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A B S T R A C T   

Multi-species indices (MSI) are widely used as ecological indicators and as instruments to inform environmental 
policies. Many of these indices combine species-specific estimates of relative population sizes using the geometric 
mean. Because the geometric mean is not defined when values of zero occur, usually only commoner species are 
included in MSIs and zero values are replaced by a small non-zero value. The latter can exhibit an arbitrary 
influence on the geometric mean MSI. Here, we show how the compound Poisson and the negative binomial 
model can be used in such cases to obtain an MSI that has similar features to the geometric mean, including 
weighting halving and doubling of a species’ population equally. In contrast to the geometric mean, these two 
statistical models can handle zero values in population sizes and thus accommodate newly occurring and 
temporarily or permanently disappearing species in the MSI. We compare the MSIs obtained by the two statistical 
models with the geometric mean MSI and measure sensitivity to changes in evenness and to population trends in 
rare and abundant species. Additionally, we outline sources of uncertainty and discuss how to measure them. We 
found that, in contrast to the geometric mean and the negative binomial MSI, the compound Poisson MSI is less 
sensitive to changes in evenness when total abundance is constant. Further, we found that the compound Poisson 
model can be influenced more than the other two methods by trends of species showing a low interannual 
variance. The negative binomial MSI is less sensitive to trends in rare species compared with the other two 
methods, and similarly sensitive to trends in abundant species as the geometric mean. While the two new MSIs 
have the advantage that they are not arbitrarily influenced by rare, newly appearing and disappearing species, 
both do not weight all species equally. We recommend replacing the geometric mean MSI with either compound 
Poisson or negative binomial when there are species with a population size of zero in some years having a strong 
influence on the geometric mean MSI. Further, we recommend providing additional information alongside the 
MSIs. For example, it is particularly important to give an evenness index in addition to the compound Poisson 
MSI and to indicate the number of disappearing and newly occurring species alongside the negative binomial 
MSI.   
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1. Introduction 

Biodiversity indices are used to synthesise the complex and multi- 
dimensional nature of biodiversity (e.g. Mace et al., 2012) into a sin-
gle figure that measures selected aspects of biodiversity and that is 
possible to communicate (Duelli and Obrist, 2003; Buckland et al., 
2012). The quantified aspects differ between different biodiversity 
indices and therefore, the choice for a biodiversity index depends on the 
objectives of a study (McRae et al., 2017; Watermeyer et al., 2021). 

Measuring biodiversity and quantifying its change are crucial for 
taking conservation actions to reduce biodiversity loss (Purvis and 
Hector, 2000; Loh et al., 2005; Collen et al., 2009; Gregory and van 
Strien, 2010; Bal et al., 2018). In this way, biodiversity indices support 
national and global policy decisions (Nicholson et al., 2012). One of the 
most widely chosen objectives for an index is monitoring of populations 
because the knowledge of population changes is essential to understand 
the drivers of population dynamics and for taking any remedial con-
servation actions (Nichols and Williams, 2006; Roy et al., 2019). 
Therefore, many biodiversity indices are based on species population 
sizes such as the Living Planet Index (Loh et al., 2005), the European 
Butterfly Index (van Swaay et al., 2015), the UK Priority Species Index 
(Eaton et al., 2015), many Wild Bird Indices (Gregory and van Strien, 
2010; Buckland et al., 2012; Gregory et al., 2019), and many national 
wide indices based on populations or distribution of species. These 
multi-species indices (MSI) combine relative population sizes (i.e. spe-
cies indices) across species to measure an average population trend. 

Many MSIs like the Living Planet Index, the Wild Bird Index and 
many country-specific Wild Bird indices are geometric means of relative 
population sizes of constituent species (Buckland et al., 2005; Gregory 
et al., 2005; Gregory and van Strien, 2010; Buckland et al., 2012). An 
MSI based on the geometric mean has three main properties. First, 
relative changes are weighted equally among species, i.e. if the index of 
one species declines to 50% (“halves”) and the index of another species 
increases to 200% (“doubles”) and everything else stays constant, the 
MSI stays constant (Buckland et al., 2012; van Strien et al., 2012). 
Second, when the population index of a single species is zero, the geo-
metric mean, and consequently the MSI, is not defined. Third, random 
noise in relative population size is typically larger in rare species than in 
abundant species. Therefore, random variation in rare species can 
strongly influence the geometric mean MSI (Buckland et al., 2005; Lamb 
et al., 2009). 

Issues arising from the latter properties usually are resolved by 
selecting commoner species as for Wild Bird Indices in some countries (e. 
g. Szép et al., 2012) and in the supra-national Wild Bird Indices (Gregory 
et al., 2005; Gregory et al., 2019). Alternatively, a small value is added 
to the whole time series (e.g. Loh et al., 2005), zeros are replaced by a 
small positive value (e.g. Zbinden et al., 2005; O’Brien et al., 2010), or 
truncated at a small positive value (e.g. Soldaat et al., 2017). In these 
situations, the value chosen for addition, replacement or truncation has 
an arbitrary and potentially strong influence on the resulting MSI. 

