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Abstract

Low-likelihood weather events can cause dramatic impacts, especially when

they are unprecedented. In 2020, amongst other high-impact weather events,

UK floods caused more than £300 million damage, prolonged heat over Siberia

led to infrastructure failure and permafrost thawing, while wildfires ravaged

California. Such rare phenomena cannot be studied well from historical

records or reanalysis data. One way to improve our awareness is to exploit

ensemble prediction systems, which represent large samples of simulated

weather events. This ‘UNSEEN’ method has been successfully applied in sev-

eral scientific studies, but uptake is hindered by large data and processing

requirements, and by uncertainty regarding the credibility of the simulations.

Here, we provide a protocol to apply and ensure credibility of UNSEEN for

studying low-likelihood high-impact weather events globally, including an

open workflow based on Copernicus Climate Change Services (C3S) seasonal

predictions. Demonstrating the workflow using European Centre for Medium-

Range Weather Forecasts (ECMWF) SEAS5, we find that the 2020 March–May

Siberian heatwave was predicted by one of the ensemble members; and that

the record-shattering August 2020 California-Mexico temperatures were part

of a strong increasing trend. However, each of the case studies exposes chal-

lenges with respect to the credibility of UNSEEN and the sensitivity of the out-

comes to user decisions. We conclude that UNSEEN can provide new insights

about low-likelihood weather events when the decisions are transparent, and

the challenges and sensitivities are acknowledged. Anticipating plausible low-

likelihood extreme events and uncovering unforeseen hazards under a chang-

ing climate warrants further research at the science-policy interface to manage

high impacts.
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1 | INTRODUCTION

Understanding the likelihood, trends, and driving pro-
cesses of extreme hydro-meteorological events is crucial
for decision-making (Salas et al., 2018; Slater et al., 2021).
However, it is challenging to compute robust statistics for
low-likelihood weather events from short historical
records, especially in data scarce regions. Instrumental
records are typically only a few decades long and are not
available everywhere (e.g., Alexander, 2016). Reanalysis
products are increasingly employed to estimate extremes,
as they blend observational datasets with model simula-
tions into spatially and temporally coherent outputs, that is,
‘maps without gaps’ (e.g., European Centre for Medium-
Range Weather Forecasts [ECMWF], 2018). For example,
the ECMWF ERA5 reanalysis (Hersbach et al., 2020) has
been used to estimate rainfall intensity–duration–frequency
(IDF) curves globally (Courty et al., 2019), trends in extremes
(Faranda, 2020; Geirinhas et al., 2021; Kim et al., 2021), driv-
ing processes behind extreme events (Grazzini et al., 2020),
and extreme weather indices (Kennedy-Asser et al., 2021;
Wehner et al., 2020). Although reanalyses overcome spatial
data scarcity, they can exhibit model deficiencies or inhomo-
geneities (Parker, 2016), and their typical length (~70 years)
may still be a limiting factor when studying extreme events.

Many approaches have been developed to reduce sam-
pling uncertainties, ranging from traditional statistical
weather generators (Brunner & Gilleland, 2020; Wilks &
Wilby, 1999; Yiou, 2014), extreme value approaches
(Coles, 2001; Katz, 2013), and dynamical systems theory
(De Luca et al., 2020; Faranda et al., 2017); through pooling
of observations (e.g., Berghuijs et al., 2017; Robinson
et al., 2021), the use of long archives (Hawkins et al., 2019;
Murphy et al., 2020), and paleoclimatic records (Yan
et al., 2020); to probing ensemble members from weather
and climate models (Box 1). Ensembles of opportunity
(e.g., King et al., 2017; Lewis et al., 2017), single-model
initial-condition large ensembles (SMILEs) (e.g., Suarez-
Gutierrez et al., 2020a, 2020b), ensemble reinitialization
methods (e.g., Gessner et al., 2021), and targeted large
ensemble experiments (e.g., Guillod et al., 2017; Hall
et al., 2019; Mitchell et al., 2017), have all been used for the
study of low-likelihood high-impact hydro-climatic events.

From the many datasets and methods available, here,
we build on the UNprecedented Simulated Extremes
using ENsembles (UNSEEN) approach (Thompson
et al., 2017). UNSEEN uses initialized ensemble predic-
tions to assess present climate risks from extreme
weather events. Initialized predictions provide an oppor-
tunity to assess plausible high-impact weather events as
they contain a larger sample size than observations or
reanalysis, provide physically plausible limits whereas
statistical approaches might not, and are perceived more

realistic than global climate models. Weather prediction
systems are generally of a higher global resolution than
global climate models, benefit from continuous evalua-
tion at weather services, and are initialized from

BOX 1 Ensemble pooling for the study of
low-likelihood high-impact hydro-climatic
events

By treating model ensemble members as differ-
ent, but equally plausible versions of the past,
then pooling them, the sample size of weather
events can be increased to explore the character-
istics of rare extreme events (Allen, 2003; van
den Brink et al., 2005). So far, this approach has
helped estimate the likelihood of heavy precipita-
tion (Jain et al., 2020; Kelder et al., 2020; Kent
et al., 2022; Thompson et al., 2017), floods
(e.g., Brunner & Slater, 2022; van den Brink
et al., 2004), droughts (Kent et al., 2017; Kent
et al., 2019; Pascale et al., 2020), wind losses
(Osinski et al., 2016; Walz & Leckebusch, 2019),
heatwaves (Cowan et al., 2020; Kay et al., 2020;
Thompson et al., 2019), and fire weather (Squire
et al., 2021). Furthermore, ensemble members
have been used to evaluate compound hazards
(Bevacqua et al., 2021; Hillier & Dixon, 2020) and
to detect trends in rare extreme events over past
decades (Diffenbaugh et al., 2017; Kay
et al., 2020; Kelder et al., 2020; Kirchmeier-
Young & Zhang, 2020) and in future projections
(e.g., King et al., 2017; Lehner et al., 2017;
Suarez-Gutierrez et al., 2020a, 2020b; Swain
et al., 2020). Ensemble members from weather
and climate models have been used across time-
scales, ranging from weeks (Breivik et al., 2013,
2014; Meucci et al., 2018; Osinski et al., 2016),
through months (Hillier & Dixon, 2020; Jain
et al., 2020; Kelder et al., 2020; van den Brink
et al., 2004, 2005; Walz & Leckebusch, 2019),
years (Cowan et al., 2020; Dunstone et al., 2016;
Guillod et al., 2017; Kay et al., 2020; Kent
et al., 2017, 2019; Thompson et al., 2017, 2019;
Van der Wiel et al., 2019, 2020; van Kempen
et al., 2021), and decades (Mitchell et al., 2017;
Poschlod et al., 2021) to centuries (Bhatia &
Ganguly, 2019; King et al., 2017; Lehner
et al., 2017; Stevenson et al., 2015; Swain
et al., 2020; Van der Wiel et al., 2018).
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observations and reanalysis, therefore remain closer to
the observed climate than uninitialized projections
(Meehl et al., 2021).

Whereas event attribution methods raise awareness
about the anthropogenic influence of high-impact
weather events that have occurred (e.g., Allen, 2003;
Philip et al., 2020; Stott et al., 2016) and large ensem-
bles of climate model simulations help project future
high-impact events (e.g., Deser et al., 2020; Mankin
et al., 2020), UNSEEN may raise awareness about low-
likelihood high-impact weather events that could occur
in the present climate. UNSEEN, therefore, has consid-
erable potential to improve engineering design stan-
dards (e.g., Jain et al., 2020; Kent et al., 2022;
Thompson et al., 2017), detecting and explaining trends
in rare extremes over recent decades (e.g., Kay
et al., 2020; Kelder et al., 2020), and developing event-
based storylines of plausible—yet unseen—weather
extremes (Matthews et al., 2016; Sillmann et al., 2021).
However, uptake is hindered by large data and
processing requirements, and there are challenges asso-
ciated with providing credible, multiple ‘maps without
gaps’ from initialized predictions (Box 2).

