we kept fixed those GUTS
parameters that were previously fitted on the single exposures (used to
provide the predictions of the mixture effects without interaction). This
procedure ensures that the model does not compensate for a poor represen-
tation of the mixture treatment data by changing the modelled effects of
chemicals in single exposures.
Binding at the target site
AOP at individual level

Toxicodynamic survival
over �me

educed GUTS model 
survival

over �me

ffected by an interacting chemical translated into a reduced GUTS model (General
change in the scaled damage.



Fig. 2. Illustration of the change in scaled damage, and survival probability thereafter, due to the interaction between chemical A and B.We simulated a theoretical exposure
of a hypothetical species to chemical A at 15mg/L and B at 10mg/L, and in which only the chemical A had an effect in single exposure, and the chemical B was the chemical
creating the interaction. The left side is for the stochastic death approach (SD)with kdA=1.5 (d−1),mwA=5 (e.g.,mg L−1) and bwA=0.1 (e.g., 1/mg L−1), and the right side
with the individual tolerance approach (IT) with kdA=1 (d−1),mwA =7.5 (e.g., mg L−1, FsA=2 (−). For both approaches hb =0 (d−1). The threshold for interaction zI_B
was fixed at 0 (e.g., mg L−1) and bI_B (e.g., 1/mg L−1) was fixed at 0 (no interaction, black line), or 0.05 (cyan line) and 0.2 (red line) for synergism, and− 0.05 (green line)
and −0.2 (blue line) for antagonism.
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The final step was to assess whether the interaction module improves
the simulation of the mixture data, and so if an interaction occurs. The
model without the interaction is a simplification of the model with the in-
teraction module, they are thus nested. This allows us to statistically test
if the interaction module significantly improves the fit of the mixture data
using a likelihood-ratio test. In other words, the test answers the question
“Does the addition of the interaction module provide a better simulation
of the data than the model without interaction?”. If the interaction module
does provide a significantly better fit of the mixture data, it is concluded
that an interaction occurs, and if the bI parameter is positive, it is concluded
synergism occurs (or potentiation if one of the chemicals does not have
effects in single exposure); if the bI parameter is negative, it is concluded an-
tagonism occurs. In the same line, the model with simple interactions (A on
B, or B on A) is a simplification of the model with double interaction and
can also be compared, answering the question ‘Does the double interaction
provide a better simulation of the data than the simple interaction?’

All together these steps allow to statistically test if i) an interaction
occurs in the considered mixture and ii) which chemical is most likely
to cause the interaction (based on the result of the likelihood-ratio
test), and finally the positive or negative value of the bI parameter
5

indicates whether the data is best modelled with a synergistic or antag-
onistic interaction.

2.4. Model calibration and statistics

The Wilson score interval (Brown et al., 2001) was used to express the
uncertainty in the survival data and allows plotting confidence intervals
on each data point. All calculations were performed in Matlab 2020 using
the BYOMmodelling platform (www.debtox.info/byom.html). The optimi-
sation of the parameter values was performed with the parameter space
explorer (Jager, 2020). This algorithm is optimised for GUTS analyses,
and combines grid search, a genetic algorithm, and likelihood profiling to
calculate the confidence intervals of the parameter values. To produce
confidence intervals on the model curve, a sample from the parameter
space explorer was used. This ensures parameter covariance is taken into
account when propagating parametric uncertainty to predictions with
confidence intervals. For all calibrations, the background mortality (hb)
was fitted to the survival in the control treatment and kept fixed while
fitting the toxicity parameters. For all simulations, we provided the minus
log-likelihood (MLL) and r2 values to assess the goodness of fit.

http://www.debtox.info/byom.html


Table 1
Summary of the nature of interactions identified, with toxicokinetic-toxicodynamic
modelling, in the joint effects of binary combinations of chemicals in four species.
The full table with all model configurations, and log-likelihood ratio test results, is
presented in the supplementary material (Table S15).

