
1.  Introduction
A primary question driving glaciological research today is: how much and how fast will global sea-level rise due 
to Antarctic Ice Sheet mass loss (Scambos et al., 2017)? The Amundsen Sea Embayment in West Antarctica has 
long been considered geometrically prone to collapse (Clarke & Lingle, 1977; Hughes, 1981). Thwaites Glacier 
(Figure 1), the largest glacier in the Amundsen Sea Embayment and the glacier projected to contribute the most 
to sea-level rise in West Antarctica beyond the next century, is likely in the early stages of this marine ice-sheet 
instability (Joughin et  al.,  2014; Rignot et  al.,  2014; Shepherd et  al.,  2012). The pacing of Thwaites Glacier 
retreat remains uncertain in part due to poorly constrained solutions for the parameters that control glacier slid-
ing. Assumptions underlying the mechanics that define the boundary condition at the ice-bed interface affect the 
glacier's modeled response to ocean forcing, increasing glaciological sources of uncertainty in predictions of the 
West Antarctic Ice Sheet's contribution to sea level over decadal timescales (Brondex et al., 2019).

To simulate catchment-scale glacier discharge and retreat, time-evolving prognostic ice-flow simulations must 
define the boundary condition at the ice-bed interface, usually as part of a diagnostic optimization experiment. 
It is customary to assume the velocity normal to the bed is zero–ice cannot penetrate the bed. The form of the 
friction law, also described as the sliding law, or sliding relation in the literature, is then typically defined to 

Abstract  Swath radar technology enables three-dimensional mapping of modern glacier beds over large 
areas at resolutions that are higher than those typically used in ice-flow models. These data may enable 
new understanding of processes at the ice-bed interface. Here, we use two densely surveyed swath-mapped 
topographies (<50 m 2 resolution) of Thwaites Glacier to investigate the sensitivity of inferred basal friction 
proxies to bed roughness magnitude and orientation. Our work suggests that along-flow roughness influences 
inferred friction more than transverse-flow roughness, which agrees with analytic form-drag sliding theory. 
Using our model results, we calculate the slip length (the ratio of internal shear to basal slip). We find excellent 
agreement between the numerically derived slip lengths and slip lengths predicted by analytic form-drag sliding 
theory, which suggests that unresolved short wavelength bed roughness may control sliding in the Thwaites 
interior.

Plain Language Summary  Ice-sheet model simulations used to predict sea-level rise require 
estimates of the slipperiness at the ice-sheet base. The slipperiness is typically inferred from observations of the 
ice-sheet surface; however, these inferences depend critically on how well the selected model domain resolves 
bumps, hills, and valleys that make up the landscape beneath the ice sheet. Over large regions, these small-scale 
features are not well mapped, but new ice-penetrating radar technology is making this more possible. Using a 
unique high-resolution map of the landscape beneath a large glacier in Antarctica, we unravel how the size of 
bumps and hills beneath the ice affect the parameterization of the resistance field used in ice-sheet models to 
simulate flow. We find that the hills, valleys, and bumps that create roughness in the landscape beneath the ice 
sheet influence the inferred resistance field below the spatial resolution of models and observations. We also 
find that bumps that block the flow of the glacier affect the inferred resistance/slipperiness of the glacier bed 
more than bumps that align with the flow direction.
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condition the tangent component of the sliding velocity, relating the bed-parallel basal velocity, 𝐴𝐴 𝒖𝒖
‖

𝒃𝒃
 , to the shear 

stress at the interface, 𝐴𝐴 𝑻𝑻
‖

𝒃𝒃
= 𝒇𝒇 (𝒖𝒖

‖

𝒃𝒃
) .