This paper presents a protocol and open workflow to
apply and ensure credibility of UNSEEN for studying
low-likelihood high-impact weather events globally
(Figure 1). The procedure begins by selecting the type of
hydro-meteorological event of interest with requisite spa-
tial and temporal scales (step 1). The type of event being
studied informs the selection of the most appropriate pre-
diction system (step 2). We then discuss how data can be
retrieved (step 3) and pre-processed (step 4) before being
evaluated (step 5). For events that are not deemed credi-
ble, practical solutions are discussed (step 6). The final
step is to apply statistics and gain insights about plausible

BOX 2 Three challenges associated with
generating an UNSEEN ensemble

The credibility of initialized ensemble predictions
to represent large samples of weather events
hinges on three common challenges faced by all
prediction systems: the independence of the
ensemble members; the stability of the model;
and the fidelity of the simulations (Kelder
et al., 2020; Thompson et al., 2017, 2019).

Independence. Ensemble member indepen-
dence (i.e., the uniqueness of each model ensem-
ble member) is closely linked to the spread and
predictability of forecasts. When a forecast is ini-
tialized, the ensemble member independence is
low because the ensemble members only differ
slightly in their initial conditions. The spread of
the individual ensemble members increases over
the forecasting horizon because they develop
their own ‘virtual world’ induced by stochastic
processes in the atmosphere. The importance of
ensemble member independence can be best
explained through an example of extreme value
analysis. Dam safety standards require prepared-
ness for very unlikely scenarios, such as the
10,000-year inflow return value. Large ensemble
hindcasts might be used to generate an UNSEEN
ensemble that can capture such events. However,
if the UNSEEN ensemble members are corre-
lated, one might think that 10,000 years were
simulated adequately, whereas the effective
ensemble size is in practice much smaller.

Stability. Ensemble members may drift away
from their initial climatology (near to an observed
state) towards a steady virtual climatology (Covey
et al., 2006; Hermanson et al., 2018; Sen et al., 2009,
2013). Such drifts are not caused by external forcing
or internal low-frequency variability but by numeri-
cal errors (e.g., Liepert & Previdi, 2012; Lucarini &
Ragone, 2011), model imbalances and/or disconti-
nuities (e.g., Rahmstorf, 1995). Drift is mostly pre-
sent in physical ocean variables, but can be evident
in atmospheric properties (Sen et al., 2013). Hence,
model instability (i.e., the presence of drift) may
deteriorate the realism of the hindcast ensemble.

Fidelity. Model simulations are virtual repre-
sentations of reality, and ‘fidelity’ refers to their
ability to realistically simulate the target event(s).
Hence, for robust analyses using climate model
simulations, their ‘virtual world’ must realistically
describe ‘reality’, that is, the extreme event being

studied. Systematic errors such as in cloud micro-
physics, tropical cyclones, convective precipita-
tion, teleconnections, and synoptic regimes in
numerical prediction systems may bias the simu-
lation of extreme events (e.g., Zadra et al., 2018).
Processes that occur on scales smaller than the
model grid cannot be resolved but must be param-
eterized, leading to lower fidelity (Sillmann
et al., 2017). Furthermore, mechanisms such as
self-intensification of droughts via land-
atmosphere feedbacks are currently not well-
represented by climate models (Miralles
et al., 2019). Therefore, an evaluation of model
fidelity is crucial.
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weather events, if the large ensemble was deemed credi-
ble or identified issues could be resolved (step 7). A tech-
nical workflow (UNSEEN-open, documented at https://
unseen-open.readthedocs.io) was developed for steps 3–5
during the ECMWF Summer of Weather Code 2020
(https://esowc.ecmwf.int/). This workflow facilitates the
process of retrieving, pre-processing, and evaluating the
latest ECMWF seasonal prediction system 5 (SEAS5,
Johnson et al., 2019) but could be adapted for other
modelling systems. Through the protocol and workflow,
this paper aims to transparently detail the data and code
that are applied, decisions that were made, challenges
that were faced, and sensitivities that may influence the
outcome of the UNSEEN approach.

Following sections step through the protocol, illus-
trated by three worked examples of extreme events that
occurred in 2020. During February, the United Kingdom
endured floods that caused more than £300 million in
damage and destroyed 3400 houses (Copernicus
EMS, 2020). Later that year, prolonged heat over Siberia
caused wildfires, invasion of pests, and infrastructure fail-
ure, as well as global impacts through the release of
greenhouse gasses from thawing permafrost (Ciavarella
et al., 2021; Overland & Wang, 2021). Meanwhile, wild-
fires in California contributed to the (then) worst fire sea-
son on record (Pickrell & Pennisi, 2020), amplifying
hardships faced by communities during the COVID-19
pandemic (Moore et al., 2020). Section 2 describes the
seven steps of the protocol. Section 3 provides an over-
view for each of the three case studies. In Section 4, we

discuss the challenges and sensitivities to be mindful of
when applying UNSEEN. Section 5 concludes the paper
with final remarks.

2 | THE PROTOCOL

2.1 | Step 1: Define the event

To apply the UNSEEN method, a hydro-meteorological
event is first defined. The event definition depends on the
scope of the analysis in terms of the target domain, time-
scale, and (meteorological) variable of interest. Any
domain, timescale, and variable(s) can be selected, for
example, to estimate design values or to quantify the like-
lihood of unprecedented events. The event definition
should reflect the impact being studied. For example,
larger spatial and temporal scales are used to study win-
ter precipitation (Thompson et al., 2017) than to study
summer precipitation over the United Kingdom (Kent
et al., 2022), reflecting widespread flooding from winter
storms as opposed to more localized convective storms in
summer. In the examples below, events were defined to
best represent the footprint of historical low-likelihood
high-impact weather incidents because we want to assess
whether these phenomena could have been ‘seen’ before
they occurred. For some cases, the definition is straight-
forward, such as for studying UK-average extreme precip-
itation in February (Section 3.3). In other cases, such as
for the Siberian heatwave (Figure 2a,c and Section 3.1)

1. Define the event

Specify the domain, timescale, and variable(s)

The type of event may inform this choice

2. Select an appropriate prediction system

7. Apply

Try potential solutions to resolve identified issues

Gain insights about plausible events

6. Resolve

3. Retrieve

U
N

S
E

E
N
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p

e
n 4. Pre-process

Merge
Select event

5. Evaluate

Independence
Stability
Fidelity

Hindcast ensemble

SEAS5

Reference dataset

ERA5 / EOBS

Deemed 

credible?Successful?

nono

Re-assess the 
study design 
and all decisions 
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FIGURE 1 Protocol to ensure

credibility and apply UNSEEN for

gaining insights about low-likelihood

high-impact events. Grey boxes

indicate the six steps of the protocol

ensuring credibility of large samples

of weather events obtained from

initialized predictions for the user-

defined domain, timescale, and

variable(s). The orange box indicates

the final step to gain insights about

plausible weather events, after a

successful outcome of a credible

large ensemble. The larger light grey

box surrounding steps 3–5 shows the
UNSEEN-open workflow,

documented at https://unseen-open.

readthedocs.io. For these steps, the

programming language and package

are indicated.
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and temperature anomalies during peak California wild-
fire activity (Figure 2b,d and Section 3.2), the domain
and timescale may be informed by an assessment of the
event anomaly1 or the region where historical records
were broken.2 Detailed protocols for defining the extent,
timescale, and meteorological variable representative of
target events can be found in Philip et al. (2020) and van
Oldenborgh et al. (2021).

