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Penguins lost the ability to fly more than 60 million years ago, subsequently evolving a hyper-

specialized marine body plan. Within the framework of a genome-scale, fossil-inclusive

phylogeny, we identify key geological events that shaped penguin diversification and genomic

signatures consistent with widespread refugia/recolonization during major climate oscilla-

tions. We further identify a suite of genes potentially underpinning adaptations related to

thermoregulation, oxygenation, diving, vision, diet, immunity and body size, which might have

facilitated their remarkable secondary transition to an aquatic ecology. Our analyses indicate

that penguins and their sister group (Procellariiformes) have the lowest evolutionary rates yet

detected in birds. Together, these findings help improve our understanding of how penguins

have transitioned to the marine environment, successfully colonizing some of the most

extreme environments on Earth.
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Penguins are one of the most iconic groups of birds, serving
as both a textbook example of the evolution of secondarily
aquatic ecology and as sentinels for the impacts of global

change on ecosystem health1. Although often associated with
Antarctica in the popular imagination, penguins originated more
than 60 million years ago (Mya), evolving wing-propelled diving
and losing the capacity for aerial flight long before the formation
of polar ice sheets2. Over time, penguins evolved the suite of
morphological, physiological, and behavioral features that make
them arguably the most uniquely specialized of all extant birds.
These adaptations have allowed penguins to colonize some of the
most extreme environments on Earth.

Previous phylogenetic studies have yielded insights into pen-
guin evolution, yet have been limited by sampling issues (e.g.,
number of lineages incorporated and quality of molecular
markers3–7). Genomic studies have shed light on the diversifica-
tion of extant penguins7–9 but have not integrated extinct species.
Because nearly three-quarters of known penguin species are
represented only by fossils (e.g., 2,3), sampling extinct species is
crucial for improving phylogenetic resolution and dating accu-
racy, reconstructing biogeographic events, and understanding the
environmental context in which key adaptations arose. While
several studies have included fossil penguins, these utilized only
mitochondrial genomes and/or small numbers of nuclear genes
(e.g., 3–6), limiting their ability to disentangle confounding pro-
cesses, such as historical and ongoing introgression and incom-
plete lineage sorting.

Here, we take a comprehensive approach to inferring the
tempo and drivers of penguin diversification by combining gen-
omes from all extant and recently-extinct penguin lineages (27
taxa) (Table 1), stratigraphic data from fossil penguins (47 taxa),
and morphological and biogeographic data from all species
(extant and extinct) (Fig. 1 and Supplementary Fig. 1; Supple-
mentary Data 1) into a single framework for Bayesian phyloge-
netic analysis. This combined approach, using the fossilized birth-
death process with sampled ancestors4 (see supplementary
methods) offers a more complete understanding of speciation and
biogeographic events over the entire history of penguin evolution.

It extends our insights beyond the ~15–20 million year (Ma)
history of crown penguins to include the ~50Ma interval during
which only stem penguins existed. Within this phylogenetic fra-
mework, we highlight key genes involved in marine adaptations,
compare evolutionary rates in penguins to those of other birds,
and reconstruct the demographic histories of individual species.
Together, these extensive datasets provide new insights into the
evolution of extreme ecological preferences and the genetic basis
for the adaptations that enabled penguins to occupy these niches.

Results
Climate change drove evolution, biogeography, and demo-
graphy. Phylogenetic results (Fig. 1 and Supplementary Fig. 2)
confirm previous findings, recovering Aptenodytes (king and
emperor penguins) as the sister clade to all other crown penguins,
with brush-tailed (Pygoscelis) penguins in turn sister to two clades
uniting the banded (Spheniscus) and little (Eudyptula) penguins
and the yellow-eyed (Megadyptes) and crested (Eudyptes)
penguins6,7,9. Biogeographical reconstructions (Fig. 1, Supple-
mentary Figs. 3–4 and Supplementary Data 1) support a Zeal-
andian origin for penguins6,7. Stem penguins radiated extensively
in Zealandia before dispersing to South America and Antarctica
multiple times, following the eastward-flowing direction of the
Antarctic Circumpolar Current (ACC) (Fig. 1). Crown pen-
guins most likely arose from descendant lineages in South
America, before dispersing back to Zealandia at least three times.
Interestingly, at least two such dispersals occurred before the
inferred onset of the ACC system, suggesting that early stem
penguins were not dependent on currents to disperse over long
distances. A second pulse of speciation coincides with the onset of
the ACC, though understanding whether this pattern is real or an
artifact of fossil sampling requires more collecting from early
Eocene localities. We infer an age of ~14Ma for the origin of
crown penguins, which is more recent than the ~24Ma age
recovered in genomic analyses, not including fossil taxa7 (Sup-
plementary Fig. 2b) and coincides with the onset of global cooling
during the middle Miocene climate transition4,10 (Supplementary
Fig. 3a). This young age suggests that expansion of Antarctic ice
sheets and the onset of dispersal vectors such as the Benguela
Current11 during the middle to late Miocene facilitated crown
penguin dispersal and speciation, as hinted at by fossil evidence12.

