
1.  Introduction
Geomagnetically induced currents (GICs) have long been known to affect power grids, transformers and any 
earthed conductive networks spanning large distances (for an overview, see Boteler et  al.,  1998; Boteler & 
Pirjola, 2017; Kelbert, 2020). GICs can cause problems in power grid operation such as transformer overheating 
or permanent transformer damage and system collapse in extreme cases (Molinski, 2002), leading to further soci-
etal and economic harm (Eastwood et al., 2018). Although studies of GICs were restricted to high latitudes where 
the consequences are more pronounced, mid-latitudes are being paid increasingly more attention as local effects 
such as transformer overheating are discovered (Barbosa et al., 2015; Butala et al., 2017; Caraballo et al., 2020; 
Gil et al., 2019; Lotz & Danskin, 2017; Svanda, Michal et al., 2020, among others).

The forecasting of GICs has developed alongside studies into the regional effects of GICs (Pulkkinen et al., 2006). 
Forecasting in particular is a complex problem due to the chain of cascading induction effects from the impinge-
ment of solar wind at the bow shock down to currents flowing between the earth and power grids on the surface. 
Improving predictive GIC modeling is listed as one of the open questions still to address to achieve GIC readiness 
(Pulkkinen et al., 2017).

Most studies so far have focused on predicting geomagnetic activity - such as dB/dt, which is often used as a 
proxy for GICs - from solar wind data measured at L1 or in near-Earth space. The earliest studies addressing 
this problem with neural network architecture are Wintoft (2005) and Wintoft et al. (2015), followed by Lotz 
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Plain Language Summary  Using satellites, we measure the state of the solar wind a short distance 
away from the Earth (at the so-called Lagrange-1 or L1 point) to see what is coming toward us at any given 
moment. Changes in the solar wind such as an increase in wind speed or a strong magnetic field can potentially 
impact satellite operation in orbit and power grid infrastructure on the ground - in extreme cases, solar storms 
can damage power grids and transformers by inducing electrical currents in the power lines. These are called 
geomagnetically induced currents (GICs). Here, we attempt to forecast the scales of GICs by applying machine 
learning methods, specifically Long-Short-Term-Memory recurrent neural networks, to take the solar wind 
data measured at the L1 point and predict the currents that would be seen in power grids in Austria. This gives 
us a lead time of around 10–40 min in the forecast. We discuss whether it is best to attempt to predict the 
ground electric field that leads to the GICs or the GICs themselves, and discuss the difficulties in this kind of 
prediction and the shortfalls in the model.
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and Cilliers (2015) and recently Keesee et al. (2020) and Tasistro-Hart et al. (2021). The Dst/SYMH index in 
particular has received a lot of attention from geophysicists and machine learning engineers alike (e.g., Bhaskar 
& Vichare, 2019; Lu et al., 2016; Wintoft & Wik, 2021).

While dB/dt is often used as a proxy for GICs, it does not provide the whole picture. The downside of modeling 
with this approach is that dB/dt only functions as a useful indicator of GIC activity. The relationship between 
dB/dt and E (which is the primary factor determining the scale of the GICs) depends on the magnetotelluric 
transfer function, which is frequency dependent (Chave & Jones, 2012). Single values of the time derivative 
of the magnetic field can only be useful GIC proxies if further assumptions on the frequency content are made 
(Pulkkinen et al., 2006).

What do we do if we want to develop a model that provides forecasts that power grid operators can work with? 
One approach would be to directly forecast the surface geoelectric field, from which GICs at different stations can 
be calculated. In comparison to the many studies into forecasting dB/dt and Dst, little effort has been devoted to 
forecasting geoelectric fields thus far. Pulkkinen et al. (2009); Pulkkinen et al. (2010) studied the forecasting of 
GICs from remote solar observations, allowing a few days warning before larger events. Modeling of geoelectric 
fields from solar wind to ground using full MHD modeling has been carried out by Honkonen et al. (2018), Pulk-
kinen, Hesse, et al. (2007), and Zhang et al. (2015), and with empirical modeling in Lotz et al. (2017).

In this study, we aim to tackle this problem from another angle and forecast regional GICs from L1 solar wind 
data using a machine learning method, and we compare the results to observations of GICs in Austria. We try two 
different approaches: in the first, we train a model to forecast the geoelectric field and calculate the GICs from 
there, and in the second we forecast the GICs directly. Predictions from both methods are evaluated and compared 
using data from recent years.

This study is structured as follows. Section  2 describes the data used in this study, including an analysis of 
26 years of geomagnetic measurements used to model GICs in the region of Austria and a case study looking at 
the 2003 Halloween storm. Section 3 then goes on to describe the models built to forecast GIC values, and the 
results are presented in Section 4, discussed in Section 5 and summarized in Section 6.

2.  Data
This analysis relies on INTERMAGNET-quality geomagnetic observatory data, which ensures a high quality 
of data with few data gaps or disturbances. We use data with a cadence of one minute because these are avail-
able for a long time period (26 years), which is not possible with 1 Hz data. Data with 1-min resolution should 
be representative of most important GIC content (Pulkkinen et al., 2006). Due to Austria's small size (roughly 
280 × 600 km), we assume that the geomagnetic variations are roughly constant across it both latitudinally and 
longitudinally, and therefore only select and use geomagnetic variations from one station at a time.

In the following, we describe the data sets used in this study. Geomagnetic field variations from observatory 
measurements were used to calculate the ground geoelectric field in Austria. GICs at any power grid substation 
can be calculated from the geoelectric field, and the equations for two specific substations are determined using 
a linear fit to observed GICs. In terms of the geomagnetic and geoelectric field components, x and y refer to the 
geographic northward and eastward directions respectively.

2.1.  Geomagnetic Observatory Data From WIC and FUR

The Conrad Observatory (WIC), situated at a geomagnetic latitude of 42.95° and longitude of 89.94° according 
to AACGM-v2 (Shepherd, 2014), is located southwest of Vienna near the town of Muggendorf in Lower Austria. 
High quality geomagnetic measurements have been carried out here since the official opening mid-2014, provid-
ing six years of data for analysis. We extend the time range using data from Fürstenfeldbruck (FUR) in Bavaria, 
Germany. Initial studies are done using WIC data, and studies of long-term measurements are carried out using 
FUR data. A map showing the location of the two stations can be found in Figure 1.

The Fürstenfeldbruck Geomagnetic Observatory (geomagnetic lat: 43.06°, lon: 85.93°) is one of the closest 
INTERMAGNET-quality geomagnetic observatories to the Conrad Observatory. It is situated almost directly 
west of WIC and separated by 348 km. This station is a very good proxy for geomagnetic field variations in 
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Austria due to its proximity and the similar geomagnetic latitude and geological setting. Measurements at a qual-
ity high enough for this analysis have been carried out since 1995, providing 26 years of data or 13.7 million data 
points at a 1-min resolution.

An analysis of the coherence between WIC and FUR data has been carried out for the overlapping years of meas-
urements (2015–2021), in which the Pearson's correlation coefficient (PCC) between the two time series doesn't 
drop below 0.99 for either the x or y variables over all six years. The correlation in variations (dBx/dt and dBy/dt) 
is slightly lower, with the lowest values (0.91) seen in the dBy/dt values.