Assuming some sliding relation, 𝐴𝐴 𝒇𝒇 (𝒖𝒖
‖

𝒃𝒃
) , ice-sheet models can be used with inverse methods (e.g., Joughin 

et al., 2004; Morlighem, 2011; Riel et al., 2021; Seroussi et al., 2014) to solve for the glacier sliding velocity 
and the parameters that define the sliding relation. An example sliding parameter is the friction coefficient, β, 
in the linear law proposed by MacAyeal (1989), 𝐴𝐴 𝑻𝑻

‖

𝒃𝒃
= 𝜷𝜷𝜷𝜷

‖

𝒃𝒃
 , built on the work of Weertman (1964). The domain 

geometry defined by the ice thickness and elevation is often assumed to be known perfectly in the ice-sheet 
model inversion. The result is a velocity and parameter solution consistent with surface observations that relies 
on assumptions made about the bed geometry, defined, crucially, by ice penetrating radar data and the resolution 
of the model domain.

Theoretical descriptions of the basal boundary condition often separate the contributions from the material fric-
tion at the ice-bed interface (skin drag) and the enhanced stresses within the ice required to overcome geomet-
ric obstacles to flow (form drag; Kyrke-Smith et  al.,  2018). Models that lack sufficient resolution to capture 
small-scale features of the ice-sheet bed have no way to disentangle these two controls on ice flow. The result is 
a basal friction proxy that misrepresents sources of stress at the ice-bed interface.

Because the sliding law is poorly understood, it is customary to use the shear stress associated with an inferred 
friction proxy field (for instance, β) to initialize simulations with alternative representations of sliding phys-
ics. Some sliding relations that parameterize skin-drag are fundamentally based on assumptions for unresolved 
bed-roughness and depend strongly on flow speed (Weertman, 1957). Other sliding relations include linkages to 
independent fields such as effective pressure (i.e., de Fleurian et al., 2018), subglacial temperature (i.e., McCarthy 
et al., 2017), and till porosity (i.e., Minchew & Meyer, 2020) that evolve independently in time and produce 
different glacier responses in prognostic simulations driven by the same climate forcing. Even for models wherein 
the total drag is made to be rate-dependent–governed by form drag at slow speeds and effective-pressure-depend-
ent skin drag at faster speeds (i.e., Zoet & Iverson, 2020)–skin drag and form drag may remain mis-partitioned in 
inferred resistance proxies due to the prescribed model geometry. The inability to accurately partition basal drag 
into form drag and time-variable skin drag is a major challenge for prognostic ice-flow modeling that remains 
understudied.

Higher resolution models should theoretically better constrain form drag and thus improve estimates for skin drag 
(Kyrke-Smith et al., 2018). In this study, we use a series of smoothed swath-mapped topographies for two subdo-
mains of Thwaites Glacier (Holschuh et al., 2020) to determine the influence of the bed roughness wavenumber, 
which describes both the spatial frequency of the roughness and roughness orientation on the inferred friction 
proxy. We first describe the model physics and the equations solved in the inversion. Then, we introduce the 
data and describe the experimental framework used to explore the convolution of form drag and skin drag before 
interpreting the resulting friction proxies in the context of analytic form-drag theory.

2.  Methods
2.1.  Ice-Flow Model

Ice flow can be modeled using the Stokes equations by introducing a non-Newtonian constitutive law (Glen's 
flow law) that describes the non-linear deformation of ice under an applied stress (Cuffey & Patterson, 2010). In 
our study, we use the full-Stokes solver implemented in Elmer/Ice (Gagliardini et al., 2013) to interrogate stresses 
at the ice-bedrock interface (see Table S1 in Supporting Information S1 for all parameters used in the inversion). 
The sliding relation defines the boundary condition at the bed interface and relates the basal shear stress, τb, along 
flow to the glacier's sliding speed. In this study, we assume a sliding relation of the form

𝝉𝝉
||

𝒃𝒃
= 𝜷𝜷 |𝒖𝒖

||

𝒃𝒃
|
1

𝒎𝒎
,

� (1)

where ub is the sliding velocity at the bed, β is the friction coefficient, and m is the glacier sliding exponent 
(Weertman, 1964). Solutions for β and m are not unique and cannot be distinguished from snapshot inversions of 
a single bed-friction proxy. In many studies, m is assumed to be uniformly 3, though spatially variable values for 
the glacier slip coefficient and the sliding exponent have been inferred using time-dependent data assimilation 
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from time series of ice surface elevation and velocity (Goldberg et al., 2015). Here, we set m = 1 but focus anal-
ysis on the inferred patterns of the shear stress, τb, which, in the limit of plug flow, theoretically does not depend 
on the coupled assumptions made for β and m.