Incongruences between species trees and gene trees were
identified, e.g., alternate topologies occurred at high frequencies
(>10%) for several internal branches (Fig. 1c; Supplementary
Fig. 5). These patterns indicate that gene tree discordance may be
caused by incomplete lineage sorting (ILS) or introgression
events. By quantifying ILS and introgression via branch lengths
from over 10,000 gene trees, we found that the rapid speciation
within crown penguins was accompanied by >5% ILS content
within the ancestors of Spheniscus, Eudyptula, Eudyptes, and
several subgroups within Eudyptes (Fig. 2a). Our dated tree
provides a temporal framework for this rapid radiation: the four
extant Spheniscus taxa are all inferred to have split from one
another within the last ~3Ma, and likewise the nine extant
Eudyptes taxa likely split from one another in that same time
(Fig. 1b). Many closely related penguin species/lineages are
known to hybridize in the wild (see supplementary methods).
Consistent with this, multiple analyses suggest that introgression
also contributes to species tree—gene tree incongruence (Supple-
mentary Figs. 6–9 and Supplementary Data 2; also see Supple-
mentary Methods for further details). This could explain the most
notable conflict in previous phylogenetic results, which showed
inconsistency over whether Aptenodytes alone7 or Aptenodytes
and Pygoscelis together4,5 represent the sister clade to all other
extant penguins. Introgression was detected between the ancestor

Table 1 Penguin names.

Taxa Common name

Aptenodytes forsteri Emperor penguin
Aptenodytes patagonicus King penguin
Eudyptes chrysocome Southern rockhopper
Eudyptes filholi Eastern rockhopper
Eudyptes chrysolophus chrysolophus Macaroni penguin
Eudyptes chrysolophus schlegeli Royal penguin
Eudyptes moseleyi Northern rockhopper
Eudyptes pachyrhynchus Fiordland penguin
Eudyptes robustus Snares penguin
Eudyptes sclateri Erect-crested penguin
Eudyptula minor New Zealand little penguin
Eudyptula minor Banks Peninsula NZ white-flippered penguin (BAN)
Eudyptula novaehollandiae Australian fairy penguin
Megadyptes antipodes antipodes Yellow-eyed penguin
Pygoscelis adeliae Adélie penguin
Pygoscelis antarctica Chinstrap penguin
Pygoscelis papua West Antarctic
Peninsula

Gentoo penguin WAP

Pygoscelis papua Falklands/Malvinas Gentoo penguin FAL
Pygoscelis papua Kerguelen Gentoo penguin KER
Pygoscelis papua South Georgia Gentoo penguin SG
Spheniscus demersus African penguin
Spheniscus humboldti Humboldt penguin
Spheniscus magellanicus Magellanic penguin
Spheniscus mendiculus Galápagos penguin
Megadyptes antipodes richdalei Chatham Islands Megadyptes

penguin
Megadyptes antipodes waitaha Waitaha penguin
Eudyptes warhami Chatham Islands crested penguin
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of Aptenodytes and the ancestor of other extant penguins, and is
inferred to have occurred when the range of these ancestors
overlapped in South America (Fig. 2a and Supplementary Data 2).
Introgression (>9%) was also detected between Eudyptula
novaehollandiae and Eudyptula minor, and several introgression
events were especially pervasive in Eudyptes (Fig. 2a and
Supplementary Fig. 6).

Many extant penguin lineages began to diverge within the last
3 Ma (Fig. 1). To obtain insight into this recent phase of penguin
diversification, we inferred post-speciation introgression events
and estimated the time when gene flow from introgression ceased
between 20 pairs of closely related lineages (see Supplementary
Methods). Our results provide further evidence for recent
introgression between all sampled pairings (Fig. 2b) except for
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Fig. 1 Phylogeny and biogeography of penguins. a Breeding range of extant/recently-extinct penguins. Colors of circles correspond to species identities
shown in subplot b, c. Note, Eudyptula novaehollandiae and Megadyptes antipodes antipodes colonized New Zealand <800 years ago, so those expanded
ranges are not shown. b Total-evidence maximum clade credibility tree incorporating ancestral range estimation from BioGeoBEARS under the best-fitting
model (DEC+J+X). † indicates extinct taxa. Silhouettes in cladogram indicate approximate body size. The gray rectangles at the nodes among extant
penguins represent 95% confidence intervals of the corresponding estimated divergence times. Circles at the nodes are colored to indicate posterior
probability: black (>0.95), gray (0.75–0.95), white (<0.75). The single most probable ancestral range is indicated at each node using squares (colors
represent the ranges in d) with the exception of three key nodes (pie charts, gray represents multiple ranges). Nodes are marked with a number
corresponding to potential dispersal events. Major geological events are indicated. c Densitree of 500 random RAxML gene trees, summarizing gene
discordance. d Paleomaps showing major inferred dispersal vectors for penguins across the Cenozoic. Arrows show one possible biogeographic scenario
interpreted from the ancestral area reconstructions. Numbers correspond to numbered nodes in b. Source data is provided as a Source Data file.
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Eudyptes chrysocome and E. filholi, whose ranges are geographi-
cally disparate (Fig. 1a). Almost all species exhibit a genomic
signature of a period of physical isolation during the Last Glacial
Period (LGP) with increased climate fluctuation and environ-
mental uncertainty, followed by postglacial contact and intro-
gression as Earth warmed once again (Supplementary Figs. 8–9).
This strongly supports the hypothesis that penguins were
impacted by ecosystem-wide, climate-driven refugia/recoloniza-
tion cycles in the Southern Ocean13,14, a pattern also observed in
other marine taxa during the Last Glacial Maximum (e.g.,15). As
ice volumes increased during the LGP high-latitude penguin
species were likely forced into isolated mid-latitude refugia. As
climate warmed from the late Pleistocene to Holocene, these
species moved back towards the poles, recolonizing landmasses

and islands as they became habitable once again, and, notably,
experiencing secondary contact with one another (e.g., on small
sub-Antarctic islands).