Figure 1.  (a) A map showing the locations of two power grid substations (triangles) and the two geophysical observatories (circles) used for geoelectric field modeling, 
and (b) an example of GIC fit from modeled geoelectric field values for a geomagnetic storm in May 2021. The solid line (purple) shows transformer neutral point 
current measurements that have been offset-corrected and resampled via interpolation to a 1-min sampling rate (from 1-s). The two dashed lines show the GICs 
calculated from E using WIC (black) and FUR (blue) data, which are nearly identical. Note that the largest GIC values are almost always underestimated despite the 
otherwise good agreement between model and measurements.
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2.2.  Geoelectric Field

In order to model the expected levels of GICs, we need knowledge of the ground geoelectric field in the region. 
The geoelectric field for the past 26 years is modeled directly from the 1-min geomagnetic field variations at 
FUR. The model approach used is the one-dimensional plane wave method (e.g., Boteler & Pirjola, 2017) using 
the EURHOM model number 39 (Ádám et al., 2012) to describe the one-dimensional layers of resistivity going 
into the Earth. We assume the time series is representative across the country, which is a reasonable approach for 
small areas but not for larger countries. The plane wave approach was used in favor of the thin-sheet approach 
used in previous studies (Bailey et al., 2017, 2018) for the shorter computation times with similar levels of accu-
racy. The calculation results in the horizontal geoelectric field components Ex and Ey. Note that the x-component 
in the geoelectric field corresponds to the y-component geomagnetic field variations, and vice versa.

2.3.  Geomagnetically Induced Currents

To evaluate the levels of GICs over the 26 years of available FUR data, we do not follow the standard modeling 
procedure of putting the geoelectric field components through the full power grid network, which would be 
computationally heavy, but instead find a direct linear fit of the geoelectric field components to measurements of 
GICs to find the current at station j, that is,

𝐺𝐺𝐺𝐺𝐺𝐺𝑗𝑗 = 𝑎𝑎𝑗𝑗 ⋅ 𝐸𝐸𝑥𝑥 + 𝑏𝑏𝑗𝑗 ⋅ 𝐸𝐸𝑦𝑦� (1)

where aj and bj are station-specific real coefficients (with units A⋅km/V). This approach can only be used on 
transformer stations with measurements since the coefficients must be determined from a linear fit to the data, 
but it often has similar or better accuracy than results from a network model. See Pulkkinen, Pirjola, and Vilja-
nen (2007) or Torta et al. (2012) for more discussion on this method and for the equations determining aj and bj.

The fit for Equation 1 was applied to measurements of direct currents from multiple transformer neutral points 
in Austrian power grid substations provided by the Graz University of Technology, a summary of which can be 
found in Albert et al. (2021). In this study, only measurements from two substations were used: one near Vienna 
(hereafter referred to SS1 for Substation 1) and another north of Salzburg (SS5), both with sampling rates of one 
second. The data was resampled to a one minute sampling rate for use in this study using a 1-min median sliding 
window. These two stations are of interest because they are in the high-voltage network and experience larger 
GICs than the other stations with measurements. As such they are useful examples for depicting the expected 
maximum scales of GICs that could be seen across the grid. We choose three geomagnetically active periods and 
use the geoelectric field components Ex and Ey modeled from FUR data to derive the following equations:

𝐺𝐺𝐺𝐺𝐺𝐺𝑆𝑆𝑆𝑆1 = 3.77 ⋅ 10−2 ⋅ 𝐸𝐸𝑥𝑥 + 3.19 ⋅ 10−2 ⋅ 𝐸𝐸𝑦𝑦� (2)

𝐺𝐺𝐺𝐺𝐺𝐺𝑆𝑆𝑆𝑆5 = 0.44 ⋅ 10−2 ⋅ 𝐸𝐸𝑥𝑥 + 5.55 ⋅ 10−2 ⋅ 𝐸𝐸𝑦𝑦� (3)

We see that the x-component of the geoelectric field contributes roughly the same amount to the GICs seen in 
SS1 as the y component. The y-component of the geoelectric field dominates the currents in SS5 and contributes 
10 times more than the x-component. The differences in contributions from geoelectric field components stem 
from the varying grid layout and connections at each substation. An analysis shows that the GICs calculated from 
these equations are slightly more accurate than those from the full network model. Comparing to measurements 
at SS1, the Pearson's correlation coefficients for both GICs from the network model and GICs from Equation 1 
are 0.86, while at SS5 the correlation improves from 0.85 to 0.88. In both cases the amplitudes of the GICs are 
better matched and the root-mean-square-errors drop from 0.24 to 0.12 A at SS1 and 0.46 to 0.12 A at SS5. These 
measures were calculated from a fit of the geoelectric field data to measurements using eight days of geomagnet-
ically active periods (including the September 2017 storm). This includes the most recent active period, meaning 
the measurements should represent the current grid configuration and we exclude fitting only to grid noise by 
using a geomagnetically active period. A fit applied to the geoelectric field modeled from WIC rather than FUR 
data produces slightly different coefficients but results in the same level of accuracy when compared to GIC 
measurements. An example of the measurements and GIC fits can be seen in Figure 1b.

Regardless of which time range the fit is applied to, the GICs calculated using Equation 1 (as well as those 
from the network model) tend to underestimate the peaks of the largest GICs by up to a factor of two (see e.g., 
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Figures 1b, 12:20 or 13:05 UTC). We assume this is a result of attenuation of the modeled geoelectric field 
due to the lower sampling rate used for field modeling (Grawe et al., 2018) or the oversimplification of using a 
uniform geoelectric field and 1D model of the subsurface resistivity (Ngwira et al., 2015; Sun & Balch, 2019; 
Weigel, 2017). Despite this, the very good agreement between model and measurements means that any results 
based on the modeled geoelectric fields will still be reasonable.

In addition to the absolute GIC values, we also look at the cumulative absolute GICs over an hour, GICsum1h. 
GICsum1h is taken as the sum of values over the hour divided by the number of timesteps in an hour (60 for our 
minute values) to make it independent of sampling rate, and is used as a separate indicator for geomagnetic activ-
ity, more representative of sustained GICs than large spikes, both of which can have different (but similarly detri-
mental) effects on transformers (Bolduc, 2002; Gaunt & Coetzee, 2007). Using the accumulated sum of GICs or 
geoelectric field has seen usage in other studies, although not often - Lotz and Danskin (2017) used the accumu-
lated E over varying periods and Viljanen et al. (2014) also worked with daily GIC sum averaged across nodes. In 
Austria, 0 to 0.5 Ah can be seen during quiet times, and values above that generally represent more active times.

2.4.  Distribution of Values

In order to determine how best to forecast GICs, we first look at the 26 years of available data and the distributions 
of both geomagnetic variations and modeled GICs. Figure 2a presents the distribution of FUR minute dBx/dt and 
dBy/dt variations. There are very few values populating the tail of the distribution where the largest values are 
found. High values for this region are at 80 nT/min and upwards. The largest variations occur most commonly in 
the x-direction (leading to larger Ey) rather than the y-direction, implying that stations in the power grid sitting on 
east-west lines are already more susceptible to larger GICs.

