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Abstract
Assessing the potential impacts of climate change on river flows is critically important for 
adaptation. Data from global or nested regional climate models (GCMs/RCMs) are fre-
quently used to drive hydrological models, but now there are also very high-resolution 
convection-permitting models (CPMs). Here, data from the first CPM climate ensemble for 
the UK, along with the RCM ensemble within which the CPM is nested, are used to drive 
a grid-based hydrological model. The performance for simulating baseline (1981–2000) 
river flows is compared between the RCM and the CPM, and the projections of future 
changes in seasonal mean flows and peak flows are compared across Britain (1981–2000 
to 2061–2080). The baseline performance assessment shows that (before bias correction) 
the CPM generally performs better than the RCM, and bias correction of precipitation 
makes both the RCM and CPM perform more similarly to use of observation-based driv-
ing data. The analysis of future changes in flows shows that the CPM almost always gives 
higher flow changes than the RCM. If reliable, these differences in flow projections suggest 
that adaptation planning for high flows based on use of regional data may be insufficient, 
although planning for low flows may be slightly over-cautious. However, the availability of 
CPM data only for one RCM/GCM is a limitation for use in adaptation as it under-samples 
the uncertainty range. There are significant challenges to the wider application of CPM 
ensembles, including the high computational and data storage demands.

Keywords  Climate change · Hydrological impacts · UK Climate Projections 2018 · 
UKCP18 · CPM · RCM

1  Introduction

Data from global climate models (GCMs) or nested regional climate models (RCMs) are 
frequently used to drive hydrological models to investigate the potential impacts of climate 
change on river flows (e.g. Roudier et al. 2016; Marx et al. 2018; Thober et al. 2018; Zhai 
et al. 2020). GCMs and RCMs have typical horizontal resolutions of hundreds down to tens 
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of kilometres, so data typically require some form of further spatial downscaling before use 
for finer-scale hydrological impact modelling (e.g. Kay et al. 2009).

Computing advances have recently enabled the application of higher-resolution ‘con-
vection-permitting’ models (CPMs), commonly used in weather forecasting, for climate 
change projections (Kendon et  al. 2021a). CPMs have horizontal resolutions ranging 
from ~ 5 km down to a few hundred metres (Fosser et al. 2020). This finer resolution means 
that such models can simulate the atmosphere at a scale closer to that of convection, so 
they do not require schemes parameterising convective storms; lower-resolution models 
rely on such schemes, which represent the average effect of convection and can thus be 
a significant source of uncertainty (Kendon et al. 2021a). The finer resolution also means 
that CPMs better represent landscape details such as coastlines, orography, and urban areas 
(Kendon et al. 2021a; Lucas-Picher et al. 2021). Like RCMs, CPMs are typically applied 
as limited area models, which need to be provided with initial and lateral boundary condi-
tions. For producing climate projections, CPMs are nested within (i.e. take their boundary 
conditions from) a coarser-resolution climate model, which can be a GCM, or an RCM 
nested within a GCM (‘telescopic nesting’; Lucas-Picher et al. 2021).

CPMs have been run for various regions around the globe, and their added value quan-
tified in terms of meteorological performance (Lucas-Picher et  al. 2021; Kendon et  al. 
2021a), but their value for hydrological impacts has been less studied (Lucas-Picher et al. 
2021). Analyses using CPMs for assessing climate change impacts on river flows include 
catchments in Texas (Qing et al. 2020), Norway (Schaller et al. 2020) and the Eastern Alps 
(Reszler et al. 2018). Schaller et al. (2020) suggest that use of higher-resolution CPM data 
is necessary for flood modelling in Norway because of the CPM’s improved representation 
of orographic precipitation, but Reszler et al. (2018) found no clear added value from use 
of CPM data compared to RCM data for flood modelling in the Alps. Furthermore, there 
are significant challenges to CPM implementation and application, including the heavy 
computational and data storage demands which limit domain size, time-slice length and/or 
ensemble size (Lucas-Picher et al. 2021; Kendon et al. 2021a).