Today, penguins are under threat from climate change and
environmental disruption (see Supplementary Methods for
further citations) and half of all extant species are considered
either Endangered or Vulnerable (IUCN red list categories).
Understanding how past climate events have impacted penguin
population size during the LGP is crucial in inferring how
penguin populations may respond to future climate change. We
estimated the effective population size for all recent penguin taxa
except for E. warhami and M. a. waitaha (where data were too
limited, Supplementary Data 2) (Fig. 2c, Supplementary
Figs. 10–11 and Supplementary Data 2). These analyses provide
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Fig. 2 Incomplete lineage sorting, introgression events, and demographic history among penguins. a Model of incomplete lineage sorting (ILS) and
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a window into long-term population histories (very recent trends
cannot be accurately recovered with these methods16). Four
demographic patterns emerge for this critical time interval,
illuminating disparate responses of penguins to glacial-
interglacial cycles (Fig. 2c). The most prevalent pattern is shared
by nine lineages (Aptenodytes patagonicus, Pygoscelis antarctica,
P. papua “KER”, S. demersus, S. humboldti M. a. antipodes, M. a.
richdalei, Eudyptes robustus and E. pachyrhynchus), all of which
show evidence of population expansion coincident with the
beginning of the LGP, followed by population decline towards the
end of the LGP. In contrast to this pattern, nine lineages (A.
forsteri, P. adeliae, P. papua “WAP”, P. papua “SG”, S.
magellanicus, E. moseleyi, E. filholi, E. chrysolophus schlegeli,
and E. sclateri) show evidence of population decline coincident
with the beginning of the LGP, followed by population expansion
towards the end of the LGP. Almost all of the remaining lineages
show strong evidence of persistent long-term declines in
populations from the early LPG to the end of LPG. All three
Eudyptula taxa and Eudyptes chrysolophus chrysolophus under-
went a steep population decline spanning the LGP, while three
taxa (P. papua “FAL”, S. mendiculus, and E. chrysocome) show
evidence of continual population decline across the last 250
thousand years (ka).

Interestingly, taxa that increased in population size towards the
end of the LGP (e.g., A. forsteri, P. adeliae, S. magellanicus, E.
filholi, E. moseleyi, E. sclateri, and E. schlegeli are typically
migratory, and tend to forage offshore (>50 km; see Supplemen-
tary Data 117), while taxa that decreased towards the end of the
LGP (e.g., S. humboldti, S. demersus, M. a. antipodes and likelyM.
a. richdalei) tend to be residential, and forage inshore; see
Supplementary Data 1. Taxa that disperse farther may have
overcome local impacts of global climate cooling during the LGP
(e.g., changes in sea-ice extent, prey abundance and terrestrial
glaciation, however see18) largely by relocating to lower latitudes
(e.g.,14), whereas locally-restricted taxa may have been more
prone to sudden population collapses.

Penguins have the slowest evolutionary rates among birds. The
integrated evolutionary speed hypothesis (IESH) proposes that
temperature, water availability, population size, and spatial het-
erogeneity influence evolutionary rate19. Life history traits also
impact the evolutionary rate, but such relationships remain
incompletely understood in birds20. Penguins are long-lived,
large-bodied, and produce few offspring, thus providing an ideal
case study in how life history may impact evolutionary rate. We
tested the IESH using three proxies for evolutionary rate: sub-
stitution rate, P and K2P distances between lineages and their
ancestors (Supplementary Fig. 12 and Supplementary Data 3).
We found that penguins and their sister group (Procellariiformes)
had the lowest evolutionary rates of the 17 avian orders sampled
by21 (Fig. 3a, Supplementary Fig. 13, and Supplementary Data 3).
Because other aquatic orders also show slow rates (e.g., the
aquatic Anseriformes show a significantly slower rate than their
terrestrial sister group Galliformes), we hypothesize that the rate
in penguins represents the culmination of a gradual slowdown
associated with increasingly aquatic ecology. Intriguingly, we
detected a trend toward decreasing rate over the first ~10Ma of
crown penguin evolution, followed by a marked uptick ~2Ma,
which suggests the onset of glacial-interglacial cycles contributed
to a recent increase in evolutionary rates in penguins (Fig. 3b).

Extant penguin lineages show a wide range of individual rates,
and phylogenetic correlation analyses (phylogenetic generalized
least squares regression) shed light on potential factors influen-
cing this disparity (Fig. 3c–e and Supplementary Data 3). Extant
penguins showed a significant negative correlation between body

mass and average sea surface temperature (Fig. 3d). Despite
species from warmer regions having shorter generation times
(Fig. 3d), a significant negative correlation was found between
evolutionary rate and average sea surface temperature (Fig. 3e),
suggesting that temperature may influence penguin evolutionary
rates by regulating selective pressures, but not only through its
effect on metabolism22. This result is in parallel with studies that
show speciation rates to be higher in polar environments than in
the tropics, pointing towards faster rates of evolution and more
opportunities for divergence at high latitudes23,24. We propose
that these patterns together reflect the signature of climate
oscillations on high latitude species: polar penguins (e.g. A.
forsteri/P. adeliae) were likely forced into more northerly refugia
during ice ages, subsequently recolonizing Antarctica during
interglacials14. These events may have led to faster evolutionary
rates as these lineages underwent population contraction-
expansion cycles and were periodically forced to adapt to new
environments.