In Figures 2b and 2c, the GICs observed at SS5 are larger than those at SS1. While the size of the currents 
depends largely on the network topology and grounding resistance, we noted in Section 2.3 that the currents at 
SS5 are mostly determined by the y-component of the geoelectric field (or x-component of the geomagnetic field 
variations), which generally sees larger variations.

2.5.  Most Active Days

In Table 1, the 10 most active days in the 26 years of data according to different measures of activity dBx/dt and 
dBy/dt at FUR, modeled ∣GIC∣ and GICsum1h at both SS1 and SS5 are listed. There are many overlapping days 
between the different measures, making a total of 19 days. Bold font highlights the 10 largest values in each 
column.

A similar table for largest GIC days in Central Europe was produced in Viljanen et al. (2014), Table 4), and we see 
that the tables are very much in agreement with 17 shared dates, even though the table in Viljanen et al. (2014) 

Figure 2.  Histograms showing the distribution of the values in (a) the geomagnetic variations at FUR, (b) the GICs modeled from dB/dt at two substations, and (c) the 
hourly cumulative modeled GICs at two substations for all data, GICsum1h. The y-axes have logarithmic scales.
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is only based on one variable. They used a value akin to the GICsum1h used 
here, namely the daily sum of GICs averaged across all nodes. Similarly, 17 
of the days listed here also appear in Juusola et al. (2015), Table 3, where an 
analysis of the days with largest GICs was carried out for Northern Europe. 
Other larger storms that have occurred since those studies (March 2015 and 
September 2017) do not stand out in comparison to those from the last solar 
cycle with the exception of the storm from June 2015.

The largest values in each measure are clearly centered around the 2003 
Halloween storm. Large values in dBx/dt tend to go alongside large GIC 
values in SS5, and days with large GICsum1h usually coincide with days with 
larger ∣GIC∣, as expected. Some exceptions are 2000-09-17, 2001-04-08, 
2005-01-07 and 2005-08-24, which only show high cumulative GICs but do 
not stand out in dB/dt-values and peak GICs. A comparison of these events 
shows they have large and unidirectional geomagnetic field variations (with 
total field changes of 100–300 nT) that occur over an hour or more. These 
in particular lead to sustained GICs in stations susceptible to geomagnetic 
field changes in that direction. The variations on 2000-09-17 are shown as 
an example of this kind of behavior in Figure  3. Although not extremely 
geomagnetically active, they show that power grid transformers would have 
been subjected to large amounts of cumulative GICs sustained over an hour 
at least.

2.6.  Case Study: 2003 Halloween Storm

In Figure 2, almost all of the values in the tail end of the distribution resulted 
from the “Halloween storm”, which lasted from 2003 October 29 to Novem-
ber 1. These also make up the largest values in Table 1, with maximum GIC 
values almost twice as large as the other values seen. We now conduct a 
detailed analysis of the behavior during this storm and the GICs that were 
likely present in the power grid as an example of the problems that can arise 
when using only dB/dt as a proxy for GICs. We see that both large instanta-
neous GICs and sustained GICs appear without large dB/dt values.

The geomagnetic storm that occurred at the end of October in 2003 was 
the result of a series of fast and geoeffective coronal mass ejections hitting 
the Earth during a particularly active period around the maximum of solar 

cycle 23 (e.g., Gopalswamy et al., 2005). In Eastwood et al. (2018), this storm was classified as a 1-in-10 years 
event, and is not considered an exceptionally rare example. No event of this or a higher magnitude has occurred 
since 2003 (with the exception of a CME directed away from Earth on July 2012, see Baker et al., 2013; Liu 
et al., 2014; Ngwira et al., 2013), and such events are somewhat more probable during the solar maxima (Owens 
et al., 2021), but have also occurred at any point throughout the solar cycle.

A brief evaluation of this storm for Austria was carried out in Bailey et al. (2018), in which a maximum GIC of 
14 A was modeled. Using an updated model with newer data allows us to get a more accurate estimate of GICs 
during stronger events, and using the method from Section 2.3 for SS1 and SS5 we see the values reaching 25–30 
A. Taking into account that the GIC peaks modeled using minute data generally underestimate the observations, 
these could also have reached up to 60 A.

Figure 4 compares the geomagnetic field and the modeled GICs for the 2003 Halloween Storm. Panels (a) and 
(b) show the geomagnetic field variations in the x and y directions. The thick lines plotted below the field show 
the presence of various levels of dB/dt variations (as they might be shown using a forecasting method). Light gray 
shows a level of 10 nT/min, and this increases going upwards to 25 nT/min, 50 nT/min and 75 nT/min. The thick-
ness of the line shows how often the value was exceeded within a time frame of 30 min (with a maximum being 
30 times). Panels (c) and (e) show the GICs calculated from the modeled geoelectric field at the substations SS1 
and SS5, and the panels (d) and (f) show the cumulative sum of absolute GIC values (GICsum1h) over 1-hr periods.

Date

dBx/dt
[nT/
min]

dBy/dt
[nT/
min]

∣GIC1∣
[A]

∣GIC5∣
[A]

GIC1sum1h
[Ah]

GIC5sum1h
[Ah]

1998-05-04 52.0 46.0 11.37 9.56 2.48 2.81

2000-04-06 42.9 43.7 8.78 11.34 3.00 3.43

2000-07-15 184.7 28.5 20.30 29.47 4.79 6.25

2000-09-17 34.5 19.9 10.45 9.89 4.21 4.21

2001-03-31 82.4 40.7 10.85 17.55 3.69 3.18

2001-11-06 85.1 38.1 12.73 13.72 3.95 5.24

2001-11-24 62.4 33.3 14.20 17.81 4.51 4.18

2003-10-29 102.9 92.3 28.57 31.67 5.77 9.66

2003-10-30 33.1 40.3 17.68 16.44 4.66 4.71

2003-10-31 91.5 56.2 14.75 16.88 2.41 4.03

2003-11-20 19.8 31.4 11.63 10.73 4.82 4.62

2004-07-26 78.5 8.5 10.15 15.33 1.20 1.53

2004-11-07 43.0 37.7 7.33 8.60 2.54 2.67

2004-11-08 24.7 28.9 9.77 9.42 4.17 3.57

2004-11-09 76.1 49.9 14.21 13.70 4.28 3.46

2005-05-15 36.3 35.1 11.45 13.96 4.38 6.31

2005-08-24 41.6 31.9 10.51 13.18 4.01 6.16

2005-09-11 60.7 30.7 8.81 12.50 1.24 1.65

2015-06-22 63.0 12.8 9.94 16.67 2.56 3.47

Note. Bold font highlights the 10 largest values seen in that measure. The 
largest values are seen during the Halloween Storm on 2003 October 29-31 
(italicized).

Table 1 
Table Showing the Ten Most Active Days According to the Maximum 
Values in Three Measures: Leftmost are the Horizontal Geomagnetic Field 
Variations (dBx/dt and dBy/dt), in the Center the Absolute GICs (∣GIC∣) 
at Two Different Transformer Stations (SS1 and SS5), and Rightmost the 
Cumulative GICs Over an Hour at Two Transformer Stations (GICsum1h)
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Four time intervals, highlighted in yellow on the plot, have been picked out for discussion. Intervals 1 and 2 have 
been selected because, as can be seen in the high levels of dB/dt in both components, these were the most active 
periods. Intervals 3 and 4, in contrast, were chosen because of continuously low levels of dB/dt but lack of higher 
(>50 nT/min) values.