Species and chemicals Interaction type Interaction agent

Enchytraeus crypticus
Imidacloprid + prochloraz Additive, or synergism Prochloraz
Azoxystrobin + prochloraz Synergism Prochloraz

Mamestra brassicae
Cypermethrin + chlorpyrifos Antagonism Cypermethrin or

chlorpyrifos
Cypermethrin + prochloraz Additive or synergism Prochloraz
Cypermethrin + azoxystrobin Additive
Cypermethrin + chlorothalonil Synergism Chlorothalonil

Bombus terrestris
Clothianidin + propiconazole Synergism Propiconazole
Clothianidin + dimethoate Antagonism Clothianidin

Daphnia magna
Imidacloprid + thiacloprid Synergism Imidacloprid or

thiacloprid
Cypermethrin + propiconazole Synergism Propiconazole

S. Bart et al. Science of the Total Environment 843 (2022) 157048
3. Results and discussion

3.1. Ability of the interaction module to detect and simulate synergistic and
antagonist mixtures

Our mechanistic modelling approach was able to detect interactions
that were previously identified with the classic approach (i.e., based on
dose-response model). For instance, Loureiro et al. (2010), concluded
on a synergistic interaction for D. magna exposed to imidacloprid and
thiacloprid inmixture. The interactionmodule coupledwith the GUTSmix-
ture model significantly improved the fits, allowing to conclude that there
was a synergistic interaction in this case (Table 1, S15). Similarly, our
modelling approach identified an antagonistic interaction for B. terrestris
exposed to clothianidin and dimethoate in mixture (Table 1, S15), and a
synergistic interaction for the same species exposed to clothianidin and
propiconazole in mixture (Tables 1, S15), both previously identified with
control
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+ 1.8 mg L-1 PRP
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Predic�on without interac�on

Interac�on module fi�ed

Fig. 3. Observed and simulated (or predicted) survival over time of Bombus terrestris exp
predictions with the GUTS-RED-IT independent action model, and the confidence inte
calibration performed on the single exposures to the simulation of the mixture effect
interaction module fitted to the mixture data, and the confidence intervals (green shad
calibrated on the mixture data. The dashed lines show the background mortality, fitted
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the classic approach in Robinson et al. (2017). For the latter studies, the au-
thors did not conclude on the synergistic interaction when using a reduced
GUTS model with the addition of an ad hoc interaction factor (as presented
in Baas et al. (2007), while our model did. These results showed that our
mechanistic interaction module coupled with the GUTS mixture model is
able to detect interaction, like the classic approach, whilst additionally
accounting for the entire exposure time and all observations at intermediate
observation times, thereby, making the conclusion more robust. Moreover,
contrary to the classic approach, our toxicokinetics-toxicodynamics model
was able to simulate the time-course of themixture effectswith interactions
(i.e., for the above discussed mixtures and species, Fig. 3, Fig. S30,
Figs. S36-S39, Figs. S40–43). Therefore, the model can be used for the
prediction of synergistic or antagonistic effects resulting from untested ex-
posure scenarios such as longer exposures, time-variable concentrations,
or sequential exposures.

Generating data with bespoke experimental designs for model and
hypothesis testing enabled us to test temporal aspects of mixture effects
on E crypticus and M. brassicae, and to assess if interactions occur. The pre-
diction of survival of E. crypticus exposed to the mixture azoxystrobin and
prochloraz with the GUTS mixture model greatly underestimated the ob-
served effects (Figs. 4 left panel). The addition of the interaction module,
calibrated on the mixture data, significantly improved the simulation of
the mixture effects (whatever the model used; i.e., SD or IT approach with
the IA and DA model, Table S15, Fig. 4; S11-S13 right panel), highlighting
a synergistic interaction for this mixture and species combination
(Table 1, Table S15). This result is in line with previous studies which
found synergistic effects with this mixture in aquatic invertebrates (Fu
et al., 2018). For M. brassicae exposed to cypermethrin and chlorothalonil
in mixture, we identified for the first time a synergistic interaction (Figs. 5
and S28, Table 1, Table S15). For the mixture imidacloprid and prochloraz
in E. crypticus, and cypermethrin and prochloraz inM. brassicae, the model-
ling approach did not converge on the same conclusion for the stochastic
death or the individual tolerance approach (Table 1, S15). Therefore, we
cannot firmly conclude on a synergistic interaction for these two cases,
and further investigation would be required.