Putative molecular adaptations unique to penguins. As pen-
guins became increasingly adapted to a flightless diving ecology, they
encountered novel selection pressures that required modifications to
their locomotory strategy, thermoregulation, sensory perception, and
diet. We tested whether these phenotypic changes have been facili-
tated through the evolution of the underlying protein-coding genes
(Supplementary Data 4) by identifying positively selected genes
(PSGs), rapidly evolving genes (REGs), and pseudogenes that relate
to specific adaptations including thermoregulation, oceanic diving,
oxygenation, underwater vision, shifts in diet and taste, body size and
immunity (see Figs. 4, 5 and Supplementary Methods for additional
details and citations). These genes either differ in all penguins
compared with other birds, differ in the genus Aptenodytes com-
pared with other penguins, or are under distinct selective pressures
within penguins (Supplementary Data 4). In the branch leading to
the last common ancestor (bLCA) of penguins, 27 PSGs (false dis-
covery rate [FDR] q < 0.05) and 13 REGs (FDR q < 0.05) were
detected. In the bLCA of Aptenodytes, 25 PSGs (FDR q < 0.05) and 3
REGs (FDR q < 0.05) were detected. In the bLCA of penguins and
four flightless/nearly flightless birds (Nannopterum harrisi, Rhy-
nochetos jubatus, Zapornia atra, and Laterallus rogersi, see Supple-
mentary Fig. 16a), five PSGs (FDR q < 0.05) and 38 REGs (FDR
q < 0.05) were detected. Within penguins, 275 PSGs (FDR q < 0.01)
were detected (Supplementary Data 4). We related the gene path-
ways and known functions of 15 PSGs and six REGs to penguin-
specific adaptations (Fig. 4a). We also highlight five genes containing
penguin-specific substitutions, seven pseudogenes, and two gene
expansions (Fig. 4a, Supplementary Figs. 14, 15).

We identified three REGs that are shared by penguins and
other flightless/nearly flightless birds. These genes are likely
associated with the shortening, rigidity, and increased density of
the forelimb bones which contribute to the flipper-like wing of
penguins (Fig. 4a). TBXT and FOXP1 are related to the
development of articular cartilage, tendons, and limb bones25,26.
SMAD3 is involved in the transforming growth factor-beta
signaling pathway, which is important for maintaining articular
cartilage and stimulating osteogenesis and bone formation27.
Perhaps most interestingly, TNMD, a PSG, is expressed during
the differentiation and developmental phase of limb tendon,
ligament, and collagen fibrils, and loss of TNMD can result in
reduced tenocyte density28. We hypothesize that TNMD may be
key to the nearly wholesale replacement of penguin distal wing
musculature by tendons, which stiffens and reduces heat loss to
the high surface area flipper (Supplementary Fig. 16a-d). We also
identified two genes KCNU1 and KCNMA1 that are related to
calcium sequestration to be expanded in the genomes of both
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penguins and grebes (Podiceps cristatus and Podilymbus podiceps)
(Fig. 4a, Supplementary Fig. 15). These genes likely contribute to
the high bone density characteristic of these taxa, which helps
reduce buoyancy for deep diving.

Penguins have densely-packed waterproof feathers, thick skin,
and a layer of subcutaneous fat enabling them to thermoregulate
in cold environments. We identified four genes under selective
pressure in common ancestors of penguins that are related to
thermoregulation (Supplementary Data 4). These genes (APPL1,
TRPC1, EVPL) showed evidence of positive selection or rapid
rates of evolution on the bLCA of extant penguins but not in
other birds (Fig. 4a). The white adipose tissue of penguins is
important for survival in the cold, acting as an insulative layer
and an energy reserve, particularly prior to catastrophic moult29.
We hypothesize several of these genes contribute to white adipose
fat storage and hence survival in cold environments. APPL1
(Supplementary Fig. 16e) and TRPC1 are related to glucose levels
and fatty acid breakdown through adiponectin30,31.

Penguins function under hypoxic conditions during deep dives
in part via myoglobin concentration and utilizing anaerobic
metabolism32,33. We identified seven genes related to oxygenation
that are under positive selection or have penguin-specific
substitutions in penguins. Transferrin Receptor 1 (TFRC) shows
a positive selection in penguins (Supplementary Fig. 16f).
Previous experimental work in cells has reported that TFRC
messenger RNA is expressed in an oxygen-dependent manner34.
Importantly, TFRC is a top candidate gene for the hypoxia

response of domesticated cattle35. We hypothesize that TFRC has
contributed to a convergent adaptation to withstanding hypoxia
in penguins. Interestingly, FIBB and ANO6, which are involved in
blood coagulation, showed a signal of positive selection in
Aptenodytes, but not in other genera (Supplementary Fig. 17).
Among all penguins, Aptenodytes have the capacity for the
deepest diving (>500 m depth)36, and thus, these gene variants
may enable these species to dive to extreme depths. While none of
the hemoglobin genes were PSGs (P-value: >0.05), we observed
that HBA-αA (A140S) and HBB-βA (L87M) genes (Fig. 4c and
Supplementary Fig. 18) show penguin-specific amino acid
substitutions that are highly conserved across all penguin species,
making them candidate molecular adaptations for surviving deep
oceanic dives under hypoxic conditions (see also ref. 37).MB is an
oxygen-binding myoglobin gene that shows positive selection at
multiple sites both between penguins and other birds and among
penguins (Fig. 4d and Supplementary Fig. 16g), suggesting that
these penguin-specific substitutions may impact the stability of
the resulting myoglobins, as seen in extreme deep-diving
cetaceans38. While cormorants and petrels also undertake deep
(>70 m) dives, we did not observe selection for TFRC and
hemoglobin genes in these groups (Fig. 4c). Another PSG,
TRPC4, is involved in the cardiovascular system39. Specifically,
TRPC4 may help widen blood vessels to decrease blood pressure
during deep dives40.

