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Myctobase, a circumpolar database 
of mesopelagic fishes for new 
insights into deep pelagic prey 
fields
Briannyn Woods   1,11 ✉, Rowan Trebilco   1,2, Andrea Walters   1, Mark Hindell   1, 
Guy Duhamel3, Hauke Flores4, Masato Moteki5,6, Patrice Pruvost   3, Christian Reiss7, 
Ryan A. Saunders8, Caroline Sutton2, Yi-Ming Gan   9 & Anton Van de Putte   9,10,11 ✉

The global importance of mesopelagic fish is increasingly recognised, but they remain poorly studied. 
This is particularly true in the Southern Ocean, where mesopelagic fishes are both key predators 
and prey, but where the remote environment makes sampling challenging. Despite this, multiple 
national Antarctic research programs have undertaken regional sampling of mesopelagic fish over 
several decades. However, data are dispersed, and sampling methodologies often differ precluding 
comparisons and limiting synthetic analyses. We identified potential data holders by compiling a 
metadata catalogue of existing survey data for Southern Ocean mesopelagic fishes. Data holders 
contributed 17,491 occurrence and 11,190 abundance records from 4780 net hauls from 72 different 
research cruises. Data span across 37 years from 1991 to 2019 and include trait-based information 
(length, weight, maturity). The final dataset underwent quality control processes and detailed 
metadata was provided for each sampling event. This dataset can be accessed through Zenodo. 
Myctobase will enhance research capacity by providing the broadscale baseline data necessary for 
observing and modelling mesopelagic fishes.

Background & Summary
Open-ocean pelagic ecosystems are under-represented in databases of marine biodiversity, despite holding the 
largest biomass of organisms on Earth1. The open-ocean pelagic community predominantly consists of fish, 
crustaceans and cephalopods that inhabit mesopelagic (200–1000 m) and bathypelagic (1000 m to >4000 m) 
depths2. Many pelagic species undertake diel vertical migration (DVM), moving from the depths to shallower 
waters at dusk and in the reverse direction at dawn, possibly constituting the largest animal migration on the 
planet3. This has implications for carbon sequestration and climate regulation, as organisms actively transport 
organic carbon from the surface to the deep ocean3–6.

Mesopelagic fishes are a central component of open-ocean pelagic communities dominating global verte-
brate biomass with estimates of up to 10 billion tons4,7,8. They are thought to represent a key link to coupling 
physical-biogeochemical models to the population dynamics of top-predators6,9. Thus, the open-ocean pelagic 
environment and its inhabitants are critical components for the provision of globally important ecosystem 
services1,2.
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In the Southern Ocean, mesopelagic fishes are key prey for sentinel species such as seals and seabirds10–12. 
As major consumers of secondary productivity (zooplankton) they also exert control on lower trophic levels of 
oceanic food webs13,14. Despite their ecologically important role, there are gaps in our knowledge of their bio-
diversity, abundance, biomass, and the processes that shape their distribution, life cycles and behaviour4,8,15–19. 
Mesopelagic fishes are difficult to sample due to their patchy distribution and ability to avoid and escape pelagic 
nets8,20,21. This is confounded by the differences in catch efficiency between gear types, leading to biased esti-
mates of abundance and biomass4,8.

Mesopelagic fishes are likely to be impacted by ocean-warming with evidence indicating future range shifts 
of temperate species, range reductions of Antarctic species16,22 and possible biogeographic shifts in body size 
patterns23. This will have implications for the predators that feed upon them14 and potentially more broadly for 
global biogeochemical cycles24. Tracking the future distribution and abundance of species requires the devel-
opment of reliable population baseline estimates and an understanding of the biases associated with different 
sampling strategies25–28.

The advent of biodiversity informatics has seen the development of open-access biodiversity data reposi-
tories, such as the Global Biodiversity Information Facility (GBIF) and the Ocean Biogeographic Information 
System (OBIS), to enhance research output in the context of a global biological monitoring system29. However, 
much of the data for mesopelagic fishes archived in these repositories are for species occurrence only, without 
information on abundance or biomass. Often, the methodological metadata (such as net-type or depth of trawl) 
are also lacking, further limiting the scope of the analyses1,30.