2.1.1.  Robin Inverse Method

We use the Robin inverse method, described by Arthern and Gudmundsson (2010) and implemented in Elmer/
Ice, to infer the value of the friction coefficient, β, by solving the constrained optimization problem defined by 
the objective functional,

𝑱𝑱 (𝜿𝜿) =
1

2 ∫
𝚪𝚪𝐬𝐬

𝒏̂𝒏 ⋅

(
𝝈𝝈
𝑵𝑵 − 𝝈𝝈

𝑫𝑫
)
⋅

(
𝒖𝒖
𝑵𝑵 − 𝒖𝒖

𝑫𝑫
)
𝒅𝒅𝒅𝒅 + 𝝀𝝀

1

2 ∫
𝚪𝚪𝐛𝐛

(
𝜕𝜕𝜿𝜿

𝜕𝜕𝒙𝒙

)2

+

(
𝜕𝜕𝜿𝜿

𝜕𝜕𝒚𝒚

)2

𝒅𝒅𝒅𝒅,� (2)

where 𝐴𝐴 𝒏̂𝒏 is the unit outward normal vector, σ N and σ D are the full Cauchy stress tensors for the velocity solutions, 
u N and u D, which are constrained by Neumann and Dirichlet conditions at the ice-sheet surface, respectively, and 
κ is the friction proxy varied in each inversion across the ice-sheet base. An exponential map relating the friction 
coefficient and the control parameters, β(κ) = 10 κ, is used to ensure the inferred friction coefficient is strictly 
positive.

Figure 1.  Overview map of Thwaites Glacier showing locations of the two model domains. (a) Thwaites Glacier regional subglacial topography from BedMachine 
Antarctica (Morlighem et al., 2020) with swath radar topography (Holschuh et al., 2020) superimposed for both model domains. Inset shows map location in Antarctica. 
(b) Local subglacial topography (white box in A) in the vicinity of the model subdomains. Radar swath-mapped topographies are plotted on MODIS image mosaic of 
Antarctica (Haran et al., 2018, updated 2019) for the (c) lower Thwaites grid and (d) upper Thwaites grid, which highlights influence of bed topography on ice surface 
geometry. Positions of active subglacial lakes, most recently observed to be active in 2017 (Hoffman et al., 2020; Smith et al., 2017), are marked by hashed polygons. 
Projection is polar stereographic (EPSG: 3031) and contours denote bed elevation relative to WGS84 ellipsoid.
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2.2.  Observational Data

The model-data misfit and resulting inference of the spatially distributed friction proxy is limited by the 
assumptions made about the ice viscosity, as well as the accuracy of surface velocity, surface elevation, and 
ice-thickness observations. The ice viscosity was calculated from the Arrhenius relation described by Cuffey 
and Patterson (2010) using the temperature profile from the WAIS Divide borehole assuming a thawed bed (Osri 
et al., 2012). The surface velocities used to constrain the inversions are averaged from the first quarter of 2016 
and were computed using synthetic aperture radar (SAR) data from the European Space Agency's (ESA) Coper-
nicus Sentinel-1A and Sentinel-1B satellites following the methods of Joughin (2018, updated 2019; Joughin 
et al., 2021). The surface elevation used in the model was derived from the spatiotemporal least squares fitting 
procedure described by Smith et al. (2017) applied to Cryosat-2 radar altimetry, optical satellite stereo-imagery, 
and IceBridge airborne laser altimetry from the first quarter of 2016 when subglacial lakes beneath Thwaites 
Glacier were inactive (Hoffman et al., 2020).