Penguins frequently forage in low light, and exhibit specializa-
tions for vision in dim, blue-green marine environments41,42.
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Morphological research has shown that at least some penguins
are cone trichromats with only three functional cone photo-
receptor types, blue-shifted long-wavelength visual pigments, and
no red oil droplets41. Genomic data support trichromatism in all
penguins, in contrast to most other birds which are tetrachro-
mats. The inactivation of the green cone opsin gene (RH2) in the
stem penguin lineage is inferred by a 12-base pair (bp) deletion,
which encompasses the codon for the critical chromophore-
binding lysine (K29643) (Fig. 4a and Supplementary Fig. 19a). As
all penguins share this deletion, reduced color vision must have
occurred in the penguin stem lineage, similar to secondarily
aquatic mammals44. Although penguins lack green cones, the

functional orthologs of the remaining visual opsins in penguins
strongly indicate the retention of violet (SWS1), blue (SWS2), and
red (LWS) cones, plus rods (RH1) (Fig. 5a). This genetic signature
is concordant with our experiments on Pygoscelis papua
(see Supplementary Methods), which demonstrate a capacity
for ultraviolet light perception at 365 nm, likely conferred by the
SWS1 opsin. Furthermore, the peak wavelength sensitivity (λmax)
of penguin LWS opsins show evidence of shifts in spectral
sensitivity to better match ambient underwater light. Relative to
key avian model species (e.g., Taeniopygia guttata, Columba livia,
Gallus gallus) and Procellariiformes, penguins possess substitu-
tions at five key tuning sites in LWS, four of which (A180, F277,
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A285, and S308) are associated with blue-shifting this pigment45

(Supplementary Fig. 19b). This suggests that this opsin has been
fine-tuned for marine foraging, as observed in cetaceans44.
CYP2J19, which encodes a carotenoid ketolase responsible for
producing red oil droplets in avian cones46, has been inactivated
in most penguins (Supplementary Data 4). Colored oil droplets
are thought to fine-tune color vision46, though this comes at the
cost of decreased visual sensitivity. Deactivation of CYP2J19 likely
allows for higher retinal sensitivity when foraging in dim light
conditions, as seen in nocturnal owls and kiwis46. Beyond these
key genes, we note that two scotopic photoresponse genes,
TMEM30A (PSG) and KCNV2 (REG), show evidence of selection
in penguins, and two others, CNGB1 and GNB3, each have a site
mutation unique to penguins (Supplementary Fig. 19c, d). These
genes play an important role in the transmission of light (Fig. 4b),
and may further enhance visual sensitivity at low light levels, as
mutations or loss of these genes impact the result in a reduced
scotopic photoresponse47,48.

A wholesale reduction in gustation capacity appears to have
accompanied the shift to underwater prey capture and consump-
tion in penguins. We verified that penguins only retain genes
associated with detecting sour and salty tastants, and lack
functional copies of genes linked to umami, sweet and bitter
tastants49 (Figs. 4a and 5a). The mutational loss of capacity for
umami taste in penguins is puzzling, given the continued
consumption of amino acid-rich prey. Intriguingly, the loss of
umami has also been reported in secondarily aquatic mammals50.
Potential explanations include a lower reliance on taste when
swallowing food whole or weakened ability to taste prey due to
cold temperatures and the sodium content of seawater (reviewed
in50).

A strong genomic indicator of diet is presented by chitinases
that are expressed in the gastrointestinal tract51. The chitinase
genes (CHIAs) exist as several paralogs, and the retention or loss
of these paralogs in mammals has been correlated with diet51.
Retention of intact CHIAs correlates with a higher degree of
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Fig. 5 Pseudogenes and site alignments for vision, taste, diet, and immunity genes. a Presence/absence of vision, taste, and dietary genes in penguins.
Phylogenetic tree of penguins and select outgroups indicate which species have complete or pseudogenes, related to vision (opsins; RH1, RH2, SWS1, SWS2,
LWS, and CYP2J19), taste (umami; TAS1R1, TAS1R3, sweet; TAS1R2, bitter; TAS2R1, TAS2R2, TAS2R3, sour; PKD211, salty; SCNN1A, SCNN1B, SCNN1G) and diet
(chitinase; CHIA). “Not found” indicates genes that could not be assembled. b Phylogenetic tree of penguins showing alignments of positively selected sites
for four genes related to immunity (TLR4, TLR5, IFIT5, and CD81). Sites are shown below the alignment. The background colors are displayed for sites that
have 50% conservation. Source data is provided as a Source Data file.
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insectivory, and CHIA losses tend to occur in lineages that
undergo dietary shifts to carnivory or herbivory. We examined
CHIAs in penguins, and in contrast to most examined birds,
which have one to four intact CHIAs52, penguins have a single
pseudogenized CHIA. At first glance, it is perplexing that
penguins would lose CHIAs, as many species consume large
amounts of crustaceans. Fossil evidence, however, reveals that
stem penguins focused primarily on larger prey items like fish and
squid, and that adaptations for capturing smaller planktonic prey
arose as recently as the Pliocene6. We propose that the two
inactivating mutations shared by extant penguins (Fig. 5) evolved
during a ~50Ma interval during which stem penguins consumed
little or no arthropod prey.