For M. brassicae exposed to cypermethrin and chlorpyrifos in
mixture (Table 1, Table S15, Fig. S4) an antagonistic interaction was
identified. Antagonism between these two insecticides was previously
-1 CLO
-1 PRP
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osed to clothianidin and propiconazole in mixture. The lines in the top row are the
rvals (green shadows) represent the uncertainty of the model propagated from the
s. The simulations in the bottom row are from the same model coupled with the
ows) represent the parametric uncertainty of the model with interaction module,
to the control treatment. Data from Robinson et al. (2017).
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identified in the whitefly species Bemisia tabaci (Ahmad, 2007). Finally,
for M. brassicae exposed to cypermethrin and azoxystrobin in mixture,
where only cypermethrin had an effect in single exposure, the interac-
tion module did not improve the fit. The GUTS-RED mixture model
alone already provided an accurate prediction of the effects (Fig. 6),
leading to the conclusion that no interaction occurs between those two
chemicals in this species, so the mixture is likely additive.
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2.5 mg k
+ 20 mg kcontrol

Predic�on without interac�on

Interac�on module fi�ed
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of plots are the predictionswith theGUTS-RED-IT independent actionmodel, and the con
from the calibration performed on the single exposures to the simulation of themixture e
the interaction module fitted to the mixture data, and the confidence intervals (green sh
calibrated on the mixture data. The dashed lines show the background mortality, fitted
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3.2. New insights in detecting synergistic and antagonistic mixtures

The interaction module offers the possibility for hypothesis testing by
comparing model fits with different configurations (A on B, B on A, or dou-
ble interaction). It provides not only the positive or negative value of bI, in-
dicating the orientation of the interaction (synergy or antagonism), but also
indication about which of the chemicals has the dominant responsibility in
g-1 CYP
g-1 CHL

10 mg kg-1 CYP
+ 20 mg kg-1 CHL

10 mg kg-1 CYP
+ 50 mg kg-1 CHL

g-1 CYP
g-1 CHL
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posed to cypermethrin and chlorothalonil in mixture. The simulations in the top row
fidence intervals (green shadows) represent the uncertainty of themodel propagated
ffects. The simulations in bottom row of plots are from the samemodel coupled with
adows) represent the parametric uncertainty of the model with interaction module,
to the control treatment.
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the interaction. This information can help in identifying causal relation-
ships and improve understanding of interactionmechanisms and pathways,
either from literature or through experimental studies. Below, we discuss
the plausibility of the interactions identified by the model, as a further
step toward testable mechanistic hypotheses.

Considering the experimentwithE crypticus and themixture azoxystrobin
and prochloraz, the likelihood ratio test highlighted that a simple interaction
with prochloraz as the synergist (bI positive, Table 2, i.e., responsible for the
increase in azoxystrobin effects) is the best configuration to describe the data
Table 2
Parameter values of the interaction module for each species and mixture tested. zI is the
gism, and negative for antagonism. The full table including all model configurations is p