Selecting species according to their commonness or to data avail-
ability likely results in a non-representative sample of species included 
in the MSI (Gregory and van Strien, 2010; Renwick et al., 2012; Buck-
land and Johnston, 2017; McRae et al., 2017). Representative samples of 
species according to ecological criteria (Butler et al., 2012; Wade et al., 
2014), or including all species using a similar habitat or area (Zbinden 
et al., 2005) will inevitably contain rare species. Moreover, once- 
common species can become rare and vice versa as time series get 
longer (Ricklefs and Bermingham, 1999). Therefore, if we include only 
species into an MSI that were present or even abundant during the 
reference (first) year, the MSI will be biased towards a negative trend 
because some species will naturally disappear, and newly occurring 
species are not included. As a result, the sample of species becomes non- 
representative. 

Alternatively, zero values could be treated as missing values that are 
either ignored or imputed. When ignoring these values the index 

represents a cumulative trend over the years averaged across those 
species present per year, e.g. as done for the Canadian Species Index 
(Marconi et al., 2021). In consequence, such an index does not allow 
direct comparison of the relative population size today with the one, e.g. 
in the reference year, because species composition changes across the 
time series. Therefore, if long-term comparison of average relative 
population sizes is an objective of the MSI, zero values should not be 
ignored. Recently developed workarounds include replacing zeros by 
truncation according to Soldaat et al. (2017), by predicted values from a 
population model (e.g. Freeman et al., 2021) or by smoothed species 
indices (Rosenberg et al., 2019). However, the longer the sequence of 
zero values, the more difficult it gets to replace them with any of these 
methods. To summarize, when the goal of the MSI is a comparison of the 
average relative population size between a specific year (e.g. the most 
recent year) with a reference year (Fraixedas et al., 2020), zero values 
cannot be ignored and imputation by a model may be difficult. However, 
we do not know of any MSI calculation method that allows to have zero 
values within the set of values from which the average is calculated. 

Our aim was to find a method for calculating an MSI that can deal 
with population sizes of zero, that serves for comparison of average 
relative population sizes across years, and that can be used as a policy 
tool. First, we explain why we chose the compound Poisson model and 
the negative binomial model. We then introduce these two methods and 
compare them with the standard geometric mean MSI with respect to 
their sensitivity to changes in evenness (i.e., the distribution pattern of 
population sizes across species), their weighting of species and sensi-
tivity to trends of single species using virtual and real data. In the dis-
cussion section, we explain how uncertainty of species indices can be 
propagated to the MSI and how different sources of variance may be 
assessed. Finally, we recommend when and how the new methods may 
be useful. 

2. Methods 

2.1. Overview and why we chose the compound Poisson and negative 
binomial model 

There are many different paths to go from species-specific population 
sizes or another species-specific abundance metrics to an MSI repre-
senting average relative population sizes (Fig. 1). Most commonly, the 
geometric mean is applied to relative population sizes (path 1a in Fig. 1) 
resulting in an average relative population size that weights species 
equally independent of their abundance. Note that an MSI based on the 
log-normal model is equivalent to the geometric mean (see 2.2.). Whilst 
equal weighting of species is generally seen as a desirable property of 
MSIs, unequal weighting is sometimes applied to address unrepresen-
tative taxonomic or geographic coverage (McRae et al., 2017). Equal 
weighting across species is also achieved by other methods based on 
relative population sizes (species indices) like the log-normal growth 
model (1b), the compound Poisson model (1c), or indices based on 
smoothed species-specific relative population indices (2). In contrast, 
most methods based on absolute species-specific population sizes (e.g. 
counts or estimates; paths 3 and 4) result in MSIs that weight individuals 
equally or give individuals much more weight compared to species. Such 
MSIs are proportional or approximately proportional to the arithmetic 
mean of the population sizes, and therefore mostly represent the trends 
in the abundant species. However, species identity and the persistence of 
species in a community is a critical aspect of biodiversity change. 
Therefore, many biodiversity indices aim at measuring average relative 
population sizes across species giving relative changes for each species 
similar weights as is done by the geometric mean (Gregory et al., 2005; 
Buckland et al., 2011; van Strien et al., 2012). Of the methods applicable 
to absolute population sizes and considered in this study, only the 
negative binomial model including additive effects of year and species 
(path 3b1) resulted in fitted values that weight species equally. 

For this study we did not explore more complex model structures that 
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may include linear and non-linear trends, ecological predictors, species- 
specific among-year variances, or interaction between species, because 
it was not our aim to study mechanisms of biodiversity trends but our 
aim was simply reporting of changes in biodiversity, as needed for 
policy. 

We finally identified the compound Poisson model fitted to relative 
population sizes (path 1c) and the negative binomial model fitted to 
absolute population sizes (path 3b1) as suited for further exploration 
and comparison with the geometric mean (path 1a). These two ap-
proaches were chosen, because they allow the inclusion of zero values, 
they result in an average relative population size and they do not allow 
for tuning by the data analyst, such as choosing a degree of smoothing, 
choosing a threshold, or a value for replacing zero values. 