Interval 1 shows a large GIC value, which is fairly short-lived. Interval 2, in contrast, shows a consistent level 
of moderate GICs, though it does not reach an extremely high value. Interval 3 has a similar level of sustained 
GICsum1h as Interval 2 despite it having a comparatively smaller amount of dB/dt over the same period. In Interval 
4, SS1 experiences the second highest value of GIC (17 A) throughout the whole storm, even though there is 
only continuous low-level dBx/dt and dBy/dt (10–25 nT/min), most of it unidirectional (comparable to the type of 
signal seen in Figure 3). On top of that, the cumulative GICs are also some of the highest.

In summary, we see there are large differences between periods that have short-lived but large GICs (Intervals 1 
and 4) and those that have longer periods of sustained GICs (Intervals 2 and 3), and both large GICs and sustained 
GICs can appear without large dB/dt because the ground geoelectric field responds at a range of frequencies not 
captured by dB/dt intensity alone. Each scenario could lead to different problems if it were to occur in a trans-
former to any large degree (Bolduc, 2002; Gaunt & Coetzee, 2007; Price, 2002).

3.  Building a Forecasting Model
From the analysis of past data, we deduce that, in order to forecast a comprehensive summary of expected GIC 
behavior, we need to forecast either both geoelectric field components or the GICs directly. While the magnitude 
of the field is most important, the direction also plays an important role. From Equations 2 and 3, we see that a 
large value in Ex at SS5, for example, could be canceled out by a smaller negative one in the Ey value, and the 
opposite could be true elsewhere, making a station-by-station approach advantageous.

We now move on to build a forecasting model based on these conclusions. Three machine learning methods were 
put through an initial comparison for evaluation: a standard feed-forward neural network (NN) with three layers 
(32 neurons initially), a gradient boosting regressor based on XGBoost in Python (with 400 decision trees), and a 
recurrent neural network (specifically, a Long-Short-Term Memory RNN or LSTM) with three layers (32 blocks 
initially) and a basic Attention mechanism. The three types of architecture were set up in size and hyperparameter 

Figure 3.  Plot of (a) geomagnetic variations at FUR (normalised to around zero by subtracting the mean field strength), (b) modeled GICs at two substations, and (c) 
cumulative hourly GICs on 2000-09-17 as an example of a day that likely had no extreme GIC values but large cumulative hourly GICs.



Space Weather

BAILEY ET AL.

10.1029/2021SW002907

8 of 20

Figure 4.  The Halloween storm from 2003 October 29 till 2003 November 1, during which some of the largest geomagnetic variations of the last few decades were 
seen. (a) and (b) show the geomagnetic variations at FUR in the x and y directions. Plotted below are levels of activity (10, 25, 50, and 75 nT/min) with line thickness 
showing how often these values were exceeded over a certain time range. (c) and (e) show the modeled GICs at the substations SS1 and SS5, and (d) and (f) show the 
cumulative GICs over each hour at each substation.
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choice to be somewhat comparable in basic accuracy on an initial subset of the training data set, then were 
provided the full, identical data sets (scaled and shaped according to each method) and compared according to 
a set of metrics for model evaluation (root-mean-square error, Pearson's correlation coefficient, probability of 
detection). From these first comparisons, the LSTM with Attention showed the most promise and was developed 
into the final model, although due to the myriad machine learning methods available these days there may well 
be other approaches equally suited for this task. Details on the comparison can be found in the Jupyter Notebook 
#4 listed in Section 7.

3.1.  Data Preparation

The input to the machine learning model is solar wind data measured at L1 and forward-propagated to the bow 
shock. This means that, assuming we take measurements from satellites situated at L1, we have a varying forecast 
lead time between 15 and 60 min depending on the solar wind speed. The high resolution OMNI data set (see 
section on Data Availability for details) was used for solar wind measurements (speed, density, and magnetic field 
components) at a minute cadence combined with the local time and day in year to make up the features, while 
the model target was either the geoelectric field (E) modeled from FUR data or the GICs modeled from the Ex 
and Ey components.

Taking solar wind measurements that have already been propagated forward to the bow shock, we use the two 
hours prior to the time we wish to forecast as input. This goes from t − 120 min to t − 0, where t is the forecast 
time. The range of 120 min for past data was decided on through experimentation, where the period was increased 
until longer periods did not lead to any improvements in the forecasting skill. To reduce the size and complexity 
of the input data, it is subsampled to a 10-min resolution by picking every tenth point (rather than interpolation 
and/or fitting, which we found led to a loss in forecast skill), resulting in sequences of length 12. These sequences 
are used as input to forecast the maximum value of E or GICs over 40 min from t − 10 to t + 30. This step of 10 
minutes into the “past” (which reduces the lead time by 10 minutes) is to account for possible timing errors in 
propagating the solar wind forward to the bow shock.

Sampling the modelled geoelectric field or GIC data to produce a balanced data set for model training is chal-
lenging because there is a clear bias towards quiet times and not enough data from geomagnetically active times 
(with a factor of roughly 10 7: 1 for quiet to active). An initial approach using the entire data set led to a trained 
model that predicted only quiet times, which could not be remedied without additional data handling or large 
changes to the training methods. The target data set was therefore selectively sampled to reduce the imbalance. 
The distribution of samples was undersampled in the range of E = 0–100 mV/km (GIC = 0–8 A). Above that, we 
applied some data augmentation by duplicating the samples by 2–5 times and applying a random offset in time 
to the input data of each to avoid identical samples. The offset was randomly sampled without replacement from 
values between −10 and + 10 min, which shifts the input solar wind data that the model sees, and means that the 
maximum value was either closer to the start or the end of the following 40-min forecast window. Otherwise, all 
samples had a minimum time difference of 60 min between them. The resulting distribution of E (GIC) is close 
to a one-sided Gaussian distribution. Roughly the same number of samples (9,000) were used in training for each 
target.

The samples were split into training and testing sets by time. The years 2000, 2001 were reserved for validation 
to aid in model selection during training, while 2017, 2019 and 2020 were reserved for testing, and the remaining 
21 years were used in training. The presence of data gaps longer than 15 consecutive minutes in the OMNI data 
set led to samples being excluded from the analysis - this led to 8%–15% sample exclusion, depending on the 
years used. Data gaps shorter than 15 min were linearly interpolated over.

We reduced all values of E > 200 mV/km (GIC > 15 A) to 200 mV/km (15 A) because the larger values were only 
present in roughly 100 of the 13.7 million time-steps (or five to seven events in the 25-year period) and heavily 
skewed the distribution, in which all values were scaled between 0 and 1. Rescaling points above this limit greatly 
improved the level to which the model could learn the problem but also means that the maximum forecast the 
model can realistically produce is for 200 mV/km. This was tested by evaluating a model trained on data clipped 
at 200 mV/km versus one trained on the original data, and the model trained on clipped data performed better on 
both clipped and unclipped test data sets.
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3.2.  Training the LSTM

To approach this forecasting problem, we use a four-layer LSTM with an Attention layer. The Attention mecha-
nism is meant to simulate human attention (first developed in Bahdanau et al., 2015), which can be understood 
intuitively as a mechanism that picks out the most important part of a sequence and discards the parts that are 
considered irrelevant. It is a tool now commonly applied in natural language processing for example, (Galassi 
et al., 2020). The model is structured so that the input first goes through an LSTM layer and then through the 
Attention mechanism. The data is then fed into another LSTM layer before going through a final feed-forward 
layer to reduce the output to a single value.