2.2 | Step 2: Select an appropriate
prediction system

Increasing computational resources and improved physi-
cal understanding of the Earth System have led to
advances in seamless prediction systems over recent
decades (Alley et al., 2019; Bauer et al., 2015;

Hoskins, 2013; Palmer, 2019). The resolution and predic-
tion timescale of ensemble prediction systems are impor-
tant considerations to inform the choice of model
(Figure 3). Predictions ranging from weeks to years pro-
vide high-resolution but independent events well suited
for regional-scale multi-day to monthly events, such as
heatwaves (Cowan et al., 2020; Kay et al., 2020;
Thompson et al., 2019), cold spells, wind storms (Walz &
Leckebusch, 2019), and extreme precipitation (Jain
et al., 2020; Kelder et al., 2020; Thompson et al., 2017)
(Figure 3, Table 1). For sub-daily extremes—such as
ocean wind and wave extremes, convective storms, or
wind gusts—high-resolution simulations are required to
resolve sub-grid processes (Sillmann et al., 2017). In gen-
eral, global medium-range simulations (10–15 days) are
likely to be most appropriate for studying local, short-
duration events (e.g., Breivik et al., 2014, 2013; Meucci
et al., 2018; Osinski et al., 2016, Table 1), or additional
downscaling might be needed (e.g., Guillod et al., 2018;
Poschlod et al., 2021). For events with long persistence
such as droughts, the ensemble members from medium-
range predictions are unlikely to be unique (low
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FIGURE 2 The domains and temperature anomalies for extreme heat over Siberia (a,c) and California-Mexico (b,d). (a) March–May

2020 temperature rank within the 1979–2020 ERA5 record. Rank 1 means that temperature records were broken in 2020. (b) August 2020

standardized temperature anomaly with respect to ERA5 1979–2010 climatology. Standardized anomalies are calculated by subtracting the

mean and dividing by the standard deviation. Thick black lines indicate the selected domains, which for (a) is the region where March–May

2020 temperature records were broken over Siberia, and for (b) is where August temperature anomalies exceeded twice the climatological

standard deviation. (c,d) The standardized temperature anomalies averaged over the domains indicated in (a,b).

1See https://unseen-open.readthedocs.io/en/latest/Notebooks/
California_august_temperature_anomaly.html.
2See https://unseen-open.readthedocs.io/en/latest/Notebooks/Global_
monthly_temperature_records_ERA5.html.
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independence, Box 2). Hence, decadal predictions (1–
10 years) are recommended for events with long memory
(e.g., Hall et al., 2019, 2020; Kay et al., 2018).

2.3 | Step 3: Retrieve the ensemble
hindcast and reference dataset

The UNSEEN-open technical workflow was developed
for steps 3–5 of the protocol with a focus on the SEAS5
prediction system, but with other systems from Coperni-
cus Climate Change Services (C3S) also in mind

(see Figure 1 and supporting technical documentation:
https://unseen-open.readthedocs.io). The protocol is
applicable to any prediction system, while the code and
guidance for UNSEEN-open is developed to work with
the Copernicus Data Store (CDS, https://cds.climate.
copernicus.eu/). For the case studies presented here, we
retrieve all relevant SEAS5 forecasts, ERA5 reanalysis,
and EOBS observational data from CDS via a Python
API (https://pypi.org/project/cdsapi/). Jupyter notebooks
showing how the data are retrieved are available at
https://unseen-open.readthedocs.io/en/latest/Notebooks/
1.Download/1.Retrieve.html. SEAS5 data dimensions and

Days Weeks Months Years Decades

Local
Short-duration

e.g. Ocean waves

       Wind gusts

       IDF curves

Everything in between

e.g. Heat waves, Cold spells

       Cyclones, Wind storms

       Catchment-averaged precipitation

Regional
Long-duration

e.g. Multi-year

       droughts

       

High-resolution simulations 
to resolve sub-grid processes

Long-duration simulations 
to ensure independence

Prediction timescale

FIGURE 3 The appropriateness of hindcast ensembles for diverse types of events. This schematic shows which prediction systems are

most likely to be appropriate for diverse types of extreme events. The horizontal axis represents seamless prediction timescales, where the

arrows beneath indicate the different weather prediction systems covering the respective prediction timescales. The corresponding types of

extreme event range from local, short-duration events requiring high-resolution simulations, to regional, persistent events involving long-

duration simulations. The gradual shading indicates that multiple prediction systems might be equally appropriate for some type of events.

Fading on the left-hand side is a reminder that the first few days of forecasts cannot be used because of low independence between ensemble

members due to similar initial conditions. The schematic is based on Table 1.

TABLE 1 Hydro-meteorological extremes (variable) with spatial resolution and timescale that have been studied by pooling ensembles

from medium-range, seasonal, and decadal prediction systems

Prediction
timescale Variable Spatial resolution Timescale References

Medium-range
(10–15 days)

Ocean wind speed and wave
height; windstorms

0.1� � 0.1�; 0.25� � 0.25� 6 h Breivik et al. (2014), Breivik
et al., (2013), Osinski
et al. (2016), Meucci et al.
(2018), and

Extended range
(22–46 days)

Floods 5 km� 5 km Day Brunner and Slater (2022)

Seasonal
(6 months)

Rainfall; wind losses; river
discharge

0.4� � 0.4�; 1� � 1� 6 h; 3 days;
season

van den Brink et al. (2005), van
den Brink et al. (2004), Walz
and Leckebusch (2019), Hillier
and Dixon (2020), Jain
et al. (2020), and Kelder
et al. (2020)

Decadal (1–
10 years)

Rainfall; temperature; water
shortage; drought

0.5� � 0.5�; 1.875� � 1.25�

GCM, 0.22� � 0.22� RCM
Day;
month;
season

Thompson et al. (2019), (2017),
Kent et al. (2019), (2017),
Kay et al. (2020), (2018), Hall
et al. (2020), (2019)

Note: We present the spatial resolution of the most recent prediction systems for consistency, but some of the cited studies may have used earlier systems with
lower resolutions. GCM, Global Climate Model; RCM, Regional Climate Model.
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retrieval time are optimized by (1) retrieving pre-
computed monthly statistics (minimum, maximum, or
average) instead of retrieving all forecasts in full;
(2) selecting only the target domain and months, then
converting those into the relevant initialization months
and lead times required for the request and; (3) optimiz-
ing retrieval functions to the structure of the ECMWF
MARS archive (see the ECMWF documentation).

SEAS5 ensemble members and lead times are pooled
to create the UNSEEN ensemble (e.g., Kelder et al., 2020).
For example, UK February precipitation is forecasted from
six initialization months (i.e., the preceding September to
February, Figure 4a). For longer duration ‘target events’,
such as March–April–May average temperature over Sibe-
ria, there are fewer forecasts that can be pooled together
(from four initialization months, that is, the preceding
December to March, Figure 4b). We discard the first
month of the forecast because ensemble members are still
likely to be overly constrained to initial conditions (Kelder
et al., 2020). In the end, we are left with five initialization
months for monthly blocks (such as the United Kingdom
and California examples) and three initialization months
for seasonal blocks (such as for the Siberia example).
Pooling across the 25 ensemble members yields a potential
increase to 125 (monthly blocks) and 75 (seasonal blocks)
compared with a single observed period.

SEAS5 is, at present, the latest seasonal prediction
system of ECMWF, launched in November 2017. SEAS5
is run on a 36 km horizontal resolution and is upscaled
to a 1� grid to create a homogenous dataset with the same
resolution for all C3S seasonal prediction systems. SEAS5
contains 51 ensemble members (25 members were avail-
able through C3S at the time of analysis). The historical
seasonal predictions that are used to generate the
UNSEEN ensemble consist of two datasets: archived

operational forecasts since 2017 (years 2017–2020 are
used) and hindcasts that were originally run to evaluate
and calibrate the operational forecasts (years 1981–2016).
Inhomogeneity between the hindcasts and forecasts is
not expected, but can occur because of the differences in
initialization: SEAS5 hindcasts are initialized from ERA-
Interim (Dee et al., 2011) and OCEAN5 (Zuo et al., 2018),
but the operational forecasts use ECMWF operational
analyses instead of ERA-Interim. For further details on
SEAS5, see the ECMWF page (https://confluence.ecmwf.
int/display/CKB/C3S+Seasonal+Forecasts) and Johnson
et al. (2019).