The first decadal-length climate change runs of a CPM for southern Britain (Kendon 
et al. 2014) were used to drive a grid-based hydrological model (Kay et al. 2015). Analy-
sis of simulated river flows showed that the nested 1.5-km CPM gave greater increases in 
flood peaks than the 12-km RCM in spring and winter in particular. However, in the above 
study only a single CPM was available (not an ensemble), for relatively short time-slices 
(~ 13 years baseline and future). Also, the CPM performance for baseline flows was gen-
erally worse than the RCM (driven by re-analysis boundary conditions), likely due to the 
tendency of the CPM to produce heavy rainfall that was too intense (Kendon et al. 2012).

As part of UK Climate Projections 2018 (UKPC18; Lowe et  al. 2018), a 12-member 
ensemble of 2.2-km CPM projections was produced for the UK, nested in an ensemble 
of 12-km RCM projections (Kendon et al. 2021b). As well as providing an ensemble for 
the whole of the UK, the latest CPM projections are available for three 20-year periods, 
thus representing a significant advance despite having a slightly lower spatial resolution. 
A 2.2-km grid was chosen, rather than the previous 1.5-km grid, as a compromise between 
the (relatively small) added value and significantly higher computational cost of increasing 
resolution (Fosser et al. 2020). There have also been changes to model physics which have 
improved performance relative to previous versions, including the tendency for heavy rain-
fall to be too intense (Fosser et al. 2020).

Previous application of the UKCP18 RCM ensemble has suggested large decreases in 
summer and extreme low flows across Britain, but possible increases in winter and extreme 
high flows, especially in the north and west (Kay 2021; Lane & Kay 2021). The main 
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reason for developing CPM projections in the UK was to enable investigation of potential 
future changes in extreme summer storms (Orr et  al. 2021). But analysis shows greater 
increases in winter precipitation in the CPM than in the driving RCM (Kendon et al. 2021b 
Fig. 4.2.3), due to increased formation of winter convective events over the sea and their 
advection inland. Since winter is the main flood season across much of Britain (Ledingham 
et  al. 2019), differences between CPM and RCM winter precipitation changes could be 
important for flood impacts.

Using data from the UKCP18 RCM and CPM ensembles to drive a national-scale grid-
based hydrological model, the main aim of this study is to compare RCM- and CPM-based 
projections of future changes in seasonal mean flows and peak flows across Great Brit-
ain (GB). The performance of RCM and CPM data for simulating baseline flows is also 
compared.

2 � Methods

2.1 � Hydrological model and observation‑based driving data

Grid-to-Grid (G2G) is a grid-based runoff-production and routing model with an optional 
snow module which usually operates across GB on a 1-km grid at a 15-min time-step (Bell 
et al. 2009, 2016). Runoff from each grid cell forms the lateral inflows to the grid-based 
flow routing scheme, and flow is routed from grid cell to grid cell along flow pathways. 
The model simulates natural rather than gauged flows and has been shown to perform well 
for a wide range of catchments (Bell et al. 2009, 2016; Rudd et al. 2017; Formetta et al. 
2018). Inclusion of abstraction and discharge data typically improves model performance 
in affected catchments (Rameshwaran et al. 2022), but limited data availability means that 
such artificial influences are not included here.

Gridded precipitation, potential evaporation (PE) and temperature time-series are 
required to drive G2G (including the snow module). An observation-based simulation 
for December 1980–November 2000 (hereafter ‘SIMOBS’) uses daily 1-km precipitation 
from CEH-GEAR (Tanguy et al. 2016) divided equally over each model time-step in a day; 
monthly 40-km short grass PE from MORECS (Hough and Jones 1997) divided equally 
over each model time-step in a month and copied down to the 1-km grid; and daily 1-km 
min and max temperature (Met Office et al. 2019) interpolated through the day using a sine 
curve (Kay and Crooks 2014). The simulation was initialised using a states file saved from 
the end of a prior simulation using the same driving data (January 1970–November 1980).

Model outputs include gridded time-series of (i) monthly mean river flows and (ii) 
annual maxima of daily mean river flows (for water years, 1st October–30th September). 
Also, time-series of daily mean river flows are output for specific 1-km grid boxes corre-
sponding to gauged catchments within the National River Flow Archive (www.​ceh.​ac.​uk/​
data/​nrfa/). Only data from non-tidal grid boxes with a catchment area of at least 50 km2 
are analysed (hereafter ‘river pixels’).