Species and chemicals GUTS model Interacting chemical

Enchytraeus crypticus
Imidacloprid + prochloraz GUTS-RED-IT IA Prochloraz

Azoxystrobin + prochloraz GUTS-RED-SD DA Prochloraz

Mamestra brassicae
Cypermethrin + chlorpyrifos GUTS-RED-SD DA Cypermethrin

Cypermethrin + prochloraz GUTS-RED-IT IA Prochloraz

Cypermethrin + chlorothalonil GUTS-RED-SD IA Chlorothalonil

Bombus terrestris
Clothianidin + propiconazole GUTS-RED-SD IA Propiconazole

Clothianidin + dimethoate GUTS-RED-SD DA Clothianidin

Daphnia magna
Imidacloprid + thiacloprid GUTS-RED-SD DA Thiacloprid

Cypermethrin + propiconazole GUTS-RED-SD IA Propiconazole
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(Table S15). This result is in line with what is known about prochloraz.
Indeed, prochloraz, like other azole fungicides, has been shown to act as syn-
ergist in a range of studies, enhancing the toxicity of pyrethroid insecticides
(Kretschmann et al., 2015), strobilurin fungicides (e.g., azoxystrobin,
Fu et al., 2018), or neonicotinoids (Robinson et al., 2017), and in a
range of organisms (Dalhoff et al., 2016; Kuhlmann et al., 2019). Themixture
prochloraz and azoxystrobin in E. crypticus can be added to this list of cases.
Potentially the mixture of cypermethrin and prochloraz in M. brassicae
follows the same pattern, but this would need to be confirmed, because not
threshold for interaction and bI is the strength of the interaction, positive for syner-
resented in the supplementary material (Table S14).

Parameter Value CI 95 % Units

zI 0.18 10−6 0–0.43 mg/L PCZ
bI 0.25 0.13–0.40 1/ (mg/L PCZ)
zI 0 0–0.08 mg/L PCZ
bI 0.47 0.44–0.51 1/ (mg/L PCZ)

zI 6.3 10−5 0–1.1 mg/kg CYP
bI −0.07 (−0.09) - (−0.05) 1/ (mg/L CYP)
zI 14.96 3.81–19.66 mg/kg PCZ
bI 0.059 0.005–0.23 1/ (mg/kg PCZ)
zI 19.3 0–49.6 mg/kg CHL
bI 0.094 0.008–1.276 1/ (mg/kg CHL)

zI 1.71 0–1.79 mg/L PRP
bI 4.49 0.09–50.74 1/ (mg/L PRP)
zI 0 2.96 10−4 - 6.7 10−4 mg/L CLO
bI −57 (−60) - (−55) 1/ (mg/L CLO)

zI 0 0–9.6 mg/L THI
bI 0.03 0.02–0.05 1/ (mg/L THI)
zI 0 0–0.140 μM PRP
bI 3.29 3.06–4.09 1/μM PRP
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all models reach that conclusion (Table S15). InM. brassicae, chlorothalonil
was identified as a synergist in mixture with cypermethrin, by all models
(Tables 1, S15). The scientific literature provides some mechanistic support
for this finding. For instance, cypermethrin detoxification appears, at
least somewhat, dependent on glutathione conjugation, and it has been
shown that Glutathione S-Transferase (GST) activities are up-regulated in
pyrethroid-exposed insects (Nielsen et al., 2000; Yan et al., 2013; Zhang
et al., 2013). Critically, chlorothalonil is known to rapidly form substituted
chlorothalonil-glutathione derivatives, thereby depleting glutathione
reserves (Arvanites and Boerth, 2001; Tillman et al., 1973). Such depletion
of this potential conjugate may inhibit cypermethrin detoxification and
explain the synergismobserved inM. brassicae.Another hypothesis to explain
cypermethrin-chlorothalonil synergism inM. brassicae is that chlorothalonil
induces behavioral and/or physiological changes that increase cypermethrin
uptake. Indeed, cypermethrin has been associated with a significant repel-
lency in adult Apis mellifera leading to a decrease in the amount of sucrose
consumed, but this change in feeding was dramatically reduced with
chlorothalonil co-exposure (Thompson andWilkins, 2003). A similar mecha-
nism in M. brassicae, exposed through feeding (and their body were also in
contact with the diet), could account for the synergy.