2.2. Descriptions of the geometric mean MSI and the two MSIs allowing 
for population sizes of zero 

MSIs are based on predicted, estimated or counted population sizes 
for species (i) and years (t) for a specific area such as a country. We first 
describe the three methods assuming (unrealistically) the true popula-
tion sizes Nit are known and we explore in the discussion error propa-
gation and effects of using predicted, estimated or counted population 
sizes. For the geometric mean and compound Poisson indices, relative 
population sizes, yit =

Nit
Ri

, relative to a species-specific reference Ri were 
used. The reference Ri can be the population in a specific year, e.g. Ri =

Ni2000, a long-term average or a target population size of species i. To 
keep comparability across years, we do not change species composition 
along the time series. Absent species (e.g. in years when colonising 
species have not arrived yet, or in years after a species has disappeared) 
were retained at a population size of zero, except for the geometric mean 
MSI, where zero values and values close to zero were replaced by 

truncating at 1% of the reference population size. As reference popula-
tion we used the population size in year 2000 for most species, except for 
two species with strongly increasing and decreasing population sizes for 
which we used the year with their maximum population size as rec-
ommended by Soldaat et al. (2017).  

1) Geometric mean MSI: The geometric mean index is defined as Igeom
t =

(∏S
i=1yit

)1
S
= e

1
S

∑S
i=1

ln(yit), where S is the number of species. In words, 

the geometric mean index for year t is the exponential of the arith-
metic mean of the natural logarithms of the relative species-specific 
population indices in year t. The geometric mean can be derived by 
assuming a log-normal distribution for yit, i.e. 
ln
(
yit
)
∼ normal

(
μit , σ2). Taking the exponential function of the 

maximum likelihood estimator of the mean equals the geometric 
mean of yit. Therefore, the geometric mean index Igeom

t can be 
calculated by fitting a normal linear model to ln(yit) with indepen-
dent means βt for each year: 

ln(yit) ∼ normal
(
μit, σ2)

where μit is a linear predictor. In the simplest case μit = βt . When 
including species as a factor, μit = βt + αi=2,⋯,S. The exponentials of the 
year-specific intercepts βt referenced to a specific year equals the geo-
metric mean index: Igeom

t = eβt
R , where e.g. R = eβ2000 . Note that the same 

index Igeom
t results from the two versions of the linear predictor 

(including or excluding species as a factor).  

2) Compound Poisson MSI: The family of the Tweedie distributions is 
part of the linear exponential family with a dispersion parameter 
where the variance is a power of the mean. Tweedie distributions 

Fig. 1. Different possible paths leading from the species-specific population sizes to multi-species indices (MSIs) either giving equal weight to species or individuals. 
The gaps between arrow and box indicate methods for which the weighting of species and individuals depends on factors such as population sizes and variances. 
Paths highlighted in orange (1a, 1c, 3b1) are explored in this study. References: (1a) e.g. Loh et al., 2005, and many others, (1b) Freeman et al., 2021, (2) Collen 
et al., 2009, Rosenberg et al., 2019, (3a) Freeman et al., 2020, (4) Fewster et al., 2000. Dark blue boxes indicate steps that are not clearly defined such as replacing 
zero values with a positive value or smoothing. 
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have mass at zero and support on the non-negative reals (Dunn and 
Smyth, 2005), which means data points can take on real values 
greater or equal zero. If the power index of the density function is 1, 
the distribution is a Poisson distribution, if it is 2 the distribution is a 
gamma distribution. For power indices between 1 and 2, the distri-
butions represent the sum of N gamma distributed variables where N 
itself follows a Poisson distribution. These distributions have been 
called compound Poisson (e.g. Smyth and Jørgensen, 2002), com-
pound gamma (e.g. Johnson and Kotz, 1970) or Poisson-gamma 
distributions (Dunn and Smyth, 2005). We call the distribution 
compound Poisson distribution following Zhang (2013). Compound 
Poisson distributions are typical for means of counts (Swallow et al., 
2016). Average (e.g., over many sites), expected and relative popu-
lation sizes are continuous variables that can take on the exact value 
of zero. When the compound Poisson model is fitted to relative 
population sizes, yit ∼ compoundPoisson(μit, p,φ), a geometric mean- 
like MSI can be obtained. The model parameter p is the power index 
of the variance function and φ is the dispersion parameter. The 
natural logarithm is used as a link function and the compound 
Poisson MSI is obtained as the exponential of the year-specific co-
efficients of the linear predictor divided by a reference, ln(μit) = βt +

αi=2,⋯,S, and IcP
t = eβt

R , where e.g. R = eβ2000 . As for the log-normal 
model above, the index IcP

t , is invariant to including or excluding 
the species in the linear predictor.  