2.2 � Climate change projections and their application

UKCP18 comprises a number of products, including UKCP18 Regional (Murphy et al. 2018) 
and UKCP18 Local (Kendon et al. 2021b), which respectively provide the RCM and CPM 
data applied here. The Regional projections comprise a 12-member perturbed parameter 
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ensemble (PPE) of the Hadley Centre ~ 12-km RCM (HadREM3-GA705), nested in an equiv-
alent PPE of the Hadley Centre ~ 60-km GCM (HadGEM3-GC3.05). The Local projections 
comprise a 12-member ensemble of the Hadley Centre ~ 2.2-km CPM (HadREM3-RA11M), 
nested in each RCM PPE member. The RCM/CPM ensemble members are numbered 01–15 
excluding 02, 03, and 14 (there are no RCM/CPM equivalents for these three GCM PPE mem-
bers; Murphy et al. 2018 Sect. 4.3). Member 01 uses the standard GCM/RCM parameterisa-
tion; the CPM parameters are not adjusted between members.

Both Regional and Local projections are for RCP8.5, a scenario of relatively high green-
house gas emissions (Riahi et  al. 2011). While the Regional projections cover December 
1980–November 2080, the Local projections only cover three 20-year sub-periods; Decem-
ber 1980–November 2000, December 2020–November 2040 and December 2060–Novem-
ber 2080 (meaning that a WMO-recommended 30-year standard reference period, e.g. 
1981–2010, cannot be used here). As well as the RCM and CPM data being available on their 
native ~ 12-km and ~ 2.2-km rotated lat-lon grids, the data are also available re-projected to 
grids aligned with the GB national grid, at resolutions of 12 km and 5 km respectively (Met 
Office Hadley Centre 2018, 2019). The re-projected 12-km RCM and 5-km CPM daily pre-
cipitation and min and max temperature are used here.

The re-projected RCM and CPM daily precipitation data are bias-corrected using monthly 
factors derived by comparing baseline data against CEH-GEAR data (as Kay 2021), down-
scaled to 1 km using information from observed patterns of standard average annual rainfall 
(Bell et al. 2007), and temporally downscaled as for observed rainfall (Sect. 2.1). No bias cor-
rection is applied to RCM or CPM temperature data (Kay 2021), but these are downscaled 
to 1 km using elevation data and a lapse rate (Bell et al. 2016), and temporally downscaled 
as for observed temperature (Sect.  2.1). Note that bias correction of climate model data is 
not straightforward (Ehret et al. 2012; Maraun et al. 2017), and deficiencies in observation 
networks (especially in areas of complex topography) could mean that CPM simulation skill 
exceeds the skill of gridded observations in some areas (Lucas-Picher et al. 2021).

PE for short grass is not available directly from the climate models and so is estimated from 
other climate variables (Kay 2021). Here, as in Kay et al. (2015), the RCM PE is used for the 
equivalent CPM runs, to simplify the application and because not all of the variables required 
to calculate PE are yet available for the CPM. Rudd and Kay (2016) showed good correspond-
ence between PE derived from an RCM and the nested CPM. The RCM PE are spatially and 
temporally downscaled as for observed PE (Sect. 2.1).

The RCM and CPM ensemble data are used to drive the G2G, using the full period for the 
RCM (December 1980–November 2080) but only the baseline (December 1980–November 
2000) and far-future (December 2060–November 2080) time-slices for the CPM. The states 
file used to initialise SIMOBS (Sect. 2.1) is also used to initialise each RCM-driven simula-
tion (hereafter ‘SIMRCM’) and each baseline CPM-driven simulation (hereafter ‘SIMCPM’). 
For the far-future CPM simulations, each ensemble member is initialised using a states file 
saved from the end of a 5-year prior run (December 2055–November 2060) of the equivalent 
RCM ensemble member (initialised using a states file from the end of the prior time-slice).

2.3 � Analysis of simulated flows

2.3.1 � Baseline performance assessment

The performance assessment compares flow statistics rather than day-to-day flow time-
series, because the development of weather features (e.g. storms) in the RCM/CPM 
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baseline will not follow that of the observed weather. Thus, flow duration curves and flood 
frequency curves are derived from the simulated daily mean flows for 1-km grid cells cor-
responding to the locations of flow gauging stations (Sect.  2.1), and compared against 
those derived from the available gauged daily flow record. This is done for SIMOBS and 
each baseline SIMRCM and SIMCPM ensemble member (with and without bias correc-
tion). The comparison uses benchmark catchments (Harrigan et al. 2018), only including 
those with an area of at least 50 km2 and with less than 20% missing data in the baseline 
(as Kay 2021)—94 catchments. Of these, the majority (71) have no missing data in the 
baseline. The presence of missing data could thus affect the assessment for 23 catchments, 
particularly for more extreme peak flows (which are more difficult to gauge) or if concen-
trated in a particular season for example.