Decades of data from net sampling of the pelagic environment exist for localised regions of the Southern 
Ocean as part of multiple national Antarctic research programs31. Here, we take the important step of integrating 
and standardising the format of published and unpublished survey data on the abundance, biomass, biodiver-
sity, and methodological metadata for mesopelagic fishes of the Southern Ocean. We collected and synthesised 
data from the Scotia Sea14,32–34, the Antarctic Peninsula35,36, the Lazarev Sea37,38, the Kerguelen Plateau39–43, East 
Antarctica44, Macquarie Island45,46 and unpublished data from the Indian Ocean from Japan’s national Antarctic 
program into a single dataset called Myctobase (Fig. 1).

The long-term aims of Myctobase are (1) to provide a single findable, standardised, and citable resource 
for multiple combined datasets; (2) to provide the baseline data upon which to measure the status and future 
trends of the mesopelagic fish assemblage; (3) to support further research such as investigating the patterns and 
biophysical drivers of diversity; and (4) to provide the broadscale spatiotemporal perspective necessary for the 
holistic management and conservation of the open-ocean pelagic ecosystem in the Southern Ocean. The data-
set is available on GBIF, OBIS and Zenodo to support the management of the open-ocean pelagic ecosystem. 
Researchers wishing to contribute to this project should contact the corresponding authors. We hope that this 
database will continue to grow, providing a resource for ongoing monitoring of the Southern Ocean pelagic 
ecosystem.

Methods
Sampling design.  Samples were collected onboard multiple national Antarctic research cruises between the 
years 1991–2016 and for the year 2019 and jointly covered all calendar months (Online-only Table 1). Net sam-
pling occurred predominantly in the Indian and Atlantic Sectors of the Southern Ocean (Fig. 1).

Mesopelagic fishes were sampled using a range of gear types as a “standard” sampling gear does not cur-
rently exist21. Samples were collected from pelagic trawls using opening-closing net systems with a range 
of Rectangular Midwater Trawl (RMT) and International Young Gadoid Pelagic Trawl (IYGPT) nets, an 
Isaacs-Kidd Midwater Trawl (IKMT) net and a Matsuda-Oozeki-Hu Trawl (MOHT) net (Table 1, Online-only 
Table 2). Opening-closing net systems allowed for the sampling of discrete depth intervals and included strati-
fied oblique and horizontal trawls. Survey designs (for trawl locations) included randomised design, designated 
stations, and target trawls on acoustically detected aggregations of fish (see Online-only Table 1 for more infor-
mation on sampling methodology).

Once onboard, samples were sorted to the lowest taxonomic level possible using published guides41,47 and 
personal/institutional reference collections. Taxonomic identities were verified in home laboratories. Standard 
length (mm) and wet weight (g) measurements were taken onboard with a motion compensated balance or in 
home laboratories. Samples were preserved in either ethanol, formalin or frozen for further analyses.

Detailed information on methodologies utilised for each research cruise can be found in the relevant cita-
tions listed in Online-only Table 1.

Data collection and processing.  Potential data holders were identified by compiling a metadata catalogue 
of scientific publications and existing survey data for Southern Ocean mesopelagic fishes. Data holders were 
invited to contribute published and unpublished data to the Myctobase project. A standardised template for the 
collation of multiple datasets was created using Darwin Core terms48 where possible. The terms used in the tem-
plate alongside definitions for each term can be found in Table 1. Data were collated with R statistical software, 
version 4. 0. 449.

Units of measurement were standardised across datasets. Length and weight measurements were converted 
into millimetres and grams, respectively. The taxonomy of each observation was verified and associated aphia 
IDs (globally unique and stable identifiers for each taxonomic name) were retrieved from the World Register of 
Marine Species using the R package, WoRMS50 (Fig. 2).