3) Negative binomial MSI: The negative binomial distribution is a 
discrete distribution allowing for non-negative integer values and is 
suited for the description of count data that show a higher variance 
than expected by the Poisson distribution (i.e., overdispersion). We 
fit a negative binomial model to the population sizes to obtain an 
MSI: Nit ∼ negative − binomial(μit , θ) with μit being the expected value 
and θ being the variance. As for the compound Poisson and log- 
normal model, we use the natural logarithm to link the linear pre-
dictor to μit : ln(μit) = βt + αi=2,⋯,S. The MSI is, as for 1) and 2), ob-
tained as the exponential of the year-specific coefficients divided by 
a reference Inb

t = eβt
R . If population sizes are estimated, simulated 

values from the (discrete) predictive distributions of Nit are used and 
the uncertainty of the population estimate propagated to the MSI via 
Monte Carlo simulation as explored in the discussion. 

When species is not included as a predictor variable in the negative 
binomial model, i.e.,ln(μt) = βt , the resulting exponentials of the 
year-specific coefficients are similar to the arithmetic mean of the 
absolute population sizes (path 3b2 in Fig. 1, Figure S1). Therefore, 
species must be included as a predictor variable in the model to 
ensure that the MSI measures average relative population size. 

The three distributions differ in their shape (Fig. 2). On the loga-
rithmic scale, the log-normal distribution is symmetric whereas the 
compound Poisson and the negative binomial distributions are left- 
skewed. Of those two distributions, the compound Poisson distri-
bution shows a stronger degree of skewness. The degree of skewness 
for the negative binomial model depends on the expected population 
size: For large population sizes, the distribution is less skewed 
compared to low population sizes. 

2.3. Comparison between the three models 

2.3.1. Exploration of MSI performance using virtual data 
To assess how the three MSIs perform in relation to changes in 

evenness, we used virtual data of a community of five species over four 
years with a constant total population size of 10′000. All five species had 
a population size of 2000 in the first year (maximal possible evenness). 
Over the following three years, we gradually decreased the population 
sizes of two species, and we increased the population sizes of two other 
species, while the sum of all population sizes was held constant, so that 
population sizes in the 4th year were 250, 500, 2000, 3500 and 3750, 
respectively. Thus, the virtual data showed a decrease in evenness over 

the four years. We applied the three MSI methods to these virtual data. 
To assess how sensitive the three MSI methods are with respect to 

species showing strong trends, we simulated nine different sets of data. 
Each data set contained population sizes for 20 species over ten years. 
For this simulation, we assume that the true population size is known 
(not estimated or counted at a sample of sites). In each data set the 20 
species were divided into two groups. The first group contained species 
showing a strong annual (multiplicative) trend of λ = 1.1, whereas the 
trend of the species in the second group was a moderate decrease (λ =
0.97). In all data sets, the species showing a moderate trend had an 
average population size of Ni1 = 1000 in the first year. The first-year 
population size of the species showing a strong trend was 10, 1000, 
and 100′000 in each of three data sets, respectively. We further varied 
the number of species showing a strong trend, so that three data sets 
each included 1, 5 or 10 species with a strong trend. Thus, we had nine 
data sets that varied in abundance and number of species showing a 
strong trend. The population sizes Nit were simulated as random 
numbers from an overdispersed Poisson distribution with means equal 
to Ni1*λ (t-1)*eδ, where δ is a random number from a normal distribution 
with a standard deviation of 0.1. Data simulation was done so that all 
population sizes were non-zero and positive, so that the comparison 
between the two new MSIs and the geometric mean MSI was not 
hampered by the value used to replace the zero values for calculating the 
geometric mean. 

2.3.2. Application to real data and assessment of species influences 
We used four MSIs from the Swiss Bird Index (Zbinden et al., 2005) to 

explore and illustrate the three models. These four MSIs were chosen 
because they differ in the number of species, the number of disappearing 
and newly occurring species and the range of population sizes (Table 1). 
The Swiss Bird Index includes all regular breeding birds, i.e., those who 
bred in 9 years within a 10-year period at least once during the time 

Fig. 2. The log-normal (corresponding to the geometric mean) and compound 
Poisson distributions fitted to the relative, and negative binomial (NB) distri-
bution fitted to the absolute population sizes of an example group of wetland 
bird species in Switzerland (see 2.3.2). The histogram shows the distribution of 
the natural logarithm of the relative population sizes yit of the wetland bird 
species. For all distributions the x-axis was transformed to the natural logarithm 
of the relative population sizes. For the histogram and the log-normal distri-
bution, prior to taking the natural logarithm, values lower than 0.01 were 
replaced by 0.01 (ln(0.01) = -4.6). The shape of the negative binomial distri-
bution depends on the expected value (i.e., the species’ population size). Dots 
correspond to the integer values of the untransformed negative binomial dis-
tributions. We illustrate the negative binomial distributions for three different 
population sizes (25, 100, 10′000). 
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series. 
We used estimated annual relative population sizes yit that exist since 

1990 based on a common breeding bird monitoring scheme for all 
species including a standard error (Knaus et al., 2021). To convert the 
estimated relative population sizes into estimated absolute population 
sizes, Nit, we used population estimates for all species for the years 
2013–2016 (Knaus et al., 2018; Strebel et al., 2019). We then assumed 
that the average population index for the years 2013 – 2016, (yi2013 +

yi2014 + yi2015 + yi2016)/4, corresponds to the population estimates of the 
breeding bird census. We subsequently transposed all population indices 
yit into population estimates Nit including a standard error using the laws 
of error propagation (Hosmer et al., 2008). For calculating the geometric 
mean MSI, we treated zero values by truncating the time series at 1% of 
the reference population size as described in Soldaat et al. (2017). 