Three measures are derived from the flow duration curve: low flow volume (percentage 
bias in the 70th–95th quantiles; lfv_70-95), median flow (percentage bias in the 50th quan-
tile; mdf), and high flow volume (percentage bias in the 5th–30th quantiles; hfv_5-30) (as 
Kay 2021). These three measures symmetrically cover the flow duration curve, but exclude 
the extremes as greater uncertainty can be expected in extreme quantiles of gauged flows. 
An additional measure is derived from the flood frequency curve; the average percentage 
bias in 2-, 5- and 10-year return period peak flows (ffr; as Kay et al. 2015). The flood fre-
quency curve is derived by fitting a generalised logistic distribution to sets of water-year 
annual maximum (AM) flows (use of water-years means there are 19 AM in each 20-year 
time-slice). All four measures are calculated on the square root of flows, so there is less 
emphasis on bias in very high flows. Better performance is indicated by values closer to 
zero.

2.3.2 � Future changes in precipitation

To provide context for the simulated future changes in flows (Sect. 2.3.3), the changes in 
RCM and CPM seasonal and extreme precipitation are first calculated and compared across 
GB. For each RCM and CPM ensemble member and each land cell over mainland GB 
(i.e. excluding sea cells and data covering Ireland, France, Isle of Man and Orkney/Shet-
land), the changes in seasonal mean bias-corrected precipitation are calculated between the 
baseline and far-future time-slices, for the standard seasons (winter: December–February, 
spring: March–May, summer: June–August, autumn: September–November). Similarly, the 
baseline to far-future changes in extreme precipitation are calculated for each RCM and 
CPM ensemble member and each land cell over mainland GB, where ‘extreme’ is defined 
as daily rainfall exceeding the 90th or 99th percentile of the baseline daily rainfall in each 
cell. In each case, the GB-median of the grid-cell changes is then calculated and plotted.

2.3.3 � Future changes in flows

To assess whether the RCM and CPM show different impacts on river flows, changes in 
SIMRCM and SIMCPM seasonal mean flows and peak flows are calculated from the base-
line to the far-future time-slice. The gridded monthly mean flow time-series are used to 
derive seasonal mean flows for the standard seasons (as Kay 2021). The gridded AM flow 
time-series are used to derive flood frequency curves, and changes in 2- and 10-year return 
period peak flows are investigated.
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3 � Results

3.1 � Baseline performance assessment

The analysis of baseline performance shows that, without bias correction, SIMCPM 
generally performs better than SIMRCM; box plots show median performance values 
(across the ensemble and the 94 catchments) are closer to zero for SIMCPM than 
SIMRCM for all measures except flood frequency, for which there is little difference 
(Fig.  1). Similarly, scatter plots of the SIMCPM vs SIMRCM ensemble median 
performance values, for each of the 94 catchments, show lower-magnitude SIMCPM 
values for most catchments, for all measures except flood frequency (Fig.  2 left). 
Precipitation bias correction makes SIMRCM and SIMCPM perform more similarly to 
each other, with correlation coefficients of 0.867–0.979 for the four measures without bias 
correction but 0.977–0.996 with bias correction (Fig. 2). With bias correction, SIMRCM 
and SIMCPM also perform more similarly to SIMOBS (Fig.  1), although SIMOBS 
tends to underestimate low flow volume and flood peaks. Errors in low flow volume are 
accentuated by use of percentages, as a small absolute difference in a low value can be a 
large percentage difference.

Maps of the performance measures for the 94 catchments, for SIMOBS and as the 
ensemble median for SIMRCM and SIMCPM (with and without bias correction), illus-
trate the spatial variation in performance (Supp. Fig. 1). Spatial patterns of performance 
are generally similar for SIMRCM and SIMCPM, and with bias correction these patterns 
are similar to those for SIMOBS, as would be expected. In particular, the low flow volume 
is more likely to be under-estimated in north/west England, Wales and eastern Scotland, 
while flood peaks are more likely to be under-estimated in Scotland and southern England/
Wales.