For geoelectric field prediction, the LSTM branches into two: the left side deals with a regression problem, 
namely forecasting the maximum magnitude of the geoelectric field. We chose a custom loss function for the 
regression problem where events (peaks) are rare in the data, and where the scale of the peaks is important. A 
min-max scaling factor used as a penalty term meant that training to match the peak value would drive the loss 
down. The right side of the LSTM forecasts the sign of the geoelectric field in a classification problem, which in 
this case is the sign of the maximum field value used for the regression problem. Here, the binary cross-entropy 
loss function was used. Training worked better when the two were trained as separate targets, rather than attempt-
ing to forecast E without taking the absolute value first. The regression problem appears to be not too difficult 
a task, but the model had far more problems trying to forecast the direction. In training, the weights of the two 
problems are, when scaled, about 15: 1 for regression to classification. The classification problem to determine 
the sign is given secondary importance because even an LSTM dedicated to this problem had trouble achieving 
a good level of accuracy. A diagram of the different LSTM architectures, the loss functions and the hyperparam-
eters used for the training of each model can be found in the Supporting Information S1. Iteration through the 
various possible hyperparameters was carried out for all models for optimisation. Similar sets of hyperparameters 
were found for each LSTM application, with some minor differences between them, although the choice of the 
same hyperparameters for all applications also led to reasonable models in all cases. Regularization was applied 
in the form of dropout.

Multiple models were trained to evaluate the best approach for forecasting GICs. Those trained to forecast the 
geoelectric field components are referred to as LSTM-E, while neural nets trained to forecast the GICs directly 
are referred to as LSTM-GIC. Both types of neural nets are only trained on the output of geophysical models (in 
the case of E, the result of FUR variations put through the plane-wave model, and for GICs, these are the currents 
calculated in power grid transformers from E) because we don't have measurements of E or GIC over long enough 
periods and because, as described in Sec. 2.3, GICs from geophysical models reach a good enough accuracy to be 
a reasonable substitute in training. Both types of models predict the absolute value of the target, but the LSTM-E 
predicts the sign (positive or negative) in addition.

3.3.  Evaluating the Model Skill

Each model was trained on its respective training set and the best LSTM parameters were chosen based on model 
behavior when presented with the validation set. Following training, we ran the model on the test data set in a 
virtual ‘real-time mode’ providing updates to the input data every 15 min, and giving an output with a 15-min 
cadence. The comparison to the ground truth (either the modeled geoelectric field or GICs) is performed point-
to-point as well as by looking at events, where the event-based analysis is given the most importance. In order to 
have a benchmark for comparison, we produced a real-time persistence approach which takes the maximum of the 
geoelectric field or GICs in the 20 min before the solar wind measurement time to forecast the maximum when 
the solar wind would reach Earth. As such, the persistence model (PERS) also uses a varying forecast lead time. 
The machine-learning forecast model should be able to beat persistence in most measures.

Our event-based analysis follows the recommendations put forward by Pulkkinen et  al.  (2013) and Welling 
et al. (2018) for dB/dt forecasting. An “event” in the data is classified as a value that exceeds a certain threshold, 
while all values below that threshold are non-events. By defining a threshold, we can calculate the confusion 
matrix (Wilks, 2011), which includes the number of correctly-predicted events or true positives (TP), missed 
events or false negatives (FN), incorrectly-predicted events or false positives (FP), and the correctly-predicted 
non-events or true negatives (TN). The metrics proposed in Pulkkinen et al. (2013) include the Probability of 
Detection (POD), which is the fraction of measured events correctly predicted as events, also called the true 
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positive rate (TPR or TP/(TP + FN)). Similarly, we include the probability of False Detection (POFD), the frac-
tion of measured non-events incorrectly predicted as events, which is equivalent to the false positive rate (FPR or 
FP/(FP + TN)). In addition, the Heidke Skill Score (HSS) and True Skill Statistic (TSS) are also considered, both 
of which are derived from all variables in the confusion matrix (see e.g., Bloomfield et al., 2012; Heidke, 1926). 
Both the HSS and TSS show no model skill at 0, and better model skill when approaching 1. The TSS has the 
benefit over the HSS of being unbiased by event/non-event ratios. We also include the bias (BS), which shows if 
the model tends to over-predict (more false positives, BS > 1) or under-predict (more false negatives, BS < 1).

4.  Results
We present the results in two parts: in the first part, we test our model's forecasting ability with regards to the 
the geoelectric field components. The results are compared to the geoelectric field modeled from geomagnetic 
variations at FUR (see Sec. 2.2). In the second part, we test the forecasting ability for GICs. These are calculated 
using (1) the geoelectric field components predicted from LSTM-E to calculate the GICs at the two substations 
we picked for analysis, and (2) directly from LSTM-GIC for each substation. The comparison between the model 
results and measurements of GICs is carried out for the years 2017, 2019 and 2020.

For the evaluation of geoelectric field forecast, we compute the scores for three event thresholds: these are 30, 60, 
and 90 mV/km in both Ex and Ey. In GICs, the level of 60 mV/km corresponds to a current of roughly 4 A through 
either SS1 or SS5, and we use similar thresholds of 2, 4 and 6 A. It is difficult to determine the minimum level 
of GICs above which transformers may experience adverse effects because these are heavily dependent on trans-
former type and the presence of DC-handling mechanisms. We have too few measurements of GICs exceeding 
higher levels such as 10 A to make an analysis at this level useful, but 4 A is crossed often during geomagnetically 
active times. The results are described in the next section.

Figure 5 gives a graphical representation of the model behavior at each threshold using receiver-operator char-
acteristic (ROC) and detection-error tradeoff (DET) curves. Both depict the model's ability to forecast events 
at varying thresholds. The ROC curve shows the trade-off between the true positive rate (also POD) and false 
positive rate (also POFD) at different event thresholds. Usually, when the threshold is low, the TPR is high but we 
also see an increased FPR, which is unwanted - a model that captures the observed behavior shows a curve that 
keeps close to the upper left corner. The area-under-the-curve (AUC in the legend) shows good model skill as it 
approaches 1. On the other hand, the DET curve shows the relationship between the false negative rate (fraction 
of all predicted non-events that were measured events misclassified as non-events, or FN/(FN + TN)) and false 
positive rate, the number of which usually goes up as the other goes down depending on where the threshold for 
an event is set. Here, the best model behavior is seen as the curves approach the lower left corner. It is useful in 
error minimization to deduce the rate at which the FNR improves with regards to an increase in FPR rate (and 
vice-versa).

4.1.  Forecasting Ex and Ey

We first evaluate the LSTMs trained on the geoelectric field in terms of the root-mean-square-error (RMSE) and 
the Pearson's correlation coefficient (PCC). Comparing the LSTM-E outputs to modeled E, the RMSE values are 
126 mV/km and 111 mV/km for the absolute value of Ex and Ey, while the PCC values are 0.60 and 0.61. Once 
the sign of E has been included, the RMSE rises to 261 mV/km and 287 mV/km, while PCC drops to 0.48 and 
0.32, so we see that the model's inability to forecast the field direction reliably decreases the accuracy when also 
considering the field direction.