Co-evolution between hosts and pathogens is pervasive in
vertebrates. Given the range of different climatic niches occupied
by penguins, and the differences in pathogen assemblages to
which they are undoubtedly exposed, penguins may have
undergone significant adaptation to local pathogen pressures53.
Accordingly, we detected 51 PSGs in penguins that have a role in
immunity (Supplementary Data 4). Several of these genes might
be under positive selection corresponding to host-pathogen co-
evolution. For instance, we confirm previous reports53,54 that the
bacterial-recognizing Toll-like receptors TLR4 and TLR5 (Figs. 4a
and 5b) are positively selected in penguins. Moreover, the
positively selected sites located proximal (<5 Å) to the
lipopolysaccharide-binding site in TLR4 (codon 276, homologous
to chicken codon 30255) and at a flagellin-binding site in TLR5
(codon 3356) (Fig. 5b) are both in domains crucial for bacterial
recognition. In addition, we detected several other pattern-
recognition receptors, such as IFIT5, that are also under positive
selection in penguins (Fig. 4a). IFIT5 is a cellular detector of viral
RNA57, and we found a cluster of positively selected sites located
in a connecting helix forming part of the RNA-binding cleft
(codons 407, 409, 413, and 421, corresponding to human codons
412, 414, 418 and 42658,59) (Fig. 5b). This may imply that
penguin IFIT5 has undergone adaptation to different viral RNA
motifs in response to viral pathogen pressure. We also found
evidence of positive selection at viral targets of cell entry. For
example, CD81 is a co-receptor required for glycoprotein-
mediated hepatitis C viral entry into cells in mammals60, and
positive selection has been reported at the glycoprotein interface
in bat CD8161. We also found a cluster of positively selected sites
in the hepatitis C glycoprotein interface in penguin CD81 (sites
181, 182, and 186, corresponding to human sites 180, 181, and
185, and penguin site 86, corresponding to human site 185)
(Fig. 5b). This may suggest that penguins have experienced co-
evolution with a viral pathogen that relies on CD81 for cell entry.
Finally, we detected positive selection in penguin transferrin,
which is part of the “nutritional” immune system that sequesters
iron from iron-scavenging pathogens62. Outbreaks of diphtheritic
stomatitis in Megadyptes antipodes have caused increasing chick
mortality and are hypothesized to be related to increasing
susceptibility to Corynebacterium as a secondary infection63

potentially triggered by chick malnutrition due to changes in
diet, and potentially iron intake. The co-evolutionary arms race to
sequester and scavenge iron has also been detected in mammals
and fishes (e.g.,64). Taken together, these observations illustrate
that immune genes have undergone diversification in penguins.
Furthermore, many positively selected sites were clustered in
regions known to be involved in pathogen binding, which
provides evidence for extensive host-pathogen co-evolution
during the diversification of penguins into novel pathogen
environments.

Extant penguins range from ~1 kg in Eudyptula spp. to 40 kg in
Aptenodytes forsteri, but giant fossil penguins exceeded 100 kg65.
We found two genes associated with large body size that are

under positive selection in Aptenodytes compared to all other
penguin lineages (Fig. 4a). CREB3L1 is important during bone
development, and vertebrates lacking CREB3L1 have under-
developed growth66. SMARCAD1 is related to the skeleton and
plays a role in transcriptional regulation, maintenance of
chromosome stability, and various aspects of DNA repair.
Vertebrates with mutant SMARCAD1 also have underdeveloped
growth67. We hypothesize that these genes have contributed to
the large body size of Aptenodytes. Although genetic data are
inaccessible for stem penguins, the recovery of Aptenodytes as
sisters to all other extant penguins and the large size of many
stem penguins (e.g., Kumimanu and Kairuku) suggests positive
selection in these genes could be ancestral for crown penguins
with selection relaxed in non-Aptenodytes taxa.

Discussion
Our comprehensive study encompassing all extant and many
fossil penguins provides a new window into the processes that
have shaped >60Ma of evolution. Our phylogenomic analyses
confirm the Zealandian origin of penguins, extensive radiation
before dispersal to South America and Antarctica, and the second
pulse of speciation at the onset of the ACC. Our study reveals new
evidence that penguin speciation events were driven by changes
in global climate and oceanic dispersal, leading to allopatric
speciation across the Southern Hemisphere. Recent speciation in
Eudyptes, Megadyptes, Spheniscus, and Eudyptula has been rapid,
with a complicated history of gene flow and ILS that make species
boundaries within these taxa difficult to untangle (e.g.,5,14).
Importantly, the mechanisms that have shaped penguin diversi-
fication in the past (e.g., development of major current systems,
geological uplift of oceanic islands) remain important for taxa
that appear to still be in the process of speciation today (e.g.,
within Pygoscelis papua and between Eudyptes chrysolophus
chrysolophus/E. C. schlegeli, E. pachyrhynchus/E. robustus, E.
chrysocome/E. filholi/E. moseleyi, and Spheniscus spp.5,14,68).

By comparing our penguin genomes to >300 other avian
genomes, we demonstrate that penguins and Procellariiformes
have the lowest evolutionary rates observed among birds to date.
These low evolutionary rates seem to belie the profound adap-
tations penguins show for a secondary aquatic existence, but a
synthetic reading of the fossil record and the genomic data sug-
gests that penguins rapidly acquired many of the key features
associated with their aquatic life very early in their diversification
and rates of change slowed towards the present. Genomic signals
of molecular adaptations with evidence of positive selection or
penguin-specific substitutions were identified in a variety of
genres, including genes associated with oceanic diving, thermo-
regulation, oxygenation, underwater vision, taste, and immunity.
Though the overall evolutionary rate in penguins is slow, we
identified higher evolutionary rates in crown penguin ancestors
than in extant penguins and shifts in rates in individual lineages
over the past 14Ma.

While evolutionary rates and sea surface temperatures appear to
be negatively correlated, evolutionary rates and body mass are
positively correlated, suggesting that large-bodied species inhabiting
colder climates are more equipped to adapt to new environments
during climate events. Indeed, our demographic results reveal that
penguins have had a complicated history, shaped by climatic
oscillations, which has led to population crashes in those species
reliant on restricted niches and ecologies. Genomic evidence high-
lights how some penguin populations collapsed during previous
climatic shifts13,14, and the risks of future collapses are ever-present
as penguin populations across the Southern Hemisphere are faced
with rapid anthropogenic climate change69. While our analyses
suggest that ocean temperature may regulate certain selection
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pressures, the current pace of warming combined with limited
refugia in the Southern Ocean will likely far exceed the adaptive
capability of penguins70. Over 60Ma these iconic birds have
evolved to become highly specialized marine predators, and are now
well adapted to some of the most extreme environments on Earth.
Yet, as their evolutionary history reveals, they now stand as senti-
nels highlighting the vulnerability of cold-adapted fauna in a rapidly
warming world.