3.2 � Future changes in precipitation

Looking at the GB-median of grid-based precipitation changes, both the RCM and CPM 
give increases in winter precipitation and extreme precipitation and decreases in summer 
precipitation for all ensemble members (Fig. 3). There is less consistency between ensem-
ble members in terms of the sign of the precipitation change for spring and autumn, for 
both the RCM and CPM (Fig. 3).

Comparing the RCM and CPM GB-median precipitation changes, the CPM generally 
gives a higher ensemble mean change than the RCM, with differences in winter and 
autumn of about + 9–10% and in spring of about + 4%. Differences between the RCM and 
CPM precipitation changes are much smaller for summer mean precipitation (about − 2%) 
and for extreme precipitation (+ 2% or less) (Fig. 3).

The CPM ensemble members are not in the same order as the RCM members for any 
of the precipitation measures (Fig. 3). However, the member with the largest (smallest) 
change for the RCM is also the largest (smallest) for the CPM, or at least close to it 
(Fig.  3). The member that gives the largest or smallest difference between RCM and 
CPM precipitation changes is often not the same for the different precipitation measures 
(Fig. 3).



Climatic Change          (2022) 173:11 	

1 3

Page 7 of 19     11 

More detail on RCM vs CPM precipitation changes is provided by Kendon et  al. 
(2021b), in particular maps of changes in winter and summer mean precipitation (Kendon 
et al. 2021b Fig. 4.2.3–4.2.4) and changes in winter and summer wet day frequency, wet 
day intensity and heavy daily events (Kendon et al. 2021b Fig. 4.3.3–4.3.8).

Fig. 1   Boxplots summarising the four performance measures — percentage bias in low flow volume 
(lfv_70-95), median flow (mdf), high flow volume (hfv_5-30) and flood frequency (ffr) — across 94 gauged 
catchments, for SIMOBS, the SIMRCM and SIMCPM ensembles pooled together (‘all_em’), and each 
SIMRCM and SIMCPM ensemble member separately (numbers along the x-axis). The SIMRCM and SIM-
CPM results are shown without and with bias correction (‘wobc’ and ‘wbc’). Each box shows the 25th–
75th percentile range, with the line showing the 50th percentile and the whiskers the 10th–90th percentiles. 
Lines outside the box show the overall min and max (if within the plotted range)
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Fig. 2   Scatter plots comparing the four performance measures — percentage bias in low flow volume 
(lfv_70-95), median flow (mdf), high flow volume (hfv_5-30), and flood frequency (ffr) — for 94 gauged 
catchments, as the median value across the SIMRCM and SIMCPM ensemble members without and with 
bias correction (‘bc’). The Pearson correlation coefficient r is given to the bottom right of each plot
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3.3 � Future changes in flows

Comparing the GB-median of grid-based flow changes, SIMCPM gives a higher 
ensemble mean change than SIMRCM, with differences of about + 13–14% for winter 
and autumn mean flows and 2- and 10-year return period peak flows, about + 8% for 
spring mean flows, but only about + 3% for summer mean flows (Fig. 4). For each flow 
measure except summer mean flows, the GB-median flow change from SIMCPM is 
greater than that from SIMRCM for all 12 ensemble members (i.e. the line connecting 
them has positive slope). For summer mean flows, all SIMRCM and SIMCPM mem-
bers give decreases (ensemble mean ~ -50%) but two SIMCPM members (06, 13) give 
slightly larger decreases than their SIMRCM equivalents (i.e. the line connecting them 
has negative slope; Fig. 4). These members also give the greatest magnitude decreases 
in summer mean flows, which leads to the SIMCPM ensemble spread being clearly 
greater than that for SIMRCM for summer mean flow changes. The ensemble spread 
from SIMCPM is also greater than that for SIMRCM for the other flow measures.

The SIMCPM ensemble members are not in the same order as SIMRCM for any of 
the flow measures (Fig.  4). However, the member with the largest (smallest) change 
for SIMRCM is also the largest (smallest) for SIMCPM, except for autumn mean flows 
(2-year return period peak flows). The member that gives the largest or smallest differ-
ence between SIMRCM and SIMCPM flow changes is also not generally the same for 
the different flow measures, apart from the two peak flow return periods (Fig. 4). The 
member that gives the largest difference in peak flow changes (12) also gives the near-
largest difference in winter flow changes (not shown), while the member that gives 
the smallest difference in peak flow changes (10) also gives the smallest difference in 
autumn flow changes.