2.4 | Step 4: Pre-process the data

In the pre-processing step, the retrieved files are merged
into one multi-dimensional dataset (Hoyer & Hamman,
2017). This dataset can be stored as a NetCDF file con-
taining the dimensions latitude, longitude, ensemble mem-
bers, time (years), and lead time (initialization months).
Then, a domain and timescale representative of the event
being studied is selected. In the workflow, the resulting data
array (with dimensions ensemble members, time, and lead
time) is converted to a data frame (with variables ensemble
members, time, and lead time) and stored as a csv file to
match ggplot functionalities in R. This step is provided in
python and is run on a local machine.

2.5 | Step 5: Evaluate the independence,
stability, and fidelity

In the evaluation step, ensemble member independence,
model stability, and model fidelity are tested (Box 2).

FIGURE 4 Schematic showing how forecasts initialized in different months can be pooled to extend the sample size for the same target

event. The grey horizontal bars represent the seasonal forecasts, which are initialized every (leftmost) month and run for 6 months after

their initialization. Dark shading indicates the relevant section of the target period (lead times greater than 1 month) used for the February

UK precipitation (a) and March–May Siberian heat (b) case studies.
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Thompson et al. (2017) developed the model fidelity test
and Thompson et al. (2019) discussed the general applica-
bility also in terms of the ensemble member indepen-
dence and model stability. Kelder et al. (2020) then
developed methods for the evaluation of the indepen-
dence and stability for a case study of extreme precipita-
tion events over Norway and Svalbard. Here, we build
upon and extend these evaluation tests so they can be
tailored to the selected event definition. We provide
functions for testing the three criteria in the ‘UNSEEN’
R-package (https://github.com/timokelder/UNSEEN). We
switch from python to R since we believe R has a better
functionality in extreme value statistics. This section
describes the evaluation tests.

Ensemble member independence is tested using a
modification of the ‘potential predictability’ test—the
ability of the forecast to predict itself (Kelder et al., 2020;
Lavers et al., 2014; Wilks, 2011). The correlation between
each ensemble member over the hindcast period is calcu-
lated, resulting in 300 distinct pairs per lead time (Kelder
et al., 2020). A trend over the hindcast period can result
in artificial detection of dependence. The independence

test, therefore, includes detrending of values by first-
differencing, whereby a new series is created from the dif-
ferences between each successive value in a time series.
Then, the non-parametric Spearman rank correlation
between ensemble members is compared with the correla-
tion arising by chance from uncorrelated members. This
may be represented as a boxplot of the correlations
between all pairs of ensemble members, with background
values for each of the boxplot statistics given by those
expected between all pairs of uncorrelated members.

For example, for the Siberian heat case study, the
independence test shows that there is stronger correla-
tion between ensemble members than would be expected
by chance (Figure 5). The dependence between ensemble
members is most pronounced for the shortest lead time
used (recalling from Section 2.3 that the first month of
the forecasts are removed to avoid dependence). The cor-
relation is not caused by a trend because the time series
have been detrended.

Model stability is tested by comparing distributions
between the different lead times (Kelder et al., 2020),
which is performed on the original, raw data. For example,
for the California wildfire danger case study, we find that
August temperatures tend to drift over forecast lead time
(Figure 6). First, the probability density function is plotted
for each lead time (Figure 6a). This shows that lead time
6 seems to be colder for the tail of the distribution, which
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contains the extreme values of interest. Then, an empirical
extreme value distribution is plotted (Figure 6b), which
focuses more on the tail of the distribution. The extreme
value distributions show that the drift is less pronounced
for rare events. For more details about the model stability
test, refer to Kelder et al. (2020).

Model fidelity is tested by evaluating the consistency
between the hindcast ensemble and a reference dataset.
For illustrative purposes, the hindcast ensemble for
February rainfall is bootstrapped into 10,000 series of equal
length to the reference dataset, with all lead times pooled
together (Kelder et al., 2020; Thompson et al., 2017). The
mean, standard deviation, skewness, and kurtosis are cal-
culated for each of the series. Histograms of these distribu-
tion characteristics are plotted, including their 95%
confidence interval. The range of the distribution charac-
teristics within the hindcast ensemble can then be com-
pared with the reference dataset (Figure 7).

2.6 | Step 6: Resolve detected issues

If the above three tests are passed, the ensemble is con-
sidered credible for applications (Figure 1). However, if

one or more tests fail, identified issues need to be resolved
prior to further use. This section discusses potential solu-
tions to resolve the issues, which are summarized in
Table 2.

When the independence test or stability tests are failed,
the simplest solution is to remove the problematic lead
times (Solution I1 in Table 2). If ensemble member depen-
dence cannot be corrected by removing problematic lead
times—for example, when dependence persists across all
lead times—it is possible to assess whether forecasts are
over-dispersive or under-dispersive (Solution I2 in Table 2)
by calculating the signal-to-noise ratio and/or the relation-
ship between ensemble mean root-mean-square error
(RMSE) and ensemble spread (e.g., Weisheimer
et al., 2019). Another desirable (but not always practical)
approach is to assess the spread in large-scale physical
drivers and surface states relevant to the hydro-climatic
extreme being studied (Solution I3), such as sea-surface
temperatures, sea-ice conditions, soil moisture, or atmo-
spheric patterns. The spread shows the extent to which the
ensemble is tied to slowly varying properties within the
prediction systems. A bounded ensemble can still provide
valuable information. In fact, many weather generators
are constructed to be constrained and bounded to typical
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weather types. Therefore, predictability is only an issue
when it originates from the initial conditions. Initial-
condition predictability implies that the ensemble mem-
bers are not unique, whereas predictability from boundary
conditions means that the ensemble members are unique
but conditioned. Note that for events with short memory
and low persistence, no initial-condition predictability is
expected beyond 2 weeks (Lorenz, 1963). Finally, the
option to calculate the effective sample size (Solution I4) is
recommended when dependence remains an issue
(Breivik et al., 2013). The effective sample size represents
the size of the dependent sample that an independent
sample would have. For example, an ensemble consisting
of 1000 years of weather events containing some depen-
dence may effectively represent only 500 unique, indepen-
dent years. For an ensemble with sample size (N) that
expresses dependence (correlation between ensemble
members, r), the effective sample size (N*) can be calcu-
lated following Breivik et al. (2013):

N� ¼ N
1þ N�1ð Þ� r :

If model stability is an issue and cannot be corrected by
removing problematic lead times (Solution S1 in Table 2),
an option could be to scale each lead time to the distribu-
tion of the shortest lead time (Solution S2).

When model fidelity is an issue, additive (for tempera-
ture) or multiplicative (for precipitation) adjustment may

be applied (Jain et al., 2020; Kelder et al., 2020;
Thompson et al., 2019) (Solution F1). If issues with model
fidelity remain, it is recommended to apply other evalua-
tion tests (Solution F2) plus assess large-scale drivers and
land surface feedbacks related to the extreme event
(Solution F3).