Abundance was calculated for each net haul by species per filtered volume of water. This was performed by 
dividing the species count (n) by the volume filtered (m3). This was not possible for all net hauls and species 
as count and volume filtered information were not always recorded or technical difficulties were encountered 
during the research cruise. Methodology for calculating volume filtered varied between datasets. Several cruises 
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used mechanical flow meters while others used a calculation where the nets filtering area (m2) was multiplied 
by the distance it was towed (m). The filtering area of the MOHT net was calculated by multiplying the net 
mouth area by a coefficient estimated from calibration tows in calm seas. The coefficient was estimated under 
a calm sea condition using a net frame with a flowmeter which was vertically deployed up to 100 m wire out. 
The net frame was retrieved slowly to the sea surface and a count from the flowmeter was recorded. This pro-
cedure was repeated five times and an average value was calculated to obtain the coefficient. For some data-
sets, volume filtered was not previously calculated, but the information needed to calculate the volume filtered 
had been recorded. In these instances, we retrospectively calculated the volume filtered using this information. 
This was shown in a separate column to the values that were obtained at the time of a cruise, this is labelled 

Fig. 1  The sampling locations of mesopelagic fish trawl stations that are currently held in Myctobase. Trawl 
stations are colour coded to correspond to the location listed in Online-only Table 1 (colour key is indicated 
within the black box). Black lines indicate mean frontal positions52. Starting from the outer line, frontal features 
are as follows: Subtropical Front (dotted line); Subantarctic Front (dash-dot line); Polar Front (dashed line); 
southern Antarctic Circumpolar Current Front (solid line); southern boundary of the ACC (long dashed line). 
Numbered labels around the outside of the map indicate the longitude. Each latitude line represents 10° of 
latitude where 75° S is at the Antarctic continent and 40° S is at the external line.
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volumeFiltered2 in the database. Detailed information on the methodologies utilised to obtain volume filtered, 
including our retrospective calculations, for each cruise can be found in Online-only Table 2.

The solar position and day/night information was added for each observation based on the date, time and 
the start latitude and longitude of each net haul using the R package, maptools51 (Fig. 2). Solar position is the 
angle of the sun in relation to the horizon (0°), thus dawn was defined as a solar position of −12° to 12° before 
midday, and dusk was defined as a solar position of 12° to −12° after midday. Day was defined as the period after 
dawn and before dusk and night was defined as the period after dusk and before dawn. We added the zone (eg. 
Northern, Subantarctic and Antarctic) in which net hauls were undertaken using the definitions in52. The sector 
in which the net haul was undertaken was additionally added following definitions in53, which define four major 
sectors: Atlantic, Indian, West Pacific and East Pacific (Fig. 2).

Net Type Acronym

Rectangular Midwater Trawl net RMT

International Young Gadoid Pelagic Trawl net IYGPT

International Young Gadoid Pelagic Trawl with Mid-water Open Close net IYGPT with MIDOC net

Matsuda-Oozeki-Hu Trawl net MOHT

Isaacs-Kid Midwater Trawl net IKMT

Table 1.  Data in Myctobase were collected with the following net types which are commonly referred to by their 
associated acronyms.