Table 2 presents an event-based analysis of the LSTM-E results. Multiple thresholds (TH) defining events were 
considered, and these are listed by the variable ”TH” in each line (at 30, 60, and 90 mV/km, representing minor, 
moderate and strong geomagnetic activity). We see that the skill decreases as the threshold increases (decreasing 
probability of detection POD and TSS), and that the LSTMs tend toward over-predicting (BS > 1). (The bias for 
the PERS models is always ∼1 because the time series being compared are only shifted in time and therefore 
almost statistically equivalent.) There are always a large number of false positives, although this remains a small 
fraction of the number of total data points. The LSTM-E models generally outperform the PERS approach, 
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Figure 5.  Receiver-operator characteristic (ROC) and detection-error tradeoff (DET) curves for three approaches: (a–b) the geoelectric field, showing the output from 
the LSTM-E models versus the modeled geoelectric field, (c–d) the GICs calculated from the geoelectric field predicted by LSTM-E compared to measured GICs, 
and (e–f) the GICs predicted by the LSTM-GIC models compared to measured GICs. SS1 and SS5 are two separate substations in the power grid from which we have 
measurements. The values for specific event thresholds are labeled with shapes as defined in each legend.
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although the Heidke Skill Scores are occasionally smaller in the LSTMs, which implies a worse balance between 
false positives and true positives. As in the point-to-point values, the Ex component tends to be predicted better 
than the Ey component. By evaluating the ROC and DET curves in Figures (5a and 5b), we see that the LSTM-E 
models outperforms persistence at all thresholds.

We also conducted a comparison with the results from Honkonen et al. (2018) and Lotz and Danskin (2017), 
where possible. While the time development of the geoelectric field appears better in the modeling approach in 
Honkonen et al. (2018), the magnitudes are not matched as well. An event-based analysis could not be carried out 
in their case due to the short time series and lack of larger events, but the RMSE and PCC values for Ex and Ey 
(reduced to a 15-min sampling rate) come out as 10.5 mV/km and 97.8 mV/km and 0.62 and 0.25, respectively, 
which is better in the case of Ex but worse in the case of Ey. Comparing to Lotz and Danskin (2017), we see similar 
correlations for the geoelectric field components. They found a slightly higher correlation (averaged over three 
stations and two storms, 0.71 for Ex and 0.53 for Ey), although they predicted the maximum value for a longer 
time span (90 min), making their approach closer to a nowcast than a forecast. The higher RMSE values seen in 
our study in part derive from the slightly higher levels of daily variation that is forecast even when the field is 
extremely quiet. Again, in both studies used as comparison we see the northward component of the geoelectric 
field was predicted better than the eastward component.

4.2.  Forecasting GICs

The same results are presented for GICs as for the geoelectric field components in the last section. In the event-
based analysis, the thresholds were set at 2, 4 and 6 A, which are roughly equivalent to the thresholds used for 
the electric field. Table 3 shows the results of this analysis applied to the test data set years 2017, 2019 and 2020, 
while Figure 5 depicts the ROC and DET curves for the model output versus measured GICs. A comparison 
between the LSTM-GIC output and the modeled GICs the model was trained on shows similar levels of accuracy 
as in LSTM-E to the geoelectric field.

Nevents,obs TP FP FN TN POD POFD HSS TSS BS

LSTM-E model

  Ex,pred(TH=30) 3092 2,436 11, 749 656 160 ,506 78.8 6.8 0.26 0.72 4.6

  Ex,pred(TH=60) 494 312 1,038 182 173 ,815 63.2 0.6 0.34 0.63 2.7

  Ex,pred(TH=90) 175 66 164 109 175 ,008 37.7 0.1 0.33 0.38 1.3

  Ey,pred(TH=30) 2989 2,279 9,328 710 163 ,030 76.2 5.4 0.29 0.71 3.9

  Ey,pred(TH=60) 559 307 600 252 174 ,188 54.9 0.3 0.42 0.55 1.6

  Ey,pred(TH=90) 241 84 135 157 174 ,971 34.9 0.1 0.36 0.35 0.9

PERS model

  Ex,pers(TH=30) 3,092 958 2,128 2,134 170 ,127 31.0 1.2 0.30 0.30 1.0

  Ex,pers(TH=60) 494 157 335 337 174 ,518 31.8 0.2 0.32 0.32 1.0

  Ex,pers(TH=90) 175 41 130 134 175, 042 23.4 0.1 0.24 0.23 1.0

  Ey,pers(TH=30) 2,989 1,156 1,804 1,833 170, 554 38.7 1.0 0.38 0.38 1.0

  Ey,pers(TH=60) 559 216 335 343 174, 453 38.6 0.2 0.39 0.38 1.0

  Ey,pers(TH=90) 241 79 158 162 174 ,948 32.8 0.1 0.33 0.33 1.0

Note. A persistence model (PERS) is included for comparison. The first four columns provide the values for the confusion 
matrix (where TP, FP, TN and FN are the true positives (hits), false positives, true negatives (misses) and false negatives), 
while the following columns show the probability of detection (POD), probability of false detection (POFD), Heidke Skill 
Score (HSS), True Skill Score (TSS), and bias (BS). The variable TH in brackets gives the event threshold used to define 
events and compute the metrics.

Table 2 
Metrics From an Event-Based Analysis of the LSTM-E Models Applied to the Years 2000, 2001, 2017, 2019 and 2020 in a 
Retrospective Real-Time Mode With the Model Being Run at 15-Minute Intervals
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We first look at the results for GICs calculated from the geoelectric field components predicted using the LSTM-E 
models. Note that while the last section mainly looked at the absolute value of the geoelectric fields, in the calcu-
lation of GICs the direction of the geoelectric field is also included, making this an additional error factor if the 
sign is not predicted accurately. Once the GICs have been calculated using the results from the LSTM-E models 
and Eq. 1, the absolute value is taken for the rest of the analysis.

As can be seen in Table 3, the GICs derived from the LSTM-E models see a considerable drop in accuracy in 
comparison to the results for E alone in Table 2. Although there were quite reasonable values for POD predicting 
E, the POD for GICs at the mid-range threshold (60 mV/km or 4 A) drops from around 50% in both components 
of E to 8% and 16% in substation SS1 and SS5. Evaluating the skill of the model for GICs at high levels is difficult 
because there are so few events exceeding even a minimal value of 6 A. None of these events (2 at SS1, 12 at SS5 
over the three years of data) were predicted using any approach.