To test the sensitivity of model-derived friction proxies on the resolution of the basal topography, we produce 
15 topographic datasets of varying resolutions from each original swath topography (Holschuh et al., 2020) for a 
total of 30 different topographies, which we use in 15 simulations of the upper Thwaites grid and 15 simulations 
of the lower Thwaites grid (Figure 1). For each swath grid, 13 topographies were smoothed isotropically using 
smoothing kernels that filtered wavenumbers (inverse of wavelength) from 1/1,300 m −1 to 1/200 m −1. Roughness 
is often anisotropic in areas of elongated bed features, which are present in both swath-mapped subdomains of 
Thwaites Glacier. To test the influence of roughness orientation on the inferred friction proxy, two additional 
topographies were smoothed preferentially along and across flow. The anisotropically smoothed topographies 
were filtered relative to the flow direction, as defined by the reference surface velocities, using a weighted Gauss-
ian kernel. The ratio of the Gaussian kernel smoothing in the along-flow and across-flow directions was varied 
between 1:1 and 4:1 to preserve the total spectral power relative to grids smoothed in the transverse flow direc-
tion. All 30 smoothed topographies are included in the supplement along with the surface elevation model and 
surface velocities used to constrain the inversion (Figures S1–S3 in Supporting Information S1).

3.  Results
The inferred distributed basal drag (the bed-parallel shear) is shown in Figure 2 for selected isotropically filtered 
grids. These results represent the best fit to the surface velocity data filtered by the surface-to bed transfer func-
tion we solve in our inversion. We also plot the distributed normal pressure and the domain average normal pres-
sure. The Tikhonov regularization curves used to select these shear stress fields are included in the Supplement 
(Figure S6 in Supporting Information S1; Shapero et al., 2016). For both the lower and upper Thwaites Glacier 
model domains, the misfit between the observed and modeled horizontal surface velocity was reduced as the 
resolution of the bed topography increased.

To better isolate the relationship between bed roughness (see Section S4 in Supporting Information S1) and the 
inferred friction coefficient, we interpolate the inferred friction proxy to a regularly spaced grid and correlate 
the friction coefficient with the total spectral roughness energy for the suite of isotopically smoothed grids. The 
windowed power spectral roughness for the native 25 m 2 resolution grids is shown in Figure 3. The regression 
slope of the inferred friction proxy is shown in Figure 4. From the regression slopes, we can identify regions 
where smoothing the basal topography has a strong effect on the magnitude of the inferred friction coefficient 
(relationship indicated by sign of slope).

4.  Discussion
Our discussion is organized into four parts. We first discuss the normal pressure and quantify the impact of topo-
graphic smoothing on form drag. We then characterize the general patterns in the inferred friction fields, which 
remain largely unchanged across degrees of topographic smoothing. Finally, we discuss the effect of anisotropic 
smoothing on the inferred resistance field and compare the numerically derived slip lengths with predictions from 
analytic theory along flow lines.
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4.1.  Normal Pressure, a Measure of Form Drag

Using a full-Stokes model that resolves all components of the stress tensor, we can determine the influence of 
form drag directly by integrating the normal pressure. Following Schoof (2002), stress at the ice-bed interface can 
be broken down into the sum of form drag exerted by the undulating topography and tangential stress associated 
with skin drag

−∫
𝚪𝚪𝐛𝐛

𝝈𝝈 𝒏̂𝒏 𝒏𝒏𝒏𝒏 = −∫
𝚪𝚪𝐛𝐛

𝒏̂𝒏 ⋅ 𝝈𝝈 𝒏̂𝒏𝒏𝒏𝒏𝒏 − ∫
𝚪𝚪𝐛𝐛

𝒕̂𝒕 ⋅ 𝝈𝝈 𝒏̂𝒏 𝒏𝒏𝒏𝒏,� (3)

where σ is the stress tensor, 𝐴𝐴 𝒏̂𝒏 is the unit vector normal to the bed and 𝐴𝐴 𝒕̂𝒕 is the unit vector tangent to the bed in the 
direction of flow. In Weertman's original formulation, the tangent stress is assumed to be zero, and this assump-
tion is invoked in many subsequent framings of basal sliding (i.e., Schoof, 2002). The influence of form drag 
can therefore be measured by comparing the solutions for normal pressure at the glacier bed. Our simulations 
show  that the normal pressure decreases as the bed topographies are progressively smoothed, changing on aver-
age by 10 kPa as the maximum bed roughness wavenumber (minimum wavelength) is filtered from 1/100 m −1 
to 1/1,000 m −1 (Figure 2). We next turn to the patterns of skin drag that remain unchanged across degrees of 
smoothing to understand the resistance from features that are not resolved in the radar data.