Fig. 2  Schematic illustrating the quality control and processing steps leading to the standardised data output 
of Myctobase. The standardised data are made available through Zenodo, the Antarctic Biodiversity Portal, the 
Global Biodiversity Information Facility (GBIF) and the Ocean Biogeographic Information System (OBIS). 
Abbreviations under ‘Individual occurrence’ are standard length (SL) and wet weight (WW).
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Data Records
The dataset is comprised of three comma-separated files which are freely available at Zenodo54. Filenames 
adhere as closely as possible to the naming convention set out by the Darwin Core Standard48. The first file 
(event.csv) describes the survey methodology. Each row has its own unique event ID, which consists of the insti-
tute, cruise, event number (as recorded in the voyage logbook) and the net number (institute_cruise_event_net). 
An event ID represents the sampling event or net haul and contains the details of the event including date, time, 
position (latitude, longitude, and depth), sampling protocol, net type, net mesh size, tow speed, volume filtered 
and haul type (station, routine, target, test, surface or failed). The second file (groupOccurrence.csv) contains 
the catch data linked to the survey methodology by an event ID. Each row has its own unique occurrence ID, 
which is the event ID and aphia ID (retrieved from WoRMS) combined (eventID_aphiaID). An occurrence ID 
contains taxonomic information (eg. phylum, class, order, and family), the number of individuals (n) and esti-
mated abundance (n_m3) for the associated sampling event. The final file (individualOccurrence.csv) contains 
measurements of individuals. Each row contains the event and occurrence ID, which links each measurement 
to the first and second file, and a ‘catalogNumber’, linking the data to the original dataset for traceability. Rows 
also contain taxonomic information, standard length (mm), weight (g), life stage and reproductive maturity of 
the individual (following definitions in55) and sex, where available. Additional notes on the preservation method 
and whether the specimen was measured before or after preservation are included. The presence of NA values in 
Myctobase are indicative of missing data. See associated metadata record for definitions and units for each var-
iable (Supplementary Table 1). Citations for all datasets held in Myctobase can be found in Online-only Table 1.

Spatial and temporal coverage.  Myctobase currently holds 4780 net hauls from 3775 sampling stations 
and 72 different research cruises from across the Southern Ocean. There are currently 17,491 occurrence records 
in Myctobase.

The highest concentration of data points is within the Atlantic Sector (45% of net hauls) spanning from the 
Antarctic continent to the Polar Front at 50° S (Fig. 1). The East and West Pacific Sector stands as a major gap in 
the spatial coverage of Myctobase (21% and 1% of net hauls in the East and West, respectively).

Vertically, data extend from the surface down to a maximum depth of 2000 m. More than half of the trawls 
took place in the epipelagic layer at 0–200 m (n = 3713). Data from the mesopelagic (200–1000 m) and bathype-
lagic (>1000 m) layers were also recorded from stratified oblique trawls.

Data span from 1991–2016 and 2019, with no data for 2017 and 2018 (Online-only Table 1). The year 2006 
contains the highest number of net hauls (11%). Cumulatively, the datasets within Myctobase cover data for 
every month (NB. not every month of every year), with 76% of net hauls occurring in the summer months 
(November to March).

Records of occurrence.  The four most abundant fish families in Myctobase are Paralepididae, Nototheniidae, 
Myctophidae and Bathylagidae. Myctophidae make up the highest number of records in Myctobase for both the 
Atlantic and Indian sectors (Fig. 3). In the Indian Ocean sector, the highest number of records for Myctophidae 
are in the Subantarctic zone. Conversely, in the Atlantic Ocean sector the highest number of records for 
Myctophidae are in the Antarctic zone. There are a similar number of records for Bathylagidae, Nototheniidae 
and Paralepididae in the Indian sector for both the Antarctic and Subantarctic zones. In the Atlantic Ocean sector, 
the highest number of records for Bathylagidae, Nototheniidae and Paralepididae are in the Antarctic zone.

Fig. 3  The number of records of occurrence for the four most abundant fish families in the groupOccurrence 
data record of Myctobase. Data are divided into Ocean Sectors (Atlantic and Indian) and zones (Antarctic and 
Subantarctic) of the Southern Ocean. Zones of the Southern Ocean are defined by52.
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Technical Validation
The final dataset was subject to quality control and validation processes. Rather than removing ambiguous or 
incomplete records altogether, two extra columns were added to the event information (event.csv). The first 
column labelled validation is an index used to indicate whether the record passed quality control measures 
(0 = fail, 1 = pass). The second column labelled validationDescription details the reasons for a failure. Indexing 
the data in this way prevents the loss of potentially valuable data. For example, some events are missing latitude 
and longitude information, however a more general sampling location is often available and may be enough for 
regional analyses (Fig. 2).