We used the Monte Carlo method to propagate the errors from the 
population indices or estimates to the MSI (Soldaat et al., 2017). To do 
so, we draw 1000 values from a log-normal distribution with mean yit 
and Nit respectively and the corresponding standard error as scale 
parameter. Then, we fitted the models to each of the simulated sets of 
population indices and estimates respectively. Before fitting the nega-
tive binomial model, the simulated values were rounded to integers to 
meet discreteness. Note that we would have preferred to fit the negative 
binomial model to simulated values of the predictive distributions of 
population sizes, which would have been discrete distributions. How-
ever, then the errors would not have been comparable to the ones of the 
geometric mean and compound Poisson MSI. For the yit, there are no 
predictive distributions available (see also discussion on the errors). 

As the reference Ri, we use the long-term average of the population 
sizes Ri =

1
T
∑T

t=1Nit to aid a graphical comparison between different 
indices. The choice of Ri does not affect the resulting geometric mean 
based MSI and the reference of an MSI can always be changed post-hoc. 

We calculated the MSI for all four groups using each of the three 
different models and compared the outputs graphically and to the me-
dian of the species-specific relative population sizes, a robust measure of 
the centre of these values. We calculated the median including the zero 
values. 

To measure the influence of population indices of single species on 
the MSI, we recalculated each MSI as many times as there were species 
in the group, excluding each species in turn (Gregory et al., 2019). 

3. Results 

3.1. Exploration of MSI performance using virtual data 

When the total abundance (sum of population sizes of five virtual 
species) is kept constant and evenness decreased, the decrease in the 
geometric mean MSI and the negative binomial MSI was much stronger 
than in the compound Poisson MSI (Fig. 3). 

In the simulated scenario with only one species out of 20 species 

showing a strong annual trend of 1.1 (Fig. 4, a, d, g) all three MSIs follow 
the decreasing moderate trend of the 19 species, i.e., no MSIs was 
influenced by the one species with the strong increase. When five out of 
20 (25%) species showed a strong trend and they are rare relative to the 
other species (Fig. 4 b), the MSI based on the negative binomial model 
lay within the population indices of the 15 common species, whereas the 
MSIs based on the geometric mean and the compound Poisson MSI lay 
in-between the average of the species with the moderate decrease and 
the ones with strong increasing trends. The negative binomial model was 
sensitive to strong trends only when the abundances of the strong spe-
cies were equal or larger to the abundances of the species with a mod-
erate trend of 0.97 (Fig. 4 e, h). In the scenario with half of the species 
showing a strong increase and the other half a moderate decrease (Fig. 4 
c, f, i) the MSIs based on the geometric mean and on the compound 
Poisson model lay in-between the average of the two groups indepen-
dent of the abundances. The MSI based on the negative binomial model 
lay in-between the average of the two groups only when the species with 
a strong increase had equal or higher abundances compared to the 
moderate trend species (Fig. 4 f, i). In cases when the species with the 

Table 1 
Characteristics of the species sets for the four MSIs from the Swiss Bird Index.  

Index N 
species 

N newly 
occurring 
species 

N disappearing 
species 

Median and range of 
estimated population 
sizes 

Description 

Forest 56 0 0 25′560 (274-998′290) Most species are abundant, no zero values; similar to other forest bird 
indicators in Europe, e.g. Gregory et al., 2019 

Alpine habitats 13 1 0 2662 (0-192′225) Few species, one newly occurring species (Bearded vulture Gypaetus barbatus) 
showed a strong increase in relative population size after 17 years with a 
population size of zero in the beginning 

Wetland 39 4 3 155 (0-22′600) Many rare species with 9 species having zero populations in some years, high 
turnover, one of the four newly occurring species (Great Cormorant 
Phalacrocorax carbo) showed a strong increase 

Agricultural 
target species 

28 0 5 682 (0-123′683) Rather high proportion of disappearing species, sequences of zero up to 14 
years long at the end of the time series; selection of species of conservation 
interest (target species). Official name of this MSI is “Target Species 
Environmental Objectives Agriculture”  

Fig. 3. Change in evenness in a hypothetical community of 5 species and 
corresponding MSIs. Upper panel: population sizes of 5 species in a community 
with decreasing evenness and constant total abundance (10000) over 4 years. 
Lower panel: MSIs based on the population sizes of the 5 species in the 
upper panel. 
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strong increase had higher abundances (Fig. 4 f, i), the MSI based on the 
compound Poisson model was more influenced by the species with the 
strong increase compared to the other two MSIs. 

To summarize the results of the simulation exercise, the MSI based on 
the compound Poisson model is equal to the geometric mean MSI except 
in cases when a large proportion of abundant species shows a strong 
trend. In such cases, the compound Poisson model is more strongly 
influenced by these strong trends than the other two MSIs. The MSI 
based on the negative binomial model is equal to the geometric mean 
MSI except when species showing strong trends are rare. In such cases, 
the negative binomial model is less influenced by the rare species than 
the other two MSIs. 