While Fig.  4 compares the GB-median flow changes for each ensemble member, 
Fig.  5 compares the distribution of flow changes for river pixels across GB, pooling 
the ensemble members. This illustrates that the 25th, 50th and 75th percentile changes 
from SIMCPM are greater than those from SIMRCM for all flow measures. The same 
is true for the min/max changes, except for the min in summer and autumn and the max 
for 10-year return period peak flows. The distributions for summer flows show that, 
although the majority of river pixels show decreases in flows, a small number show 
increases for some ensemble members. Plots of the distribution of flow changes for 
individual ensemble members show that, while there is a lot of overlap between mem-
bers, there are also clear differences (Supp. Fig.2 and 3).

Further, the hexbin plots in Fig. 6 present pixel-based comparisons of SIMRCM and 
SIMCPM flow changes (for each river pixel across GB, again pooling the ensemble 
members). These show that, for most river pixels and ensemble members, SIMCPM 
changes are greater than SIMRCM changes. But for all flow measures, there are pix-
els where SIMCPM changes are lower than SIMRCM changes, particularly for spring 
and summer mean flows. Maps of the difference in SIMCPM and SIMRCM ensemble 
median flow changes show no clear spatial patterns (Fig. 7), although they do show the 
generally low difference everywhere in summer (GB mean 3.1%), the higher differ-
ences in autumn (GB mean 11.3%) and winter (GB mean 13.3%), and the particularly 
high differences in some locations for 2- and 10-year return period peak flows (GB 
max 39.8% and 48.0% respectively).
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Fig. 3   The median change in seasonal mean precipitation (top two rows) and extreme precipitation (bot-
tom row) for land cells across GB, for each RCM and CPM ensemble member (green crosses and blue plus 
signs respectively). Lines join the equivalent ensemble members. The RCM members giving the largest or 
smallest precipitation changes are labelled, with the largest/smallest CPM members labelled where differ-
ent. The members giving the largest (smallest) magnitude difference (CPM – RCM) are in bold (italics). 
Also shown is the ensemble mean in each case (black square and line), labelled with the value of CPM – 
RCM (right)
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Fig. 4   The median change in seasonal mean flows (top two rows) and 2- and 10-year return period peak 
flows (bottom row) for river pixels across GB, for each SIMRCM and SIMCPM ensemble member (green 
crosses and blue plus signs respectively). Lines join the equivalent ensemble members. The SIMRCM 
members giving the largest or smallest flow changes are labelled, with the largest/smallest SIMCPM 
members labelled where different. The members giving the largest (smallest) magnitude difference (SIM-
CPM − SIMRCM) are in bold (italics). Also shown is the ensemble mean in each case (black square and 
line), labelled with the value of SIMCPM – SIMRCM (right)
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4 � Discussion

The baseline performance assessment (Figs. 1 and 2) shows that, in contrast to Kay et al. 
(2015), SIMCPM generally performs better than SIMRCM (before bias correction). This 
is potentially due to the aforementioned CPM model physics changes (Fosser et al. 2020). 
Direct comparisons with the performance assessment presented in the previous work are 

Fig. 5   Violin plots showing the distribution of changes in seasonal mean flows (top two rows) and 2- and 
10-year return period peak flows (bottom row) for river pixels across GB, for the pooled SIMRCM ensem-
ble (green) and SIMCPM ensemble (blue). In each case, the horizontal lines show the min, median and max 
changes, and the black box shows the 25th–75th percentile range
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not possible due to differences in methodology, including the hydrological model, catch-
ments and time-periods used, plus Kay et al. (2015) used hourly precipitation from re-anal-
ysis-driven runs, in contrast to use here of daily precipitation from GCM-driven runs. The 
potential future changes in peak flows simulated here are broadly consistent with Kay et al. 