Figure 2.  Inferred basal shear stress for the 1/200 m −1, 1/400 m −1, 1/600 m −1, and 1/1,000 m −1 wavenumber isotropically filtered grids, overlaying the filtered 
topography (hillshade) used in each experiment for the (a) lower Thwaites grid and (b) upper Thwaites grid. Also, shown is the normal pressure at the ice-bottom 
boundary for the (c) lower Thwaites and (d) upper Thwaites grids with the mean normal pressure solution printed below each grid.
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4.2.  Patterns of Basal Friction Inferred for Swath Mapped Topographies

The bed topography of each swath mapped grid can be clustered into two subdomains based on the roughness 
characteristics of the basal topography (Figure 4). One subdomain includes ridge-like features with roughness 
oriented equally in all directions with roughness wavelengths that span the width of the grid. The other includes 
lineated features with roughness oriented primarily orthogonal to flow with roughness anisotropy that is well 
captured by the swath topographies.

The spatial coverage of these clustered domains aligns with the unchanging patterns of skin drag we solve in our 
inversions. The lineated regions of each domain provide less resistance than the rest of the glacier bed and isolated 
patches of high resistivity control cumulative basal drag (Figures S4 and S5 in Supporting Information S1). In 
the lower Thwaites grid, we infer a two-order reduction in basal resistance in the lineated basin where we observe 
ongoing thinning in satellite altimetry time series referenced to the upstream ridge (Hoffman et al., 2020). The 
combined observations of significant inland thinning, low inferred basal drag that is independent of basal veloc-
ity, and independent measurements of low acoustic impedance (Clyne et al., 2020; Muto et al., 2020) consistent 
with water-saturated till suggest that the strength of the bed is relatively independent of the rate of deformation, 
or that the bed deforms more plastically in these regions (Clyne et al., 2020; Muto et al., 2020).

4.3.  The Effects of Smoothing on the Skin Drag

From the friction coefficients inferred for the anisotropically filtered grids, we find that along-flow smoothing 
increases the inferred skin drag at the ice-sheet bed. Smoothing the bed along-flow reduces form-drag induced 

Figure 3.  Total two-dimensional spectral variance of 6.0 km windowed bed topography for the (a) lower and (b) upper Thwaites grids with the (c), (d) k-means 
clustered regions, which we use to identify lineations (blue), ridges (red), and intermediary classes of bedforms and subglacial canyons (purple).
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stresses in the ice, which are subsequently mapped into the friction proxy (skin drag). To quantify this, we 
compare the difference in inferred basal friction coefficient for along-versus across-flow-smoothed beds. The 
difference between the average friction coefficient for the transverse-flow filtered roughness and the along-flow 
filtered roughness is 203 Pa⋅(m/a) −1 and 217 Pa⋅(m/a) −1 for the lower Thwaites and upper Thwaites grids, respec-
tively (transverse-flow filtered–along-flow filtered).

A similar relationship might be expected to manifest in the isotropic smoothing experiment: an increase in 
inferred basal friction coefficient in grids with reduced spectral roughness power. The relative magnitude of this 
relationship should be controlled by changes in unresolved form drag across the smoothed topographies, which 
would present as significant and negative regression slopes after correlating total spectral power of each grid with 
each pixel of inferred friction coefficients. Instead, we found weak and variable relationships between roughness 
and inferred basal drag across the domains (Figure 4). The regression slopes are steepest in the lineated regions 
of each basin, as identified from k-means clustering of the unfiltered bed topography (Figure 2). In these areas, 
the friction coefficient increases by a factor of two as the roughness of the bed topography decreases across the 
13 isotropically filtered simulations. But over the ridges where the overall inferred basal drag was high, the rela-
tionship between roughness reduction and inferred drag was weak, with very small changes in inferred values 
across the suite of topographies tested. The insensitivity to smoothing could imply that form drag is dominated 
by features smaller than <100 m wavelength (the highest resolution grid tested). To evaluate this hypothesis, we 
examine analytic theory for form drag and its agreement with the numerically inferred friction field.