3.2. Application to real data and assessment of species influences 

In the case of the forest species, a group including only abundant 
species, the resulting MSI looks similar for all three methods. However, 
when the species group includes rare, newly occurring or disappearing 
species, the MSI based on the compound Poisson or the negative bino-
mial model follow more closely the median of the species-specific rela-
tive population sizes compared to the geometric mean MSI (Alpine 

habitats, wetlands, agricultural target species, Fig. 5). The geometric 
mean MSI shows larger among-year variance than the other indices, 
particularly when the species selection includes rare, newly appearing 
or disappearing species. 

The influence of single species was stronger in the geometric mean 
MSI compared to the other two MSIs (Fig. 6). The geometric mean MSI 
changed substantially (up to 24%, in average 1.4%) when one species 
was left out from the data. In the compound Poisson MSI, only species 
with strong relative population changes such as the Bearded vulture 
markedly influenced the MSI in groups with a low number of species 
such as the alpine birds (maximum change was 21%, average 1.0%). In 
the negative binomial model, rare species had lower influence on the 
MSI than in the others (maximum 9%, average 0.8%). Abundant species 
with strong population changes, such as the Great Cormorant in the 
wetland index, influenced the negative binomial MSI to a similar extent 
as in the compound Poisson MSI. 

Fig. 4. Results of simulations that shows the influence of species with strong trends for the three MSI methods (black = geometric mean, khaki = compound Poisson 
model, pink = negative binomial model). In all panels, the number of species was 20. Indices are fixed to start at 1. In the first column, there was one species showing 
a strongly increasing annual trend of 1.1, in the second there were five and in the third ten species with the same increasing trend. In the first row, the strongly 
increasing species start with a low population size of 10, in the second with 1000 and in the third row with 100‘000 (number indicated on the right outer axis). All 
other species with a moderate negative trend of 0.97 started with a population size of 1000 in all panels. The transparent grey lines are the species-specific pop-
ulation indices. 
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4. Discussion 

4.1. Influence of the distributional assumption on the weighting of species 
and individuals 

There is a general agreement that MSIs representing average relative 
population sizes should weight population trends of all species equally 
as is done by the geometric mean (Gregory and van Strien, 2010). The 
data distribution assumed in the model determines this weighting. For 
example, in a Poisson model, every individual is seen as an independent 
observation and therefore weighted equally. Fitted values in a Poisson 
model of population sizes are equal to the arithmetic mean of the (ab-
solute) population sizes (e.g. Evans et al., 2000). Therefore, MSIs 
derived from Poisson models weight species proportional to their 
abundances, which is not desirable for biodiversity indices with the 
purpose to measure average relative population sizes. 

In contrast, the negative binomial model fitted to absolute popula-
tion sizes, the compound Poisson model and the log-normal model fitted 
to relative population sizes, in principle, give equal weight to all species. 
When all species have the same mean abundance and among-year 
variance, the three models produce the exact same MSI values. How-
ever, when species differ either in their abundances or in their among- 
year variance, the three methods produce different MSI values, 
because 1) abundance and variance have different effects on the weight 
of the species in the different models, and 2) if the data contain zero 
values, the weight of such species depends on the value imputed for the 
zero in the geometric mean MSI. 

Abundant species showing strong trends (simulated data example, 
Fig. 4) or abundant species with rather constant populations (Forest 
species MSI) had a large influence on the compound Poisson MSI, 
probably due to the narrow shape of that distribution when the among- 

species variance is low. Maybe for the same reason, this MSI has weak 
sensitivity towards changes in evenness. The negative binomial distri-
bution has, among the three distributions studied here, the heaviest 
lower tail. The mass of the lower tail increases with decreasing abun-
dance because variance due to stochasticity increases with decreasing 
abundances. Therefore, the negative binomial MSI gives less weight to 
extreme values of rare species than of abundant species. For this reason, 
the negative binomial MSI of the alpine species index is not overly 
influenced by the Bearded vulture, in contrast to the other two MSIs. 

4.2. Interpretation of the MSIs, and how and when to use them 

The type of MSIs discussed in this study measure average relative 
population sizes and they allow for comparison of average relative 
population sizes across different years. The geometric mean is sensitive 
to changes in the proportional distribution, i.e. evenness, even when 
total abundance is constant (Buckland et al., 2011). Similarly, the MSI 
based on the negative binomial model is sensitive to changes in evenness 
whereas the compound Poisson index is not. Several researchers have 
stressed that single indices always omit important parts of biodiversity 
(Studeny et al., 2011; Buckland et al., 2012; Leinster and Cobbold, 2012; 
Sattler et al., 2014; McDonald and Dimmick, 2016). The negative 
binomial MSI has weak sensitivity towards changes in populations of 
rare species and with the geometric mean MSI only species present in all 
(or most) years can be considered (Table 2). Therefore, we recommend 
reporting complementary measures, such as an evenness index (Shan-
non and Weaver, 1949; Buckland et al., 2005) particularly when using 
the compound Poisson MSI and when the aim is to measure the overall 
state of biodiversity of which evenness is an important aspect (Witte-
bolle et al., 2009). Turn-over rates (Harrison et al., 2016; Yuan et al., 
2016) are valuable additional information to all three MSIs. 