Fig. 6   Heat maps of scatter plots comparing SIMCPM versus SIMRCM changes in seasonal mean flows 
(top two rows) and 2- and 10-year return period peak flows (bottom row) for river pixels across GB, for all 
ensemble members
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Fig. 7   Maps showing the difference between the ensemble median flow change from SIMCPM and SIM-
RCM, for seasonal mean flows (top two rows) and 2- and 10-year return period peak flows (bottom row). 
The GB mean and max values are shown to the top right of each map
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(2015), which also showed greater increases from the CPM than the RCM (Kay et al. 2015 
did not analyse seasonal mean flows, only annual and seasonal peak flows).

The SIMCPM ensemble members almost always give greater increases in the median 
flow change across GB than their equivalent SIMRCM ensemble members, for seasonal 
mean flows in each season, and for 2- and 10-year return period peak flows (Fig. 4). But 
there is not complete consistency as the SIMCPM and SIMRCM members are not in the 
same order for any flow measure. For all flow measures, the SIMCPM ensemble spread is 
greater than that for SIMRCM, which is consistent with the CPM ensemble spread for sea-
sonal precipitation changes being greater than that for the RCM in every season (Fig. 3).

The similar decreases in SIMRCM and SIMCPM summer mean flows (Figs.  4 and 
5) are consistent with projected decreases in summer mean precipitation, which are only 
slightly different between the CPM and RCM (Fig. 3). The greater increases in winter mean 
flows from SIMCPM than SIMRCM (Figs. 4 and 5) are consistent with projected increases 
in winter mean precipitation, which are generally larger in the CPM than the RCM (Fig. 3) 
and due to greater increases in CPM than RCM wet day frequency (Kendon et al. 2021b 
Fig. 4.3.3). The greater increases in peak flows from SIMCPM than SIMRCM (Figs. 4 and 
5) are consistent with the increases in winter mean precipitation and the slightly greater 
increases in extreme daily events in the CPM than the RCM (Fig. 3). However, note that a 
direct relationship between changes in precipitation extremes and changes in floods should 
not automatically be expected; changes in antecedent soil moisture, storm extents and (in 
some locations) snow also contribute (Sharma et al. 2018).

The potentially greater enhancement of flow seasonality, and greater increases in peak 
flows, suggested by the CPM compared to the RCM present a dilemma for adaptation 
planning, as decisions must be made on how to allow for differences in impacts between 
products. Orr et al. (2021) raise the difficult question of whether differences between prod-
ucts are ‘added-value’ or ‘model bias’. Similarly, Kendon et al. (2021a) ask what the pres-
ence of climate model baseline biases means for their future simulations, and highlight the 
need for better understanding of which climate change signals can be considered robust 
from coarser models and which need higher resolution modelling. A similar consideration 
is needed for hydrological modelling; which impacts, in what types of catchment, need 
higher-resolution driving data.

It is not just the higher spatial resolution of CPM data that could be important, but their 
provision of sub-daily precipitation, the representation of which is generally improved in 
the CPM compared to the RCM (Kendon et al. 2012). The analyses here were limited to 
catchments with an area greater than 50 km2, due to use of daily inputs. Orr et al. (2021) 
suggest use of CPM data for future flood risk in smaller/flashier catchments, where both 
the increased spatial and temporal resolution could be important. An analysis of sub-daily 
rainfall from the UKCP18 CPMs showed that, as well as heavy summer rainfall events 
becoming more intense in future, they could also move faster but cover a larger area (Chen 
et al. 2021). How such changes balance each other could be important for flows in some 
catchments, and for surface water flooding (Rudd et al. 2020).

A further difficulty for decision-makers is that the UKCP18 Regional and Local projec-
tions are based on just the Hadley Centre GCM, so uncertainty from GCM structure is not 
represented, and neither is real uncertainty from the CPM as its parameters are not per-
turbed (although GCM/RCM PPEs are used). In addition, only high emissions (RCP8.5) 
are used. Kay et  al. (2021) showed a clear distinction between extreme flow changes 
derived from the Hadley GCM and other CMIP5 GCMs, and Arnell et al. (2021) showed 
more consistent flood increases from CMIP5 GCMs than the Hadley GCM. Although the 
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high emissions scenario is meaningful for many purposes (Orr et al. 2021), the global aim 
is to keep emissions lower so impacts should be lower (Arnell et al. 2021).