Another interesting insight provided by the modelling, is for the antag-
onistic mixture clothianidin and dimethoate in B terrestris, for which it is
suggested the interaction is due to clothianidin whatever the GUTS model
used (damage addition and independent action model with the stochastic
death or individual tolerance approach, Table S15). Several studies have
reported that neonicotinoid exposure leads to increased expression of cyto-
chrome P450 (CYP450) genes (Yang et al., 2018), and increased CYP450
expression is often linked to neonicotinoid resistance (Puinean et al.,
2010). Both, the xenobiotic metabolism regulating receptors and the
CYP450s they regulate are promiscuous, such that the same receptor and
CYP450 can have multiple ligands and substrates respectively (Fujita,
2004; Li and Wang, 2010). The need for this redundancy means two toxi-
cants metabolised by the same CYP450 may not have identical binding
interactions with the same xenobiotic receptor (Kojima et al., 2011),
leading to differing induction of the CYP450 (or CYP450s) responsible for
theirmetabolism. Therefore, it is plausible that clothianidin induces expres-
sion of a CYP450 that, while capable of metabolising dimethoate, is not
induced (or is only weakly induced) by dimethoate itself, leading to notably
increased breakdown of dimethoate in cases of clothianidin-dimethoate co-
exposure. Alternatively, it is possible that clothianidin reduces expression
of a CYP450 that acts to activate dimethoate, leading to reduced dimetho-
ate toxicity and antagonism. A further hypothesis that may explain this
antagonistic interaction relates to the disruption of microbial content, a
component of an organism's biology known to have an important role in
toxicological response (Jin et al., 2015; Duperron et al., 2020). Clothianidin
is known to alter the gut microbiome of non-target species (Khoury et al.,
2021), and the toxicity of dimethoate is largely dependent on its metabolic
desulfuration into an active dimethoate-oxon form (Buratti and Testai,
2007). Given that dimethoate can be biodegraded by bacteria (Ishag
et al., 2016), it is plausible that species present in the gut microbiome
also metabolise dimethoate into its oxon form, as is the case with other or-
ganophosphates (Daisley et al., 2018). The clothianidin-induced changes to
the microbiome composition of the B. terrestris gut could reduce microbial-
induced dimethoate activation, thus lowering its overall toxicity, leading to
clothianidin-dimethoate antagonism.

The cypermethrin-chlorpyrifos antagonism we observed in M. brassicae
has been also reported in the lepidopteran species Helicoverpa armigera
(Ahmad, 2004), in the silverleaf whitefly Bemisia tabaci (Ahmad, 2007),
and for some mixtures of these compounds in the killifish Jenynsia
multidentate (Bonansea et al., 2016). To our knowledge, this antagonistic
interaction has not been mechanistically explained but the existing litera-
ture does offer plausible hypotheses. Our modelling approach indicated
cypermethrin or chlorpyrifos could be responsible for the antagonistic
interaction in M. brassicae. Like for clothianidin-dimethoate antagonism
in B. terrestris, it is plausible that cypermethrin induces expression of a
CYP450 that, while capable of metabolising chlorpyrifos, is not induced
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(or is onlyweakly induced) by chlorpyrifos itself. Indeed, both cypermethrin
(Baek et al., 2010) and chlorpyrifos (Roh et al., 2014) are associated with
the up-regulation of specific CYP450s. Again, as for the combination of
clothianidin and dimethoate discussed above, an alternative explanation is
that cypermethrin inhibits the activation of chlorpyrifos to chlorpyrifos-
oxon. Likewise, cypermethrin and/or chlorpyrifos exposure may alter
the gut microbiome, leading to altered metabolism and/or uptake of the
second compound. Indeed, both pyrethroids and organophosphates have
been found to impact microbiome compositions (Giambò et al., 2021;
Krishnaswamy et al., 2021), and the differential microbiome modulation
by pesticides does raise plausible hypotheses for chemical interactions (Jin
et al., 2015; Liu et al., 2022). For instance, the toxicity of chlorpyrifos is
known to be largely dependent on its metabolic desulfuration into an active
chlorpyrifos-oxon form (Eyer et al., 2009), which is carried out, at least in
part, by microbiota inhabiting the gut (Daisley et al., 2018). Finally, there
is evidence that esterases play important roles breaking down pyrethroids
(Bhatt et al., 2020), including an isomer of cypermethrin in lepidopterans
(Bai et al., 2019). Along with sodium channel mutations, constitutively
increased esterase expression is associated with pyrethroid resistance
(Bhatt et al., 2020) and pyrethroid exposure is associated with increased
esterase activity and up-regulation of esterase gene expression (Bilal et al.,
2018; Feng et al., 2018; Leong et al., 2018). These esterases bind to, and
have their activity inhibited by, the chlorpyrifos-oxon (Chanda et al.,
1997; Sanchez-Hernandez et al., 2018; Vejares et al., 2010), irreversibly
binding with a 1:1 ratio to organophosphates (Maxwell, 1992). This has
led to the suggestion that binding of the chlorpyrifos-oxon to non-neural
esterases leads to stoichiometric detoxification, as it prevents a given oxon
from interacting with the neural AChE target (Vejares et al., 2010). There-
fore, a cypermethrin-chlorpyrifos antagonistic interaction may occur in
M. brassicae if cypermethrin exposure induces notable up-regulation of ester-
ase expression, reducing chlorpyrifos toxicity by increasing the protective
capacity of non-neural esterases.