Methods
Genome sequencing, assembly, and annotation. We analyzed 27 genomes
comprising all extant and recently-extinct penguin species, subspecies, and major
lineages. 21 of the high-coverage genomes have been published by members of our
consortium for this project8,9. To supplement the dataset, we sequenced three high-
coverage genomes from the remaining Pygoscelis papua lineages from Falkland
Islands/Malvinas “FAL”, Kerguelen Island “KER” and South Georgia “SG” (see68),
and partial genomes from the recently-extinct Eudyptes warhami, M. a. richdalei
and M. a. waitaha (see ref. 5 and citations within). See Supplementary Methods for
more detail on sample collection, extraction, sequencing, assembly and sex chro-
mosomes. As such, we present the most comprehensive genomic dataset spanning
all modern penguins, and to the best of our knowledge, present the first genomic
dataset encompassing an entire multi-species vertebrate order. To compare our
penguin genomes to other bird genomes, we obtained 361 bird genomes recently
released by20 as part of the B10K project (https://b10k.genomics.cn), representing
36 orders and 218 families.

Additional data on modern and fossil penguins. We expanded the morpholo-
gical dataset of6 by incorporating additional fossil penguin species and seven
additional characters. The final matrix comprised 72 fossil and extant penguin taxa,
two outgroup taxa, and 281 morphological characters (Supplementary Data 5). The
average sea surface temperatures were obtained from spot locations from each
lineage (Supplementary Data 3). Generation times of each extant lineage were
obtained from the IUCN. For M. a. richdalei we used the M. a. antipodes gen-
eration time (Supplementary Data 2) (see Supplementary Methods).

Phylogenomic inference and divergence time estimation. We combined all
penguin genomes with the morphological matrix to resolve the timing and drivers
of >60 million years of penguin evolution. In doing so, we update previous phy-
logenies (e.g., 4,5,7,9) to include genomes and morphology from all penguin taxa,
including all major P. papua lineages and recently-extinct taxa. To explore the
diversification of penguins, we undertook multiple phylogenomic analyses
encompassing different subsets of taxa (Fig. 1, Supplementary Figs. 2–4 and Sup-
plementary Software).

We aligned and merged our genomes to the 363-bird alignments from the B10K
project20. The final alignments were extracted and multiple hits were filtered out
for downstream analyses. We then created four alignments accounting for different
subsets of taxa: (1) all putative species, subspecies and lineages (27 penguin taxa +
5 outgroups in total); (2) all extant lineages (24 penguin taxa + 5 outgroups in
total), removing Eudyptes warhami, M. a. richdalei and M. a. waitaha from the
former alignment; (3) all putative species and subspecies, removing P. papua
“FAL”, “KER” and “SG” lineages (21 penguin taxa + 5 outgroups in total); and (4)
only putative species (19 penguin taxa in total), further removing Eudyptula minor
“BAN” and Eudyptes chrysolophus schlegeli. We also created one large genome
alignment with all 385-bird taxa (not including Eudyptes warhami, M. a. richdalei
and M. a. waitaha) (see Supplementary Methods).

To verify the phylogenomic relationships of modern penguins, we ran
coalescent-based and concatenation-based phylogenies accounting for the different
subsets of taxa described above (see Supplementary Methods). The topology for all
clades was strongly supported and identical using all methods (Supplementary
Fig. 2 and Supplementary Data 5), except for the placement of Eudyptes warhami
among Eudyptes lineages in a single phylogeny.

We estimated the divergence time between modern taxa using the calibration
points in ref. 5 (Supplementary Data 5), except we removed Pygoscelis calderensis
based on recent revisions of topology7,9. We also added a “Crown
Procellariiformes” (which is a sister to penguins) calibration point to calibrate the
divergence between albatross and storm petrels. We also added three tip dates for
extinct taxa, using the fossils Madrynornis mirandus, Spheniscus muizoni, and the
fossil specimen NMNZ S.046318 (Eudyptes sp.) (see Supplementary Methods). All
trees shared the same topology with our initial analyses, with the exception of the
placement of the extinct Megadyptes antipodes waitaha, and had similar divergence
times with each other (Supplementary Fig. 2b) We then generated a Bayesian total-
evidence dating tree using the fossilized birth-death process (Fig. 1), expanding4 by
including more species, genome data, and updating the morphology. We also
calculated the genetic distances between our modern penguin genomes
(Supplementary Fig. 12).

Ancestral range estimation. We estimated the ancestral distribution of penguins
with the total-evidence dated phylogenomic tree and twelve models, expanding
on6,7 and following6. We used ten geographical areas and six-time slices, and
normalized distances against the shortest pairwise distance in the time slice in this
analysis. We then undertook standard model-testing (Likelihood Ratio Test and
Akaike information criterion) to identify the best-fitting model for our data. We
also used a Biogeographical Stochastic Mapping method to account for the
apparent dispersal/vicariance/etc events. See Supplementary Methods for more
details.