In this workflow, the fidelity test was used for its focus
on rare extremes. The sensitivity of the model fidelity
results to the method of assessment can be tested (Solution
F2). A wide range of methods and tools to identify biases in
the simulation of extreme events exist (Eyring et al., 2019)
that can be applied as tests for UNSEEN applications. For
example, the ‘ESMValTool’ has been developed for climate
model evaluation (Eyring et al., 2016) including extreme
events (Weigel et al., 2021). Furthermore, metrics common
to the evaluation of numerical weather prediction systems,
such as the forecast reliability and rank histograms, can be
used for prediction systems across timescales (Bellprat
et al., 2019; Palmer & Weisheimer, 2018; Suarez-Gutierrez
et al., 2021; Weisheimer & Palmer, 2014). In addition to the
statistical evaluation methods presented so far, it may be
desirable to evaluate the large-scale drivers and feedback
processes of the extreme events (Solution F3) and how they
are represented in the model (e.g., van der Wiel et al., 2017;
Vautard et al., 2019). For example, Kay et al. (2020) and
Thompson et al. (2019) assessed the large-scale drivers of
simulated unseen temperature events. When inconsis-
tencies in the variability (standard deviation) or shape
(skewness and kurtosis) remain, more advanced correction
methods can be applied with caution, such as the Inter-
Sectoral Impact Model Intercomparison Project (ISI–MIP,
Warszawski et al., 2014) bias adjustment approach (Hempel
et al., 2013; Lange, 2019), which is commonly used to study
climate impacts (e.g., Mitchell et al., 2017). For more guid-
ance on bias adjustment methods, see for example Cannon
et al. (2020) and Maraun and Widmann (2018).

2.7 | Step 7: Apply statistics

When the previous steps resulted in a credible large
ensemble for analysis, extreme value theory can be
applied to gain insight into low-likelihood events. This
section discusses the steps that we take to analyse the
event statistics.

One way to determine whether UNSEEN could have
detected historical low-likelihood weather events is to
simply assess whether one (or multiple) of the ensemble
members exceeds the magnitude of the historical event.
The likelihood of the historical event can then be esti-
mated as the percentage of the ensemble members that
exceeded the threshold (e.g., Thompson et al., 2017). It is
also possible to compare the UNSEEN ensemble member

TABLE 2 Potential solutions when issues with ensemble

member independence, stability, or fidelity are detected

Independence Stability Fidelity

Solution I1:
Remove
problematic
lead times

Solution S1:
Remove
problematic lead
times

Solution F1:
Additive/
multiplicative
adjustment

Solution I2:
Assess whether
forecasts are
over-dispersed
or under-
dispersed

Solution S2: Scale
individual lead
times

Solution F2: Apply
other evaluation
tests

Solution I3:
Assess the
spread in large-
scale physical
drivers

Solution F3:
Evaluate drivers
and feedback
processes

Solution I4:
Calculate the
effective
sample size

Solution F4:
Advanced bias
adjustments
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with the highest magnitude to the magnitude of the his-
torical event to demonstrate how severe an event could
get based on a worst-case scenario from UNSEEN
(e.g., Walz & Leckebusch, 2019). Furthermore, a thresh-
old can be selected based on system vulnerabilities. For
example, for the Siberian heatwave, we count the num-
ber of thawing events (MAM mean temperature >0�C)
within the UNSEEN ensemble and the reference data.

Another, more advanced way is to apply extreme
value theory (Coles, 2001). We demonstrate this method
for the record-shattering California-Mexico August tem-
peratures. We use the UNSEEN-trends approach (Kelder
et al., 2020) to estimate changes in the event by fitting a
non-stationary generalized extreme Value (GEV) distri-
bution (Katz, 2013) to the pooled UNSEEN data and to
the reference data, excluding the 2020 event. As in Kelder
et al. (2020), we allow the location and scale parameters
of the GEV distribution to vary linearly with time,
whereas the shape parameter is assumed constant over
time. In addition, we fit a stationary GEV distribution
and test which distribution (stationary or non-stationary)
better fits the data using a likelihood-ratio test. The
parameters of the GEV distributions are estimated using
maximum likelihood estimation (MLE) and statistical
uncertainty is estimated as 95% confidence intervals
based on the normal approximation, employing the
extRemes package in R (Gilleland & Katz, 2016). The
resulting distribution can then be used to determine the
likelihood of the historical events, and whether, and by
how much, the frequency and magnitude of such events
have changed over recent decades.

3 | CASE STUDIES

We now present three case studies where we apply the
UNSEEN protocol to the 2020 Siberian heatwave, tem-
perature anomalies during peak California wildfire activ-
ity, and UK extreme precipitation events. We describe
the steps taken to generate and evaluate the UNSEEN
ensemble for each of the case studies. When issues are
identified, the options to resolve them are discussed and
appropriate solutions applied.

3.1 | Siberian heatwave

The detailed technical steps involved in producing this
example may be followed at https://unseen-open.
readthedocs.io/en/latest/Notebooks/examples/Siberian_
Heatwave.html.

For the Siberian heat case study, our choice of
domain and duration was informed by the location and

season in which monthly temperature records were bro-
ken (Section 2 and Figure 2a). We selected the area
bounded by 65–120�E, 50–70�N for the March–May
(MAM) season. Seasonal predictions (SEAS5) were
selected as the hindcast ensemble and reanalysis (ERA5)
was chosen for reference data. All forecasts simulating
March–May monthly temperatures were retrieved and
pre-processed (averaged and merged) to represent the
event definition. Time series show that the 2020 event
was the highest within the ERA5 record and exceeded
the simulations within the UNSEEN ensemble (blue
cross compared with grey boxplot in Figure 8a). One
interpretation is that the 2020 event was rarer than the
75 ensemble members within UNSEEN; another is that
UNSEEN does not represent the true likelihood of such
an extreme event. Therefore, an evaluation of the appli-
cability of UNSEEN for this event definition is crucial.

We find some ensemble member dependence for lead
time 2 (Figure 8b) but no drift over any lead times
(Figure 8c–d). The fidelity test using all lead times shows
that there is a cool bias in SEAS5 MAM temperatures
compared with ERA5 (Figure 8e). The standard devia-
tion, skewness, and kurtosis are within the 95% confi-
dence intervals, but the standard deviation is at the lower
end (Figure 8f–h). Note that the difference between
SEAS5 and ERA5 could also be due to temperature over-
estimation by ERA5 for this particular season and
domain. However, Ciavarella et al. (2021) report little dif-
ference between ERA5 and GISTEMP 250-km anomalies
(Hansen et al., 2010) for the Siberian heat event.

The UNSEEN March–May average Siberian tempera-
ture ensemble based on SEAS5 expresses low ensemble
member dependence for lead time 2, a cool mean bias, as
well as low variability compared with ERA5. Lead time
2 could be removed from the ensemble to avoid dependence
(Solution I1 in Table 2) but we choose to keep the ensemble
members to retain a large sample size, because the low
median correlation values of ~0.2 fall within accepted corre-
lation values of <0.25 previously found for floods
(Brunner & Slater, 2022). As a result of this decision, the
effective sample size may be slightly lower than the 75 mem-
bers being used because of the low dependence between
ensemble members (see ‘independence’ in Box 2). The
dependence and the sensitivity of the dependence result to
other tests could be further assessed (Solutions I2–4 in
Table 2) but is not deemed necessary in this case. We apply
a mean bias adjustment (Solution F1) to solve the issue with
the cold bias of the UNSEEN ensemble (Figure S1). The
UNSEEN ensemble remains conservative with a low SEAS5
standard deviation (although not statistically significant
from ERA5 at the 95% confidence level). Further evaluation
tests can be applied (Solution F2), and large-scale drivers
and land surface feedbacks that might be unrealistic can be
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assessed (Solution F3) but are beyond the scope of this
paper. An evaluation of feedbacks involving soil moisture
or snow cover that contributed to the 2020 anomaly
(Ciavarella et al., 2021; Overland & Wang, 2021) merits fur-
ther research.

The resulting bias-adjusted UNSEEN ensemble is
inherently conservative because of the low variability, yet
captures the 2020 event, along with five thawing events
(MAM mean temperature >0�C), with a near possibility
as early as the 1990s (Figure 9). In comparison, there had
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been no observed thawing events within the reanalysis
before 2020.

3.2 | Temperature anomalies during
peak California wildfire activity

The technical steps to reproduce this example are avail-
able at https://unseen-open.readthedocs.io/en/latest/
Notebooks/examples/California_Fires.html.