In comparing the GIC predictions from the two methods (LSTM-E and LSTM-GIC), we see that the LSTM-
GIC seems to perform better but the results are station-specific. The LSTM-GIC performs much better than the 
LSTM-E at SS1 (e.g., a POD of 55% rather than 29% and higher HSS and TSS values at a threshold of 2 A) and 
at a similar level at SS5. This is also reflected in a model evaluation using point-to-point metrics. The RMSE 
values for SS1 and SS5 predicted using LSTM-E are 0.49 and 0.59 A, while the PCC is 0.35 and 0.67. For GICs 
predicted using LSTM-GIC, the RMSE values are 0.67 and 0.78 A (i.e., slightly worse than LSTM-E), but the 
PCC is 0.56 and 0.64. The accuracy between the two approaches is roughly equivalent for SS5, but using LSTM-
GIC rather than LSTM-E is a definite improvement for SS1 observations. Some of the reason for this can be seen 
in Figure 6. In SS1, the jumps in values computed from LSTM-E result from changes in the sign of the geoelectric 
field components, which then cancel each other out and lead to a GIC of zero (Conversely, ignoring the sign from 
LSTM-E and taking the absolute values to calculate the GICs in SS1 results in higher correlation and POD but a 
far larger number of false positives, leaving this as another possibility.) In the best cases, the GIC forecasts only 

Nevents,obs TP FP FN TN POD POFD HSS TSS BS

LSTM-E model

  GIC1pred,E(TH=2) 432 124 1060 308 103 ,697 28.7 1.0 0.15 0.28 2.7

  GIC1pred,E(TH=4) 24 2 57 22 105, 108 8.3 0.1 0.05 0.08 2.5

  GIC5pred,E(TH=2) 307 159 681 148 80 ,649 51.8 0.8 0.27 0.51 2.7

  GIC5pred,E(TH=4) 43 6 13 37 81, 581 14.0 0.0 0.19 0.14 0.4

LSTM-GIC model

  GIC1pred(TH=2) 432 239 1,886 193 102, 871 55.3 1.8 0.18 0.54 4.9

  GIC1pred(TH=4) 24 3 26 21 105, 139 12.5 0.0 0.11 0.12 1.2

  GIC5pred(TH=2) 307 172 1,403 135 79 ,927 56.0 1.7 0.18 0.54 5.1

  GIC5pred(TH=4) 43 7 16 36 81, 578 16.3 0.0 0.21 0.16 0.5

PERS model

  GIC1pers(TH=2) 432 50 375 382 104 382 11.6 0.4 0.11 0.11 1.0

  GIC1pers(TH=4) 24 0 26 24 105 139 0.0 0.0 undef undef 1.1

  GIC5pers(TH=2) 307 61 237 246 81 093 19.9 0.3 0.20 0.20 1.0

  GIC5pers(TH=4) 43 7 38 36 81 556 16.3 0.0 0.16 0.16 1.0

Note. GIC1pred,E is the result from the models trained to predict the geoelectric field (LSTM-E), while GIC1pred is the result 
from the LSTM-GIC. PERS is a persistence model assuming the target (GIC) repeats itself. The first four columns provide 
the values for the confusion matrix (where TP, FP, TN and FN are the true positives (hits), false positives, true negatives 
(misses) and false negatives), while the following columns show the probability of detection (POD), probability of false 
detection (POFD), Heidke Skill Score (HSS), True Skill Score (TSS), and bias (BS). The variable TH in brackets is the event 
threshold used to define events and compute the metrics.“undef.” refers to the HSS and TSS at TP = 0, which are undefined.

Table 3 
Metrics From an Event-Based Analysis of Different Model Applied to the Years 2017, 2019 and 2020 in a Retrospective 
Real-Time Mode With the Model Being Run at 15-Minute Intervals
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reach a POD of 16% for GICs above a threshold of 4 A, highlighting the difficulty in correctly predicting larger 
values.

In the ROC and DET curves in Figure 5 panels (c-d) for GICs from LSTM-E and (e-f) from LSTM-GIC, we 
also see some of the weak forecasting ability for SS1 primarily represents the LSTM behavior at low values 
(GICs<1A). At SS1, there is a mostly continuous level of noise around 1 A, and the model does not predict the 
noise while the persistence model captures it clearly. This is an example of the weakness of ROC curves, where 
in this case only the lower left corner (showing values greater than 1 A) is of interest to us.

Figure 6 shows the forecast that would have been produced by the model (solid and dashed black lines) against 
measurements (colored lines) during the September 2017 storm. The models, particularly the LSTM-GIC 
approach, do a reasonable job at predicting magnitudes, although the LSTM-E struggles to predict the direction, 
which is also important for accurate GIC prediction. The storm and the active periods are clearly captured by 
the forecast, and daily variations from the Sq current are forecasted otherwise. Note that the delayed rise in the 
forecast of the first peak of the storm does not indicate a timing error. A cross-correlation of the model output 
shows at maximum an offset in time of 10 min and the delay in the figure is simply a feature unique to this storm. 
While the exact time development of the storm is not captured well, the general scales of GICs are matched well, 
as is the differentiation between quiet and active times.

In summary, prediction of geoelectric field magnitudes can be achieved with reasonable accuracy (POD of at 
least 35% even at the highest event threshold), but the prediction of elevated levels of GICs proves difficult 
with any approach used. The LSTMs usually outperform the persistence models, except in the bias, where the 
persistence model has the benefit of being statistically equivalent to the data it is being compared to. The persis-
tence model also generally has a lower POFD and higher HSS value at low thresholds (e.g., TH = 30 V/km for 

Figure 6.  The LSTM-E (dashed line) and LSTM-GIC (solid line) applied to forecasts in an experimental real-time mode and compared to measurements of GICs 
(colored lines) at two stations in Austria. The upper panel (a) shows results for SS1 near Vienna, while the lower panel (b) shows results for SS5 near Salzburg (with 
some data gaps). Although not plotted here, the maximum GIC value computed from the measurements is at the same cadence of 15min to compare to the model 
forecasts.
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LSTM-E) because quiet periods tend to persist over time. The LSTMs, however, outperform persistence at the 
higher thresholds, which are more important for forecasting purposes.

5.  Discussion
We have attempted to forecast GICs from solar wind data using LSTMs with two different approaches. We now 
look at some of the reasons behind the particular difficulty in forecasting GICs.

Some of the low skill seen when comparing predictions to GIC measurements is down to four reasons, mostly 
related to our GIC data: first, there is noise in the GIC observations, particularly at SS1, which has a consistent 
level of 1 A noise during the day - this is not predicted by the model. Second, GIC observations until 2021 had a 
maximum cutoff point of 3.4 A in the positive direction, removing some peaks from our event list, and these have 
not been accounted for. Third, the model struggles to predict the direction of the geoelectric field values, which 
are likely driven by smaller-scale ionospheric currents (Dimmock et al., 2020). Fourth, as noted in Sec. 2.3, the 
peaks of observed GICs are often underestimated by geophysical modeling, meaning peaks in the GIC measure-
ments after the cut-off level was removed were often much larger than modeled. This is a problem related to the 
geoelectric field modeling that may affect the LSTM's ability to learn the problem due to insufficient accuracy 
in the field modeling. While minute cadence data does capture most of the variability in the GICs, the lack of 
higher frequency content appears to the primary cause of underestimated peaks, a problem discussed before in 
Grawe et al. (2018) and recently for the specific problem of GIC estimates in Beggan et al. (2021). As such, it is 
not surprising that the LSTMs tend to underestimate the actual GICs, and a correction would have to be applied 
to the target data to account for this.

Outside of the data-specific problems, there are also some timing errors, meaning some peaks arrived slightly 
later or earlier than they were observed, and as such are not logged as correct predictions even though an event 
threshold was crossed.