3.3. Advantages and limitations

The development of a full GUTS mixture model including body residues
measurement (of parent compounds and metabolites) is the most sophisti-
cated option to accurately predict mixture effects over timewith synergistic
or antagonistic interaction. This strategy was followed by Cedergreen et al.
(2017), where a full GUTSmodel was used to simulate the synergistic inter-
action between cypermethrin and propiconazole on D. magna. However, in
a regulatory risk assessment context, the first step is the detection of such a
mixture interaction, and a detailed study including body residues is
frequently not feasible for the thousands of chemicals in circulation for prac-
tical reasons. Therefore, risk assessors need a quick and efficient approach
for assessment of mixture toxicity. We tested our model using data pre-
sented in Cedergreen et al. (2017), and our simplified model was able to
identify the interaction (Table S15), and suggested propiconazole was
responsible for the interaction. This is in line with what Cedergreen et al.
(2017) described mechanistically in their model, highlighting that our
simpler approach, without explicit consideration of body residues, can be
sufficient to identify such an interaction. In addition, our model was able
to simulate the synergistic effects on survival over time (Fig. 7), although
the model of Cedergreen et al. (2017) was slightly more accurate than our
own (Fig. 3B in Cedergreen et al. (2017)). However, this better accuracy
of the Cedergreen et al. (2017) approach was achieved at a significant
cost in terms of the extra information required for parameterisation. Indeed,
these authors needed for input, the external concentration and internal
concentration of cypermethrin and propiconazole, the cypermethrin
metabolization rate, and the survival over time, to allow the 14 parameters
of their model to be estimated. In contrast, ourmodel only used the external
concentration and survival data over time, and is composed of 9 parameters.
The difference in the accuracy of the simulation is probably due to the
nature of the interaction. For this mixture, propiconazole reduces the
biotransformation rate of cypermethrin by inhibiting cytochrome P450
activity, and this enzymatic phenomenon is better described with a sigmoid
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curve based on internal concentrations of propiconazole. Our interaction
module uses a simple linear relationship based on the external concen-
tration of propiconazole (above the threshold for interaction, zI). We
made this simplification, not only to reduce the number of parameters
and the data required for calibration, but also to offer the opportunity to
identify and model other types of interactions, and not only the specific
case of decrease of biotransformation of a co-occurring chemical. Our
model is, therefore, both simpler and more generic, whereas the model of
Cedergreen et al. (2017) is more mechanistic and specific. In this respect,
the two approaches are highly complementary.