Wildfire activity cannot be studied from meteorologi-
cal variables alone, because wildfire activity depends not
only on weather conditions but also on fuel stock, igni-
tion agents, and management (Flannigan et al., 2013).
For example, weather conditions may be very dry, but
without fuel or ignition source(s), wildfire activity is
unlikely. However, weather-driven fire danger conditions
can be studied from meteorological variables (e.g., Vitolo
et al., 2020). For example, trends in temperature and pre-
cipitation are associated with rising likelihood of wildfire
conditions across California (Goss et al., 2020). In 2020,
the wildfire season peaked in August, coinciding with
record high-temperature anomalies (Figure 2b,d). Here,
we demonstrate the applicability and potential of SEAS5
in estimating the likelihood and trend of such a tempera-
ture anomaly. We selected a contiguous, land-only region
where August temperature anomalies were more than
twice the climatological (1979–2010) standard deviation
based on ERA5 over the domain 100–125�W, 20–45�N
(Figure 2b).

The ERA5 time series shows a strong increase in
August temperatures over 1981–2020 for this domain,
which is also present in SEAS5 (Figure 10a). We find low
ensemble member dependence in the UNSEEN ensemble
for all lead times (Figure 10b). We also find that the
model is not stable, especially for lead time 6 the model
has a cold bias (Figures 6 and 10c,d). Lastly, we find that
SEAS5 overestimates mean August temperatures when
compared with ERA5, but that the standard deviation,
skewness, and kurtosis are not significantly different at a
95% confidence level (Figure 10e–h).

Following these tests, we remove lead time 6 from the
ensemble to solve the instability for lead time 6 (Solution
S1 in Table 2) and apply a mean bias adjustment to solve
the warm bias (Solution F1), leaving 100 members in the
pooled data. Removing problematic lead times is not an
option to solve the dependence (Solution I1 in Table 2)
because the issue persists across all lead times. Further
assessment of the independence between ensemble mem-
bers was not deemed necessary in this case because of
the low median correlation values (Figure 10b).

We then use extreme value statistics and find that the
trend in 2-year temperature extremes, which can be
detected well within short observational records, is
similar between UNSEEN and reanalysis (Figure 11a). Both
reanalysis and UNSEEN suggest a strong increase in the
magnitude of 100-year temperature extremes (Figure 11b),
but the statistical uncertainty is much larger within the
40-year reanalysis record (blue envelope in Figure 11b) than
within large sample size of UNSEEN (100 � 40 years,
orange envelope in Figure 11b). When we compare the
GEV distributions with the ‘year’ covariate for 1981 as
opposed to 2020, we find that the distribution of tempera-
ture for 1981 does not reach the magnitude of the 2020
event, whereas the distribution for the year 2020 does cap-
ture the event for both reanalysis and UNSEEN
(Figure 11c). This result suggests that the temperature
anomaly observed in 2020 could not have occurred a few
decades ago and that it was still unlikely to occur in the
present climate (i.e., the distribution for the year 2020), with
a return period of more than 100 years, that is, <1% chance
of occurrence. This trend is consistent with record-breaking
or ‘record-shattering’ temperatures being expected to occur
more frequently in a rapidly warming climate (Coumou
et al., 2013; Fischer et al., 2021; Power & Delage, 2019).

3.3 | UK extreme precipitation

The technical steps to reproduce this example are avail-
able at https://unseen-open.readthedocs.io/en/latest/
Notebooks/examples/UK_Precipitation.html.
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Three storms hit the United Kingdom in February
2020, breaking the UK-average monthly precipitation
record according to the Met Office (2020). Hence, we
select country-averaged February precipitation for the
UK case study. In this case, we employ the EOBS version
20.0e observational dataset as reference (Cornes
et al., 2018) because precipitation observations (UK Met

Office, 2020) suggest the reanalysis values may have
underestimated the event. We upscale this dataset to the
resolution of SEAS5 using bilinear interpolation and take
the same UK spatial average as for SEAS5.

The UK February precipitation time series shows that
the 2020 event was not the highest on record within the
EOBS dataset (Figure 12a), while it was the highest
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within the HadUK-Grid dataset (Davies et al., 2021;
Hollis et al., 2019). The discrepancy likely arises from the
number of observation stations being incorporated, with
the local HadUK-Grid dataset containing more rain
gauges. Note that later versions of EOBS may have incor-
porated more observation stations for the year 2020, but
these versions were not available at the time of analysis.

We find that SEAS5 UK February precipitation ensem-
ble members are independent (Figure 12b) and stable
(Figure 12c,d). However, there is too little variability within
SEAS5 when compared with EOBS (Figure 12e–h), raising
concerns about model fidelity. Independent UNSEEN anal-
ysis of February 2020 UK precipitation using the Met Office
decadal prediction system and observations also found a
lack of fidelity, with observed variability outside the range
of that simulated (Kay 2021, personal communication).
A mean bias adjustment (Solution F1 in Table 2) does not
help in this case, because it will not sufficiently adjust the
standard deviation. The result will likely not be sensitive to
the evaluation test (Solution F2), such as a rank histogram

or reliability diagram, given that the lack of variability is
also evident in the time series (Figure 12a). Further evaluat-
ing the drivers (Solution F3) and comparing the results to
other datasets (Section 4.2) would be recommended, as the
realistic simulation of large-scale winter precipitation vari-
ability over the United Kingdom may be hampered by the
SEAS5's resolution. For example, Thompson et al. (2017)
also found that DePreSys3 does not simulate the orographic
enhancement over the Scottish highlands. Flat regions are
better simulated, such as southern England.

We do not take this case study further, as the gener-
ated ensemble of UK-average February precipitation did
not pass the fidelity test and could not be resolved. Note,
however, that UNSEEN can successfully be applied to
monthly winter precipitation over Southeast England
(Thompson et al., 2017). Furthermore, for a detailed anal-
ysis of the dynamics of the wet Winter 2019/2020, includ-
ing the attribution of the record-breaking February 2020
precipitation to climate change, see Davies et al. (2021)
and Hardiman et al. (2020).

FIGURE 11 Trends in extreme

temperatures estimated by UNSEEN

and reanalysis. (a,b) The temporal

change in 2-year (a) and 100-year

(b) August temperature extremes.

Blue crosses indicate events in ERA5

(OBS). Grey circles indicate SEAS5

ensemble members (UNSEEN).

(c) The GEV distribution for the

covariates 1981 and 2020.

Distributions based on UNSEEN are

indicated by solid lines with

uncertainty estimates in darker

shading. The distributions based on

ERA5 data are indicated by dashed

lines and the uncertainty range by

lighter shading. The magnitude of

the 2020 event is indicated with a

black horizontal line. In all plots and

for both OBS and UNSEEN,

statistical uncertainty is estimated as

95% confidence intervals based on

the normal approximation.
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4 | DISCUSSION

This paper sets out a protocol for generating a credible,
large ensemble for event definitions specified by a user
(step 1). The protocol guides the user through the selection
of an appropriate prediction system (step 2), the retrieval
(step 3), pre-processing (step 4), and evaluation (step 5) of

the data, and how to resolve detected issues (step 6).
Finally, the protocol describes the use of statistics to gain
insight into low-likelihood events (step 7). A technical
UNSEEN-open workflow for steps 3–5 is presented using
ECMWF seasonal prediction system SEAS5 (Johnson
et al., 2019). In this section, we reflect on the challenges
and sensitivities to be mindful of when applying UNSEEN.
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4.1 | Sensitivity to the choice of event

Here, the event definition is informed by the meteorolog-
ical rarity of observed low-likelihood high-impact events.
This approach does not necessarily best match target
impacts. For example, local fire weather indices over Cal-
ifornia would be more informative than the temperature
anomaly over a larger domain that we assessed, also not-
ing that high impacts do not necessarily need to result
from rare meteorological events (Van der Wiel
et al., 2020). Furthermore, the outcome of UNSEEN is
sensitive to the selection of the spatial–temporal scale of
the event, as is well documented for event attribution
studies (e.g., Angélil et al., 2014; Leach et al., 2020; Uhe
et al., 2016). Finally, an event definition based on
observed events is not available for unprecedented
events. The outcomes of our case studies are therefore
(1) not optimized to study impacts, (2) only hold for the
specified spatial and temporal scales, and (3) can only be
applied to events in hindsight. We believe these assump-
tions are justified to demonstrate how UNSEEN can be
used to gain insight into low-likelihood events, for exam-
ple, whether past events could have been detected with
UNSEEN. When aiming to inform decision-making based
on UNSEEN, sensitivities must be assessed and the event
definition should best match target impacts, for example,
through local expert knowledge of the domain and time-
scale that are most vulnerable to the target weather
event. Practical factors may weigh in as well, such as our
workflow considerations to use the average of, or daily
max/min values within, monthly or seasonal blocks
(Section 4.3). The protocol can help to understand the
applicability of UNSEEN for the chosen event definition
and can be used to test the sensitivity of the outcomes to
various spatial–temporal scales.