4.4.  Agreement Between Numerical Results and Analytic Theory of Form Drag

The Weertman sliding relation we use to map distributed resistance assumes that a film of water between the ice 
and bedrock facilitates free slip at the microscopic scale, 𝐴𝐴 𝝉𝝉𝒃𝒃𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 = 0 , which can be used to derive relationships 
between area-averaged shear stress and unresolved roughness at larger scales, 𝐴𝐴 𝝉𝝉𝒃𝒃𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 = 𝒇𝒇 (𝒖𝒖𝒃𝒃) . Based on this 
area-averaged assumption, analytic descriptions of ice flow over a spatially variable ice-sheet bed can be used to 
understand the influence of roughness at different spatial scales on basal resistance to ice motion.

Figure 4.  Grids of (a, e) the friction coefficient ordered by filtered roughness were correlated with the (b, f) total spectral roughness of each grid. The grid index 
label (x-axis of (b, f) indicates the approximate scale of quarter wavelength features preserved in the smoothed topography. Sample correlations (c, g) are shown for 
two indices in regions of the lineations. Regression slope of the inferred friction coefficient with the total power spectral energy of the bed topography used in each 
simulation for all thirteen isotropically filtered grids for (d) lower Thwaites and (h) upper Thwaites grid.
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We apply analytic theory first described by Fowler (1986) and expanded by Schoof (2002) and Hogan et al. (2020) 
that formulates form drag as a function of topographic roughness. Assuming a linear friction law of the form 
τb = β ub, consistent with the law used to infer the basal resistance field in our model experiments and assuming 
that bed roughness is dominated by small wavelength features, the friction coefficient (β) can be expressed as the 
sum of contributions (βn) from features of angular wavenumber (kn = 2πfn) as:

𝜷𝜷
𝒏𝒏
= 4

𝜼𝜼

𝑯𝑯

(
𝒌𝒌𝒏𝒏

𝒌𝒌
∗

)3

𝑭𝑭

(
𝒌𝒌𝒏𝒏

𝒌𝒌
∗

)
|𝒉̂𝒉𝒏𝒏|

2

𝑯𝑯
2

� (4)

where kn is the integer wavenumber corresponding to the frequency fn = n/a, 𝐴𝐴 ℎ̂𝑛𝑛 is the Fourier component of the 
bed topography at spatial frequency fn, η is the ice viscosity, k* = 1/H is the inverse characteristic thickness, 
H, taken to be the mean thickness over the window length, a, and F(kn/k*) is a transfer function that relates the 
surface expression of basal drag to the friction coefficient (Schoof, 2002).

Following Hogan et al. (2020), we use periodogram coefficients as an approximation to Fourier coefficients as 
the glacier's bed includes substantial spatial variability in frequency content over the length of a flowline. Using 
frequency bins of width 1/a centered at fn = n/a from n = 1 to n = 256, we use an inverse-square law to fit peri-
odogram coefficients to the power spectrum periodogram of the swath topography along flowlines. Like other 
studies (Hogan et al., 2020; Jordan et al., 2017; MacGregor et al., 2013), we find that the power spectrum (peri-
odogram, Pn) can be fit well by an inverse-square law as a function of frequency (Pn = Afn correlation coefficient 
r = 0.78 for the upper Thwaites grid and r = 0.73 for the lower Thwaites grid). Assuming this relationship holds 
for all frequencies, total drag would be unbounded unless the bed becomes smooth at some scale smaller than a 
given wavelength (λN, here assumed to be the limit of the radar resolution, 25m), and the basal friction coefficient 
can be approximated by a truncated sum that simplifies to β = 8ηπ 3AλN −2.