Fig. 5. The geometric mean, compound Poisson and negative binomial MSI (lines) and the median (points) of the real data examples. The long-term average is set to 
1 for all MSI and the median to ease comparison. 
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Indicating the number of disappearing species is particularly 
important if the negative binomial MSI is used because this MSI gives a 
low weight to rare species (Knaus et al., 2021). In contrast, the com-
pound Poisson MSI seems to weight rare species similarly to the geo-
metric mean MSI except when zero values are present. Because zero 
values need to be replaced by non-zero values, which then can have a 
large influence on the geometric mean MSI (Buckland et al., 2005; Lamb 
et al., 2009), we recommend using one of the other two MSIs when the 
set of species includes rare, disappearing or newly occurring species and 
sensitivity analyses shows large influences of these species on the geo-
metric mean MSI. When using the compound Poisson MSI, care must be 
taken when the selected species include abundant species with strong 
relative trends. 

Excluding single or clusters of ecologically similar species from the 
MSI elucidates sensitivity of the MSI towards species with particular 
characteristics (Fraixedas et al., 2020). Differentiated analyses of com-
mon trends of clusters of species give a much stronger insight into the 
patterns of biodiversity change compared with a single index. For 
example, splitting the Living Planet Index into clusters showed that 
average trends differ across regions and taxa, with strong declines in 
larger animals, the Indo-Pacific region and the reptile and amphibian 
group (Leung et al., 2020). 

To conclude, there may not be one single technique to obtain an MSI 
that is ideal in all situations and reporting one index only can result in 
hiding important information. 

4.3. Quantifying uncertainty, error propagation 

We will discuss three different sources of variance that we think are 
the most important ones an MSI is subjected to: 1) sampling error 
(sampling of species and years), 2) measurement error (uncertainty in 
estimated species-specific annual population indices or sizes; deter-
mined, e.g., by monitoring method or sampling of sites) and 3) among- 
year variance in species populations.  

1) The species included in the MSI could be seen as a random sample of 
a bigger population of species and years subject to an ecological 
process driving their population trends. Sometimes the set of species 
of interest is finite and can be sampled as a whole, e.g. all regular 
breeding birds of Switzerland (Zbinden et al., 2005). If all species are 
included in the sample, then the sampling error may be seen to be 
zero as done in the examples of this study. 

Some studies aim at understanding general ecological processes 
leading to specific trends in populations and therefore see the 

Fig. 6. Single species influence on the geometric mean MSI, the compound Poisson MSI and the negative binomial MSI. Black bold lines are MSIs based on all species 
in the group (number of species: forest 56, alpine habitats 13, wetlands 39, agricultural target species 28), thin red lines are obtained by leaving out one species at 
a time. 
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monitored species and years as a random sample of all possible 
species and years. In that case the sampling error is derived from the 
residual variance of the model. However, the models we presented 
here have a too simple structure to reliably measure residual vari-
ance (Freeman et al., 2021) and, therefore, most likely are not suited 
to obtain an appropriate error if the MSI is interpreted as an estimate 
of the underlying ecological process. Theoretically, bootstrapping 
the sample of species and describing the variance in the resulting 
point estimates will reflect uncertainty measures, if the selected 
species are a random sample from an infinite population of species 
for which the MSI should measure the state (Carpenter and Bithell, 
2000). However, in population monitoring programs random sam-
pling of species is very rarely met (Buckland et al., 2005; Buckland 
et al., 2011).  

2) Independent of whether a sampling error is included or not, MSIs 
have a measurement error. This error is propagated to the MSI from 
the errors of the species-specific population indices or estimated or 
predicted population sizes. It is determined by the sampling of the 
sites where counts took place, the kind and intensity of the survey 
method and by the spatial variance in animal density. Most moni-
toring programs produce an estimate of the absolute or relative 
population size including a standard error (e.g. Pannekoek and van 
Strien, 2005). These errors are then propagated to the MSI using 
Monte Carlo simulations (Soldaat et al., 2017; this study). However, 
for the future, it may be valuable to discuss using predictive distri-
butions of Nit instead of estimates with SE as the error that is prop-
agated to the MSI. The predictive distribution describes what values 
the population size could have taken on, i.e. what we know about the 
population sizes given the available data. In contrast, the population 
estimate with SE tells us what we know about the expected value, i. 
e., the average of the possible population sizes, which has a smaller 
uncertainty compared to what the population sizes could have been. 

Unfortunately, for getting the predictive distribution, solid data are 
needed that allow for predicting absolute population sizes. Many 
monitoring programs allow for robust estimation of population 
indices but not absolute population sizes (Pannekoek and van Strien, 
2005). 