4.2 | Model adequacy and availability

Ideally, the adequacy of the models should inform the
selection of an appropriate prediction system (step 2 and
Figure 3). However, the availability of model simulations
may be another important consideration. The UNSEEN-
open workflow was developed to generate and evaluate
an UNSEEN ensemble from open access Copernicus
SEAS5 simulations. SEAS5 has been used in other
UNSEEN studies because it provides a stable, homoge-
neous, global, high-resolution, large ensemble of weather
variables (Hillier & Dixon, 2020; Kelder et al., 2020).

The outcomes from UNSEEN based on SEAS5 initial-
ized ensemble predictions are not completely indepen-
dent from outcomes based on reanalysis data. For
example, the California-Mexico August temperature

trends based on SEAS5 are conditioned on ERA-Interim
(1981–2016) and ECMWF operational analysis (ERA5 for
2017–2020, see ‘Step 3: Retrieve’). Trends in low-
likelihood weather events such as the August 2020
California-Mexico temperatures are hard to constrain
from reanalysis data alone, and the large sample size
from UNSEEN (SEAS5) can help. The prediction time-
scale used here is at least 1 month, so the ensemble mem-
bers are less constrained to observation stations than
reanalysis. UNSEEN is, therefore, less reliable than
reanalysis but represents many weather realizations that
may face less of an issue with assimilation inhomogene-
ity over time. The evaluation of SEAS5 to ERA5 can con-
firm if the large sample size from UNSEEN (SEAS5) is as
reliable as ERA5, but both may equally face model
errors.

4.3 | UNSEEN-open workflow
considerations

In this workflow (steps 3–5 in Figure 1), SEAS5 monthly
statistics are retrieved locally from the Copernicus Cli-
mate Data Store (Buontempo et al., 2020; Thepaut
et al., 2018), which are openly available, freely accessible,
and can be retrieved without an intermediary. The case
studies in this paper include monthly average statistics
from CDS, but the workflow is sufficiently flexible to
draw on monthly minimum or maximum data. For com-
pound or multi-day events, daily data can be retrieved
and processed to obtain the required metric.

There are two points of attention for users to consider
when using SEAS5: (1) the ensemble size depends on the
selected block length and (2) the ensemble represents the
conditions of the most recent decades only. Forecasts run
for 6 months and, therefore, an ensemble size of
125 members can be created for monthly blocks, 75 mem-
bers for seasonal blocks, and events longer than 5 consec-
utive months are not possible without stitching forecasts
(Section 2, step 3). When longer time periods are required
to evaluate internal climate variability, century-long sea-
sonal hindcasts with a similar set-up to SEAS5 but at
lower resolution, such as the Coupled Seasonal Forecasts
of the 20th Century (CSF-20C, Weisheimer et al., 2021),
or the Atmospheric Seasonal Forecasts of the 20th Cen-
tury (ASF-20C, Weisheimer et al., 2017) may be useful.
The workflow is adjustable for other prediction systems,
including medium/extended range, seasonal and decadal
(Table 1), but, here, retrieval was optimized for Coperni-
cus SEAS5.

At present, hindcast datasets are available for down-
load and need to be pre-processed, which can be a time-
consuming process. An open workflow as presented in
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this paper would benefit from having large volumes of
data such as the SEAS5 hindcast accessible on-demand
via a cloud-based service (Pappenberger et al., 2021;
Wagemann et al., 2018). An example of a cloud service
for the meteorological and climate community, which in
the future may be incorporated in the UNSEEN-open
workflow to obviate retrieval of data, is the European
Weather Cloud (Pappenberger & Palkovic, 2020).

4.4 | Sensitivity to evaluation metrics
and solutions

The applicability of UNSEEN is determined by multiple,
interrelated factors. Ensemble member independence,
model stability, and model fidelity depend on the type of
event being studied (variable of interest, spatial and tem-
poral extent, and geographical location), as well as on the
prediction system applied. The prediction timescale fur-
thermore influences the independence and stability, as
longer simulations are more independent but have a
higher chance of drifting away from climatology. Differ-
ent systems, and the way they have been downscaled, ini-
tialized, and coupled, may yield different biases.
Therefore, it is recommended that our protocol is used to
explore the applicability for the selected event definition
and prediction system(s).

All three case studies of extreme weather events in
2020 express challenges with respect to the credibility of
UNSEEN (independence, stability, and fidelity, see
Box 2). We note that a wide range of evaluation metrics
exist, especially to evaluate the model fidelity (described
under Solution F2 and F3), and that the sensitivity of the
identified challenges to evaluation metrics could be fur-
ther assessed. For two out of three case studies, we find
that solutions could be applied to deem the UNSEEN
ensemble credible for further analysis. We note that the
outcome of UNSEEN is sensitive to the judgement of
appropriate solutions. For example, here, we identified
weakly dependent ensemble members for the Siberian
heatwave and for the California-Mexico temperature
anomalies. There is a trade-off between discarding useful
information compared with keeping dependent members.
Here, we chose to keep all members as the ensemble
member dependence was low. If we would have removed
certain lead times, the results would be different.

The outcome of UNSEEN is furthermore sensitive to
the type of bias adjustment. The UNSEEN ensemble may
sample plausible extreme events that never occurred, and
bias adjustment techniques may constrain the ensemble
to observed extremes—thereby removing information
about unseen events. Furthermore, observations are not
the ‘truth’ under internal variability, resolution

mismatch, and other sources of error (Casanueva
et al., 2020; Wilby et al., 2017). Attention is therefore
needed to evaluate which statistical properties of the
extremes are being constrained to observations.

4.5 | Sensitivity to the analysis and
framing

The outcome of UNSEEN is sensitive to the statistical
analysis being applied. In particular, the estimation
method, time window, and initialization method of
UNSEEN (SEAS5) are factors that may influence esti-
mated likelihoods and detected trends. Here, we allow
the location and scale parameters to vary linearly with
time (step 7). Other regression methods, other covariates
than time, other reference data, and other prediction sys-
tems allowing longer time periods could be explored, but
such analyses are beyond the scope of this paper.

Furthermore, correct framing of the result of an
UNSEEN study is crucial. For example, for the Siberian
heatwave, we did not want to apply extreme value theory
or attach likelihood estimates to the event, because the
UNSEEN ensemble was conservative with a low standard
deviation. Nonetheless, we are confident in saying that
the 2020 March–May Siberian heatwave was predicted by
one of the ensemble members prior to the event happen-
ing, along with other simulations of thawing events that
had not yet been observed. The sensitivity of likelihood
statistics to portfolio risks should also be considered:
whereas the chance of a single high-impact weather
event to occur might be very low, the chance of any type
of high-impact weather event to occur anywhere in the
world is substantially larger. For example, Thompson
et al. (2017) showed a 7% chance for unprecedented win-
ter monthly precipitation to occur in a given year for
southern England, but 34% when also including the
chance of unseen events over the Midlands, East Anglia,
or northeast England.