This focus of the current modelling approach on simplicity and flexibil-
ity, is made to offer the possibility to screenmany binarymixtures relatively
quickly to identify interactions and to allow as many interaction types as
possible to be indicated. Our modelling approach only requires the expo-
sure concentrations and the observed effects over time as input. However,
more complex situations can occur, for example mixtures which can be
synergistic at low concentration, and antagonistic at higher concentration
(Cedergreen, 2014). Such complex situations will not be identified by the
current interaction module, which is only able to identify solely synergistic
or antagonistic cases working in one direction. M. brassicae exposed to
cypermethrin and prochloraz is a good example of such a more complex
scenario (Figs. S24, S25). This mixture was suspected to be synergistic,
for reasons discussed previously regarding the chemicals involved. The
prediction which underestimated the effects could be seen as evidence for
synergism, but this was not observed in all combinations of concentrations.
The interaction module improved the fit only with the GUTS-RED-IT IA
model (Table S15, Fig. S25), and the best simulation of this dataset was
from the GUTS-RED-SD IA model without interaction (MLL = 123.8,
Table S15, Fig. S24). The synergistic power of prochloraz might be weaker
for this species. Also, the interaction appears to be non-linear with respect
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to the concentration. This dataset showed one of the limits of the interac-
tion module for identifying and simulating interactions. However, it is
important to note that, for this species, the exposure was through feeding.
Effects on feeding behaviour or repellency (e.g., food avoidance, or reduced
assimilation rates) cannot be excluded and may have interfered with the
interpretation of the toxic effects of the mixture.

Ourmodelling approach provided interesting insights for ecological risk
assessment, such as the parameter values of the interaction module given
by themodel calibration onmixture data, which provide useful information
(Table 2). The positive or negative value of bI indicates the orientation of
the interaction (synergy or antagonism), and the threshold for interaction
provides valuable information for the risk assessment. For example, it is
interesting to note that for the mixture azoxystrobin and prochloraz,
the threshold for interaction of prochloraz is nearly zero, meaning that
any co-occurrence of those two fungicides will lead to synergism in
E. crypticus. On the other hand, for the mixture cypermethrin and
prochloraz in M. brassicae, the threshold for interaction is 14.96 (mg/kg)
suggesting that a minimum concentration of prochloraz is required to
trigger the synergistic interaction.

Finally, it is important to stress that the detection of interactionwith our
modelling approach is binary, interaction or no interaction, and we cannot
tell how strong the interaction is, like in the classic approach with dose-
response models (EFSA, 2013). However, we consider the entire time
course of the mixture effects. For instance, the interaction (e.g., a synergis-
tic effect) can be strong during the first days of exposure and disappear
afterward if the concentration of the chemical responsible for the interac-
tion drops below the threshold for interaction. Therefore, the strength of
the interaction will depend on ‘when’ we look at the effects. Model predic-
tions for effects in untested exposure scenarios can be made for mixture
effects with or without the interaction module at the desired time point
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and then these can be compared to quantify the strength of the interaction.
Consequently, from a risk assessment perspective, the effect simulations
and predictions are probably more important than the result of the likeli-
hood ratio test highlighting if an interaction between chemicals exists.
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The supporting material contains the equations of the GUTS mixture
model, the recipe of the artificial diet for Mamestra brassicae, and the
concentrations applied in the experiments. It contains also all calibrations
and predictions of all tested models, i.e., SD, IT, IA and DA models, as
well as all the model parameter values (which can be used to simulate
effects in new, untested exposure scenarios), the goodness of fits, and all
the results of the likelihood-ratio tests. There is also the raw data as well
as the Matlab code to reproduce the analyses. Supplementary data to this
article can be found online at https://doi.org/10.1016/j.scitotenv.2022.
157048.
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