The negative binomial model could be fitted to the raw counts 
instead of the estimated population sizes and the proportion of area 
surveyed included as an offset. In such a model, the measurement 
error that is due to the sampling of the sites is automatically prop-
agated to the error of the fitted values. The error of the fitted value 
will, in such a model, also include the error introduced due to the 
sampling of the species and years.  

3) The natural among-year variance in relative population sizes differs 
among species. Some species (e.g., slow pace of life species) do not 
vary a lot, whereas others (e.g., fast pace of life) naturally show peaks 
and lows in their populations (Stearns, 1992; Tieleman, 2009). If the 
population of a latter species decreases by 10% from one year to the 
next, we may not be alarmed. However, if a slow pace of life species 
shows a similar decrease, ecologists should be alarmed. Therefore, 
we may wish to weigh relative population changes of species 
differently according to their life-history characteristics. However, it 
may be more feasible to report MSIs for groups of species with 
different life-histories rather than to weight species differently 
within one MSI. 

4.4. Possible future directions 

Using a statistical model for obtaining the MSI opens several possi-
bilities worth exploring. Accounting for phylogeny via the correlation 
structure will result in an MSI that better represents genetic diversity. 
Fraixedas et al. (2020) introduce a bird indicator that includes 
phylogeny. 

Potentially, the models presented in this study could also be used to 
create supra-national or across-taxon MSIs (Gregory et al., 2005; Greg-
ory and van Strien, 2010; Eaton et al., 2015; van Strien et al., 2016; 
Burns et al., 2018). The negative binomial model only can be applied to 
numbers of discrete units (e.g. individuals, breeding pairs), whereas the 
geometric mean and the compound Poisson model can also be applied to 
biodiversity indices derived from other type of measurements, e.g. 
biomass or cover (%). How the models would perform for supra-national 
or across-taxon purpose remains to be explored. 

The state-space models recently explored for calculating MSIs 
(Simmons et al., 2015; Freeman et al., 2021) may be seen as further 
development of the chain methods that is used for the Living Planet 
Index (Loh et al., 2005). Their auto-regressive nature recognises that 
population size depends on its size in the previous year. Instead of the 
log-normal models usually used for these state-space models, it may be 
worth exploring the compound Poisson or negative binomial models 
when rare, newly occurring or disappearing species are included in the 
sample. 

Finally, complex hierarchical multi-species models allow for detec-
tion bias and sampling effort within the same model. Such models also 
allow estimation of general population trends averaged across species 
that can be used as an MSI (Iknayan et al., 2014). Although in our study 
we focussed on simple models, we add to the research of complex hi-
erarchical modelling the finding that the interpretation of the resulting 
MSI depends on the distribution assumed in the model. Particularly, if 
the Poisson distribution is used, the resulting MSI may reflect the trend 
in the absolute number of individuals rather than a trend in the average 
relative population sizes. However, how the different distributions affect 
the interpretation of the resulting MSI in more complex models remains 
to be studied. 

4.5. Conclusions 

We presented two statistical models that naturally allow for zero 

Table 2 
Properties of the three MSI methods as evaluated in our study.  

Property Geometric mean 
MSI 

Compound 
Poisson MSI 

Negative 
binomial MSI 

Input species indices species indices counted, 
estimated or 
predicted 
population 
sizes 

Zero values can be 
included 

zero values need 
to be replaced by 
non-zero values 

yes yes 

Sensitivity to evenness yes no yes 
Sensitivity to changes 

in populations of rare 
species 

strong medium-strong weak 

Sensitivity to changes 
in populations of 
abundant species 

yes yes (stronger 
than in the other 
two methods1) 

yes 

General influence of 
single species when 
rare species are 
included 

strong2)  medium weak 

General influence of 
single species when 
only abundant 
species are included 

weak weak weak 

1) The influence of abundant species on the compound Poisson MSI cannot be 
due to the abundance per se because this MSI is based on the relative population 
sizes that do not contain information about the absolute abundance. However, 
abundant species often have low among-year variance in relative population 
size, and the general insensitivity towards changes in evenness implies that the 
compound Poisson model weights larger relative population sizes relatively 
stronger compared to the other two methods. 
2) The large influence of single species normally is assessed by sensitivity ana-
lyses and, if present, reduced by truncation of small relative population sizes of 
single species, e.g. Soldaat et al. (2017). 
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values in population sizes and thus allow for the inclusion of rare, dis-
appearing and newly occurring species in a relative population MSI. One 
advantage of the proposed methods over the geometric mean MSI is that 
they are no longer subject to the arbitrary influence of the values used to 
replace the zero values. This improvement comes at the cost of low 
sensitivity towards population changes in rare species (negative bino-
mial MSI) or a high sensitivity towards trends of species with a low 
among-year variance and low sensitivity towards changes in evenness 
(compound Poisson). Although we found methods that improve the 
techniques for calculating MSIs, we did not find a single method that 
addresses all needs. If the set of considered species contains rare, newly 
occurring or disappearing species, we either recommend using the 
negative binomial MSI and indicating the number of disappearing and 
newly occurring species alongside or using the compound Poisson MSI 
together with an evenness index. 
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