Quantifying introgression and ILS between taxa. Controversy still remains
regarding taxonomic boundaries between some closely related penguin taxa
(See Supplementary Methods for more details). We undertook multiple analyses to
assess the discordance of gene trees and levels of ILS and introgression (Supple-
mentary Data 6). We first calculated the frequency of gene tree discordance for
each internal branch and summarized the topologies for three different gene tree
data sets. We assessed levels of ILS and introgression by quantifying them via
internal branch lengths between all species (Supplementary Software). We tested
the direction of introgression among lineages and assessed what genomic regions
have introgressed, by analyzing 16 five-species combinations with symmetric
phylogenies (Supplementary Data 2). We also examined introgression, by selecting
different taxa from different genera and some closely related lineages/species.
Finally, we assessed the cessation of gene flow between six closely related penguin
groups. See Supplementary Methods for more details.

Demographic history of penguins. We undertook analyses of demographic his-
tory by profiling heterozygosity across each genome (Supplementary Fig. 10), and
undertaking analyses of effective population size (Ne) over the last 1 Ma. As the
number of heterozygous sites for M. a. waitaha and Eudyptes warhami remained
too low, we only present analyses for M. a. richdalei. We used the species diver-
gence time tree as an estimation of the mutation rate and detailed the divergence
times in Supplementary Data 2. We focussed on the last 500 Kya, a period
encompassing dramatic glacial/interglacial cycles (see Supplementary Methods).

Comparison of evolutionary rate. The evolutionary rate between penguins and
other birds was compared using both genomic distance and rate comparisons
(Supplementary Fig. 12). We calculated P and K2P distances between taxa fol-
lowing the formulas: P distance= p+ q and K2P-distance=−1/2ln((1-2p-q)
*sqrt(1-2q)). Here, p is the proportion of transitions while q is the proportion of
transversions between two genomes. We also estimated the evolutionary rate of
penguins using the substitution rate (substitution per site per year) = substitution
per site/divergence time. The correlation relationship between the substitution rate
and sea surface temperature for extant penguins was tested using a phylogenetic
generalized least squares (PGLS) regression (Fig. 3 and Supplementary Data 3). We
also conducted PGLS regression analysis to determine the correlation relationship
between sea surface temperature and body mass or generation time (Supplemen-
tary Software). We also compared the genome size among birds to check whether
the genome size has a correlation with the proportion of repeat elements (Sup-
plementary Data 3). See Supplementary Methods for more details.

Putative molecular adaptations. We undertook comparative genomic analyses
across all extant penguin taxa to identify genes and regulatory changes contributing
to the remarkable morphological and physiological variation within penguins. We
do not include Eudyptes warhami, M. a. richdalei, and M. a. waitaha or additional
P. papua lineages (“FAL”, “SG”, “KER”) in these analyses. Our analyses expand on
previous analyses that have only examined A. forsteri and P. adeliae (e.g., 8,49), or
those that have relied on only on-site analysis for penguins (e.g., 7).

To understand the adaptive evolution of specific phenotypes in the branch leading
to the last common ancestor of penguins, we identified positively selected genes,
rapidly evolving genes, and evolutionarily conserved genes for extant penguins under
a branch model and a branch-site model (see Supplementary Methods). We obtained
orthologous genes against the chicken genome for 44 bird species including penguins,
retaining a total of 8716 high-confidence orthologous genes. These genes were used to
conduct a multiple sequence alignment. We then detected positively selected genes/
rapidly evolving genes in the branch leading to the last common ancestor of penguins
and detected positively selected genes/rapidly evolving genes in the branches of the
last common ancestor of penguins plus four flightless/nearly flightless birds
(see Supplementary Methods for more details). Genes with a false discovery rate
adjusted P-value less than 0.05 were treated as candidates for positive selection or
rapid evolution (Supplementary Data 4). To reveal more characteristics in penguins,
we predicted whether an amino acid substitution site may have an impact on the
biological function of a protein, by comparing penguins to the 23 other birds, and
scanning for premature stop codons in each gene alignment. We also examined
specific genes individually. In addition, we annotated and undertook further
qualitative comparisons of these genes identified in penguins with over 300 other
avian species to explore what happens in other birds (Supplementary Data 7).
See Supplementary Methods for more details. While transcriptional evidence to
support adaptive inferences is highly important, such data remains unrealizable in our
study due to cultural and ethical hurdles.
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Behavioral study of gentoo penguin vision. As a representative of penguins, we
undertook a behavioral study on captive P. papua at SEALIFE Kelly Tarlton’s
Aquarium, Auckland, New Zealand to examine their ability to see in the ultraviolet
(UV) spectrum. A Tank007 TK566 black OEM 365 nm torch (Shenzhen Grandoor
Electronic Co., Ltd., China) was projected onto the snow in the enclosure, and
penguins were observed to determine whether they would follow the movements of
the torch’s UV projection. At least five penguins appeared to be able to follow the
torch’s projection. No such interest was displayed when the torch was turned off,
demonstrating that P. papua are able to see in the near UV spectrum (Supple-
mentary Movie 1).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The sequencing data and genome assemblies generated in this study have been deposited in
the NCBI database under BioProject PRJNA722815 and PRJNA556735, as well as the
CNSA of the CNGBdb database under the accession number CNP0000605. Appendix
datasets (BioGeoBEARS results and PSMC results) have been deposited on Figshare
[https://doi.org/10.6084/m9.figshare.c.5535243.v1]. Supplementary data files and source
data generated in this study are provided in the Supplementary Information and Source
Data file. The following datasets were also used in this study: CNSA accession number
CNP0000505, and NCBI Genbank accession number NP_990272, NP_001071646, NP_
001071647. Source data are provided in this paper.

Code availability
Analyses were performed using open-source software tools and the detailed parameters
for each tool are shown in the relevant methods in Supplementary Information. The
custom scripts and codes used in this study are also available in Supplementary
Software files.
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