4.6 | Scope for multi-model multi-
method approaches

Most studies evaluating unprecedented extreme events
have used single models to assess their magnitude and
frequency, but such analyses are sensitive to model struc-
tures (e.g., van Kempen et al., 2021; Wilcke et al., 2020).
Multi-model approaches have therefore been used in
weather predictions, climate projections, and event attri-
bution studies (Palmer et al., 2005; Philip et al., 2020;
Tebaldi & Knutti, 2007). Jain et al. (2020) were the first to
apply a multi-model ensemble in an UNSEEN approach
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using the Climate-System Historical Forecast Project
(Tompkins et al., 2017) to study extreme summer rainfall
over India. Future work may investigate the extension of
the UNSEEN-open workflow to include all seasonal pre-
diction systems available in the CDS.

Furthermore, UNSEEN is one tool within many avail-
able tools to study plausible low-likelihood high-impact
weather events. There is scope to assess the mutual benefit
of various approaches, as is common for event attribution
(Philip et al., 2020; van Oldenborgh et al., 2021), including
ensembles of opportunity (e.g., King et al., 2017; Lewis
et al., 2017), single-model initial-condition large ensembles
(e.g., Suarez-Gutierrez et al., 2020a, 2020b), ensemble
reinitialization methods (e.g., Gessner et al., 2021),
targeted large ensemble experiments (e.g., Guillod
et al., 2017; Mitchell et al., 2017), pooling of observations
(e.g., Berghuijs et al., 2017; Robinson et al., 2021), long
archives (Hawkins et al., 2019; Murphy et al., 2020), paleo-
climatic records (Yan et al., 2020), and statistical weather
generators (Brunner & Gilleland, 2020; Wilks &
Wilby, 1999; Yiou, 2014). Seasonal and decadal prediction
systems may, furthermore, contribute additional lines of
evidence to event attribution statement if their trend esti-
mates can be extrapolated to represent pre-industrial
climates.

5 | CONCLUSION

Hindcast ensembles from weather predictions have con-
siderable potential for advancing understanding of low-
likelihood high-impact weather events. Estimates of rare
extreme events or compound extremes can be improved
through the large number of weather events that can be
generated from these ensembles (UNSEEN, van den
Brink et al., 2004, Thompson et al., 2017). To improve
uptake and ensure rigour of these methods, we provide a
protocol and open workflow to apply UNSEEN for
gaining insights about low-likelihood high-impact events.

Demonstrating our protocol and open workflow using
SEAS5, we show that a stress-test of March–May thawing
events over Siberia would have shown their plausibility
within the UNSEEN ensemble before the event hap-
pened, for which the far-reaching impacts on permafrost
peatlands were already widely known (e.g., Swindles
et al., 2015). Assessing UK February monthly precipita-
tion revealed an issue with the variability of SEAS5 for
this event definition, illustrating how the protocol may
help understand the limitations of UNSEEN and diag-
nose the lack of simulated precipitation variability in the
underlying forecasting system. In the case of August 2020
temperatures during peak California wildfire activity,
anomalies exceeded previous records by a considerable

margin (Figure 2c,d). Such anomalous events can have
large socio-economic consequences, especially when cli-
mate risk perception is driven by past experiences (Aerts
et al., 2018; Weber, 2006). The UNSEEN approach reveals
a strong trend in temperature extremes over the last
40 years, which has increased the likelihood of events
like the August 2020 temperature anomalies in the pre-
sent climate. UNSEEN shows the plausibility of such a
record-shattering event in the present climate, but not in
the past climate. This case study shows how UNSEEN
may help to understand what kind of unseen weather
events could now occur in the present climate, and thus
in the near future.

Based on these case studies, we conclude that
UNSEEN can provide new insights into low-likelihood
high-impact events, but that there are several challenges
and sensitivities of which to be mindful. It is, therefore,
key to be transparent about all decisions that are made
throughout the analysis, given the many sensitivities that
can arise from these decisions. Our protocol and open
workflow assist users to identify challenges and sensitivi-
ties, and can help gain credible insights for target high-
impact weather events. The results warrant further
research and application of UNSEEN at the science-
policy interface, to improve our preparedness to low-
likelihood high-impact weather events.
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Berner, J. et al. (2018) Systematic errors in weather and climate
models: nature, origins, and ways forward. Bulletin of the Amer-
ican Meteorological Society, 99, ES67–ES70 Available from:
http://collaboration.cmc.ec.gc.ca

Zuo, H., Alonso-Balmaseda, M.A., Mogensen, K. & Tietsche, S. (2018)
OCEAN5: the ECMWF ocean reanalysis system and its real-time
analysis component. Reading: European Centre for Medium-
Range Weather Forecasts. http://dx.doi.org/10.21957/la2v0442

SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher's website.

How to cite this article: Kelder, T.,
Marjoribanks, T. I., Slater, L. J., Prudhomme, C.,
Wilby, R. L., Wagemann, J., & Dunstone, N.
(2022). An open workflow to gain insights about
low-likelihood high-impact weather events from
initialized predictions. Meteorological Applications,
29(3), e2065. https://doi.org/10.1002/met.2065

KELDER ET AL. 25 of 25Meteorological Applications
Science and Technology for Weather and Climate

http://www.nature.com/scientificdata
http://www.nature.com/scientificdata
https://www.tandfonline.com/action/journalInformation?journalCode=tjde20
https://www.tandfonline.com/action/journalInformation?journalCode=tjde20
https://doi.org/10.1002/asl.891
https://doi.org/10.1002/asl.891
https://www.pnas.org/content/111/9/3228
https://www.pnas.org/content/111/9/3228
https://doi.org/10.1007/s10584-006-9060-3
https://doi.org/10.1007/s10584-006-9060-3
https://gmd.copernicus.org/articles/14/3159/2021/
https://doi.org/10.1175/BAMS-D-19-0019.1
https://doi.org/10.1175/BAMS-D-19-0019.1
https://doi.org/10.1002/qj.3446
https://doi.org/10.1098/rsif.2013.1162
https://doi.org/10.1002/qj.2976
https://esd.copernicus.org/articles/11/1107/2020/
https://esd.copernicus.org/articles/11/1107/2020/
https://doi.org/10.1177/030913339902300302
https://doi.org/10.1177/030913339902300302
https://www.pnas.org/content/117/13/7038
https://www.pnas.org/content/117/13/7038
http://collaboration.cmc.ec.gc.ca
http://dx.doi.org/10.21957/la2v0442
https://doi.org/10.1002/met.2065

	An open workflow to gain insights about low-likelihood high-impact weather events from initialized predictions
	1  INTRODUCTION
	2  THE PROTOCOL
	2.1  Step 1: Define the event
	2.2  Step 2: Select an appropriate prediction system
	2.3  Step 3: Retrieve the ensemble hindcast and reference dataset
	2.4  Step 4: Pre-process the data
	2.5  Step 5: Evaluate the independence, stability, and fidelity
	2.6  Step 6: Resolve detected issues
	2.7  Step 7: Apply statistics

	3  CASE STUDIES
	3.1  Siberian heatwave
	3.2  Temperature anomalies during peak California wildfire activity
	3.3  UK extreme precipitation

	4  DISCUSSION
	4.1  Sensitivity to the choice of event
	4.2  Model adequacy and availability
	4.3  UNSEEN-open workflow considerations
	4.4  Sensitivity to evaluation metrics and solutions
	4.5  Sensitivity to the analysis and framing
	4.6  Scope for multi-model multi-method approaches

	5  CONCLUSION
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	AUTHOR CONTRIBUTIONS
	DATA AVAILABILITY STATEMENT

	REFERENCES