The slip length is defined as the effective ice viscosity divided by the basal friction coefficient (L = η/β). For slip 
lengths much greater than the ice thickness, the basal drag is too small compared to the ice viscosity to induce 
substantial shear in the ice column, and the ice slides over its base in plug flow. For slip lengths much smaller than 
the ice thickness, drag is large enough compared to the viscosity to induce shearing throughout the ice column. 
We calculated slip lengths from the analytic linear sliding coefficients and use the full-Stokes solutions to calcu-
late the modeled slip lengths from the friction coefficient and the effective ice viscosity determined from modeled 
strain rates at the ice-sheet bed (Figure 5). The effective viscosity

𝜼𝜼 = 2𝑨𝑨
−

1

𝒏𝒏 𝜖̇𝜖𝒆𝒆
−

𝒏𝒏−1

𝒏𝒏� (5)

was computed using modeled effective strain rates, 𝐴𝐴 𝜺̇𝜺𝒆𝒆 =
√
𝜺𝜺𝒊𝒊𝒊𝒊𝜺𝜺𝒊𝒊𝒊𝒊∕2 , and modeled enhancement factor A = A0e −Q/RT  

(see Table S1 in Supporting Information S1 for parameters used in the inversion). The agreement between analyt-
ically and numerically derived slip lengths suggests:

•	 �Bed roughness resolved by the swath radar is well characterized by a power-law fit, indicating roughness 
resolved by swath radar may provide information about roughness below the swath radar measurement 
resolution.

•	 �Analytical predictions of basal resistance associated with form drag are consistent with the flow dynamics at 
Thwaites Glacier.

Our isotropic smoothing experiment shows that in the lineated regions of Thwaites, form drag remains at scales 
captured by the swath radar, and the inferred basal drag falls with smoothing. The roughest regions of the bed 
(the ridges) provide the most resistance to flow. In these regions (identified in red; Figure 4), the patterns and 
magnitude of the inferred friction coefficient remain unchanged across degrees of smoothing, and the ratio of the 
bed tangent stress to normal pressure is high. This could suggest that fine-scale roughness that is unresolved in 
the highest resolution swath radar topographies controls the total basal drag budget. The static drag budget asso-
ciated with the ridge surrounding the largest subglacial Thwaites lake (hashed region Figure 1, Thw124) provides 
much of the resistance we observe in static inversions for basal shear stress. This may also explain why local ice 
dynamics are relatively insensitive to changes in effective pressure inferred from satellite altimetry time series of 
the lake fill-drain cycle (Hoffman et al., 2020).
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5.  Conclusion
Our analysis shows that form drag and skin drag remain convolved in ice-sheet model inversions for basal shear 
stress at resolutions finer than the limits prescribed in most ice-sheet models and new radar swath-mapped bed 
topography (the highest resolution mapping currently possible). High resolution radar mapping cannot yield a 
topography that captures all of the form drag, and thus it seems likely that form and skin drag will always be 
blurred in numerical models. However, going forward, self-similarity in the basal roughness and the inferred 
basal resistance field may allow for a parameterization of form drag from swath radar.

The results of our study also have implications for controlled analog experiments (i.e., ring shears; Zoet & 
Iverson,  2020) that aim to partition total drag into form drag (for slow basal slip rates) and skin friction (at 
faster slip rates). The application of these models is always going to be limited by the reality that sliding rela-
tions in ice-sheet models must also capture the effects of sub-resolved bed morphology. Consistency between 

Figure 5.  Numeric slip lengths calculated for the (a) lower and (b) upper Thwaites grids shown with (c), (d) analytic slip lengths calculated with 6 km moving windows 
(see appendix for details).
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the numerically and analytically calculated slip lengths suggests that high-frequency (<∼100  m wavelength) 
roughness controls bed resistance across inland portions of Thwaites Glacier; however, the feature size of the 
flow-controlling obstacles remains unknown. Our results suggest that the controlling behavior and empirical form 
of the sliding relation associated with cm-scale clasts at low-slip speeds should be evaluated with larger-scale 
features that are still unresolved in modern ice-sheet topography. Idealized prognostic model experiments are also 
needed to better understand the sensitivity of glacier retreat and mass change due to the convolution of form drag 
and skin drag from the effects of unresolvable roughness.
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