Only one hydrological model has been applied, and although climate models are gener-
ally considered the main source of uncertainty for hydrological impacts (e.g. Hattermann 
et al. 2018; Thober et al. 2018; Vetter et al. 2017), hydrological model uncertainty can still 
be significant. Dankers and Kundzewicz (2020) suggest that the main sources of hydrologi-
cal bias are related to evaporation and snow processes. River flows in most British catch-
ments are rainfall-dominated, but snowmelt can be significant for some upland catchments 
(Kay 2016); a snow module is applied here to account for snow processes, albeit in a rela-
tively simple way. Appropriate representation of PE is important, particularly under cli-
mate change (Kay et al. 2013). In contrast to many hydrological impact studies (Dankers & 
Kundzewicz 2020), here the future PE includes the effect of stomatal closure under higher 
concentrations of atmospheric carbon dioxide (Robinson et  al. 2021). The use of RCM 
PE for both SIMRCM and SIMCPM means that the differences in impacts are essentially 
due to precipitation differences, possibly with some effect from temperature differences 
in some catchments (although CPM and RCM winter temperature projections are broadly 
similar; Kendon et al. 2021b Fig. 5.1).

For peak flows, the method used for deriving flood frequency could be an additional 
source of uncertainty (Tabari 2021; Meresa et  al. 2021), and peak flow changes derived 
from sub-daily flows may differ to those from daily flows (Kim et al. 2018). The peak flow 
analysis here was limited to catchments of at least 50 km2 and at most a 10-year return 
period, using 19 annual maxima in each time-slice, to limit the uncertainty. Also, due to 
natural climate variability, the choice of baseline period can have a significant effect on 
derived flow changes for future periods (Liersch et al. 2020). Due to CPM data availability, 
the analysis here is restricted to a 20-year baseline of 1981–2000; a WMO-recommended 
30-year standard reference period (e.g. 1981–2010) could not be used.

5 � Conclusions

The UKPC18 Local projections provide very high-resolution climate data for the UK, pro-
duced by a convection-permitting model (CPM) ensemble for baseline and future periods. 
These data have been applied alongside the UKCP18 Regional projections, produced by 
the regional climate model (RCM) perturbed parameter ensemble within which the CPM 
ensemble is nested, to drive a grid-based hydrological model for Great Britain. The simu-
lated flows have been analysed to investigate baseline performance and differences in pro-
jected future impacts on river flows.

The baseline performance analysis shows that the CPM generally performs better than 
the RCM, although precipitation bias correction makes both the RCM and CPM perform 
more similarly to use of observation-based driving data. The analysis of changes in flows 
between the baseline and far-future time-slices shows that the CPM almost always gives 
higher flow changes than the RCM, for mean flow in all four seasons and for 2- and 10-year 
return period peak flows. If reliable, these differences in flow projections suggest that adap-
tation planning for high flows based on use of regional data may be insufficient, although 
planning for low flows may be slightly over-cautious. But the availability of CPM data for 
only one RCM/GCM is a limitation for adaptation planning, as is the use here of only one 
hydrological model and one PE formulation, as the uncertainty range is under-sampled.
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Knutti (2019) suggest that one way for the gap between knowledge (about the poten-
tial future impacts of climate change) and action (adaptation to reduce the effect of those 
impacts) can be closed is the provision of “more local climate information that is more rel-
evant for impacts, adaptation, and risk management”. However, delivering this with CPMs 
is currently not straightforward; Knutti (2019) acknowledge that “the technical challenges 
of providing sufficient computing power with new computing architectures and processing 
and storing massive amounts of data are immense”. Possible ways to address issues include 
using targeted CPM downscaling or ‘storyline’ approaches, and the development of statisti-
cal methods or emulators to more cheaply combine limited CPM simulations with coarser-
resolution projections from a wider range of GCMs/RCMs (Lucas-Picher et al. 2021; Ken-
don et al. 2021a). However, the potential effect of such methods on the ability to perform 
impact simulations needs consideration.

Uncertainty in the assessment of the future impacts of climate change comes from a 
wide range of sources, some of which may be reducible (e.g. via improvements in physical 
process understanding), but uncertainty from newer sets of climate and impact projections 
can still be larger than from previous generations (Kundzewicz et al. 2018). The key chal-
lenge for adaptation action is to “robustly quantify uncertainties in all aspects of the sci-
ence and embrace the concepts of risk management and resilience” (Knutti 2019).
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