The R package obistools56 was used to validate sampling locations and dates of events. Sampling locations on 
land or at depth values higher than the bathymetry raster used in obistools did not pass the quality control step 
and thus were given a ‘0’ in the validation column. Further, records missing latitude, longitude and date/time 
data were similarly identified. Records where technical difficulties were recorded, such as net failing to open or 
close were also allocated a ‘0’ in the validation column (Fig. 2).

Abundance was standardised to number of individuals per m3 (n_m3) for all datasets. In some instances, 
abundance could not be calculated due to missing count or volume filtered data. Additionally, abundances were 
not calculated for US AMLR Program as this data were considered bycatch and not the sole focus of the sampling 
program. Subsequently, this data is important for documenting the species observed and overall distribution in 
the region of the Antarctic Peninsula. Important information regarding the use of abundance values is available 
in ‘Usage Notes’.

Although the purpose of the dataset is to document the occurrences and relevant metadata of mesopelagic 
fish species, we also retained records of cephalopods. Occurrence records of cephalopods alongside those of fish 
were included in some of the datasets contributed to Myctobase. Cephalopods are similarly important species of 
the open-ocean pelagic community and are a key group supporting the flow of energy from primary producers 
to higher order predators in Southern Ocean food webs57–59. Data on squid are limited due to their low catcha-
bility with scientific nets59. As such, we retained records to maximise availability of valuable data. The data are 
structured to enable users to easily filter out cephalopod occurrences if they are not of interest.

Taxonomic fields within the final dataset were checked for spelling errors and to verify the usage of valid/
accepted names according to WoRMS. Where appropriate, records were corrected. All original data records 
were archived for future data checking and validation. Users can provide feedback for any data record to the 
corresponding authors.

Usage Notes
Myctobase will enhance research capacity by facilitating international effort toward observing and modelling 
mesopelagic fish taxa. The data held in Myctobase are suitable for a number of applications, for example, inves-
tigating the biophysical determinants shaping patterns of occurrence and biodiversity. Further examples of data 
use can be found in the citations listed in Online-only Table 1. Data can be analysed using a variety of statistical 
software such as R49 or Matlab60.

Myctobase contains data from 72 different research cruises across the Southern Ocean. Each cruise employed 
a specific sampling strategy and provided varying levels of detail on methodology and samples collected. The 
different sampling methodologies used between datasets necessitates caution when comparing abundance esti-
mates, as well as length and weight measurements across research cruises. The biases associated with net type 
and mesh size of the net have previously been described8,21, and are likely to influence the final output of anal-
yses that use data from different projects. For example, the IYGPT has a larger mesh size at the front of the net 
limiting the size of fish that may be caught due to smaller fish escaping through the mesh. The minimum size 
limit has been suggested to be approximately 25–35 mm61. This suggests that nets with larger mesh sizes may 
not be appropriate for calculating densities of species that can escape the net. However this is a complex issue 
which requires further study as the net will also exert a herding effect on fish32. Biases should be considered and 
acknowledged. Myctobase provides detailed information for each sampling event to ensure that researchers can 
account for these differences in their analyses or to enable comparison of data using similar methods.

Further, abundance values should be treated as relative rather than absolute values due to the patchy dis-
tribution of species and the limited spatial and temporal coverage of sampling creating uncertainty around 
estimates4,8. Data are best used to demonstrate the community composition, distribution, and occurrence of 
fish species, life history and relative abundance within the Southern Ocean. For example, there are a multitude 
of available modelling techniques which may be used to predict a species geographic distribution in relation to 
environmental variables62,63. Furthermore, this information provides the data necessary for ground-truthing 
acoustic data64.

We anticipate that Myctobase will continue to grow into a fully circumpolar database with continued col-
laboration from across the scientific marine community. We invite researchers to contact the corresponding 
author(s) to contribute data (particularly from under-represented regions, taxa, and data types such as abun-
dance data), including data from unpublished research which can be embargoed until publication.

Terms of use.  The database is released under a CC-BY license. Users are encouraged to formally cite the data 
record used according to the standards and format of the journal in which they are published.

Code availability
We used freely available code from the following packages: maptools51, obistools56 and WoRMS50
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