In an application of the model in operations, one caveat is that the maximum possible forecast is 200 mV/km due 
to a self-imposed limit to improve the model's ability to learn. We assume that in practise, this would be negligi-
ble because all values above a certain level (e.g., 100 mV/km) would be of interest, regardless of how large they 
become. As also discussed in Wintoft et al. (2016), the scale of geomagnetic variations during extreme events can 
theoretically become so large that it is effectively unbounded for the purpose of this discussion. In the future, this 
200 mV/km limit could be improved on by training a model specifically for large value forecasting, which can be 
switched to if the original model forecasts E > 150mV/km.

In an ideal case, a forecasting model would be developed while taking a cost-loss analysis (Murphy, 1977) such as 
that used in a space weather context in Owens et al. (2014) into consideration. In the case of network protection, 
this is a very complex scenario due to the varying impacts and costs associated with transformer damage or power 
grid outage, many of which are currently nearly impossible to estimate. This is something that can hopefully be 
developed further as studies into GIC risk progress (Eastwood et al., 2018).

Another, more general problem in forecasting any measure of ground geomagnetic activity from solar wind meas-
urements without further input from the magnetosphere-ionosphere system is that not all geomagnetic variations 
are driven by the solar wind directly (see e.g., Eastwood et al., 2015; Kamide et al., 1998). Many of the ground 
variations, particularly at shorter timescales (Alberti et al., 2017), are not directly driven by the solar wind but are 
instead the consequence of other processes being triggered. These can include complex magnetospheric dynam-
ics such as reconnection in the magnetotail, as well as random, chaotic processes. Such processes can not be 
related in detail through our model, which is essentially a coupling function from the solar wind at the bow shock 
to the geoelectric field in Austria. Some of the dynamics will be represented to some degree, but it is difficult to 
ascertain exactly which in a black-box machine learning model. A further difficulty in improving predictions lies 
in the fact that GICs can only be calculated accurately with knowledge of magnetic field variations at timescales 
of seconds (Grawe et al., 2018), ideally, and the LSTM must make approximations of what kind of variations 
are expected due to the conditions rather than deriving the variations precisely. Although the machine learning 
approach described here works at a basic level and could be more promising than forecasts of dB/dt alone, to 
create a model that can also account for complex magnetospheric processes it would need to be coupled with 
either data from space-borne monitors observing the Earth's magnetosphere, more complex physical models of 
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magnetospheric behavior (developing a so-called gray-box model as recommended in Camporeale (2019), for 
example), or both.

The calculations and measurements of the GICs shown in this study are for a specific grid configuration, even 
though the power grid is continually being upgraded and changed. These changes can have large effects on indi-
vidual GIC scales over long time ranges. The results shown in Table 1 extend far into the past, for which we do not 
have a detailed history of grid changes, so the values listed could have been much smaller or much larger depend-
ing on how the grid was set up. For the LSTM predictions, we have conducted our analysis with the comparison 
to measurements over a considerably shorter time range of a few years, where the grid has not changed to any 
great degree, but the predictions may not be valid in the future for a different grid configuration. In this case, a 
new fit would need to be found for Equation 1, and either the LSTM-GIC model would need to be retrained on the 
updated GIC data, or the GIC values could be calculated anew from the otherwise unchanged LSTM-E output.

Our aim was to develop a model that can provide useful forecasts for power grid operators by providing estimates 
of the scales of GICs. The difference between this and former studies such as Honkonen et al. (2018) and Lotz 
et al. (2017), who also predicted ground geoelectric fields from solar wind data, is that we have approached the 
problem with a new tool (a recurrent neural network) and have been able to forecast GICs directly along with 
the geoelectric field, with the results compared to measured GICs. We have had some success, particularly with 
forecasting the geoelectric field, and have tried forecasting substation-specific GICs for the first time, but there 
are still many problems to be addressed to turn this method into a useful forecast.

6.  Summary
We have developed a machine learning approach to forecast GICs in Austria. Using data from the past 26 years 
and the 2003 Halloween storm as a case study, we argued that forecasts of dB/dt alone, which have been the focus 
of most past studies, are not sufficient to make actionable GIC forecasts.

From this initial analysis, we set out to forecast maximum expected GICs (over a 40 minute time window) either 
directly for specific substations in the power grid or more generally from forecasts of the regional geoelectric 
field components. From a small set of initial machine learning approaches, an LSTM (recurrent neural network) 
with an Attention mechanism showed the most promise in forecasting skill and this was developed into a more 
complex approach.

A selection of models were trained on 21 years of geoelectric field values modeled from geomagnetic variations 
at the geomagnetic observatory in Fürstenfeldbruck close to Austria. In the first method, two recurrent neural 
networks or LSTMs were trained to predict the northward and eastward modeled geoelectric field components 
and compute the specific substation GICs using a linear equation. In the second method, an LSTM was trained to 
predict modeled GICs at two substations, which we know correlate very well with the measurements. Five years 
of data were reserved for testing and evaluating the model. The results were compared to DC measurements at 
two substations in the Austrian power grid.

The LSTM model worked with reasonable success when predicting the geoelectric field modeled from geomag-
netic variations, although translating this success into good GIC forecasts proved difficult. It was possible, 
however, to outperform a model that simply takes the last observed GICs to forecast future values.

We conclude that forecasting the GICs observed in the power grid from solar wind data measured at L1 is a diffi-
cult task, even when the forecasting model does a reasonable job of forecasting the geoelectric field components 
or modeled GIC. There are many ways to improve the modeling in the future, including using higher-resolution 
magnetic field measurements (or applying a correction to the modeled geoelectric field before training) to more 
accurately estimate the peak geoelectric field and GIC values, and by including information on the development 
of the magnetosphere during storm times.

Although this study has looked specifically at a mid-latitude region, where geomagnetic variations and GICs are 
not as large as those seen in higher latitude regions such as Scandinavia, we have been able to compare model 
output directly to measurements and expect that the conclusions drawn will also be valid for other regions with 
GICs at different scales.
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A lower-resolution version of the LSTM-E model will be coupled with the PREDSTORM solar wind forecast 
(Bailey et al., 2020), which provides forecasts of the ambient solar wind a few days in advance, based on either a 
recurrence model or data from a spacecraft east of the Sun-Earth line such as STEREO or a future mission to the 
Lagrange 5 point. We also plan in the future to integrate methods on solar wind Bz forecasting (Reiss et al., 2021) 
or CME flux rope modeling (Weiss et al., 2021) to advance our capabilities in GIC forecasting for any type of 
solar wind structures.

Data Availability Statement
INTERMAGNET data for FUR and WIC: https://intermagnet.org/data-donnee/download-eng.php. OMNI data: 
https://spdf.gsfc.nasa.gov/pub/data/omni/high_res_omni/. Open source code for this work (in Python 3 and Jupy-
ter Notebook form): https://doi.org/10.5281/zenodo.5704715. Exact details on the LSTM structure and hyperpa-
rameters used for training can be found in the Supporting Information S1 for this study. A subset of the data set 
used to derive the results, namely the the GIC observations and model forecasts used to produce Figure 6, have 
also been included in the Supporting Information S1 and saved in an online repository: https://doi.org/10.6084/
m9.figshare.19102772.v1.
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