
1. Introduction
Space weather has the potential to pose a severe threat to modern society. The Earth's magnetosphere is constantly 
buffeted by the solar wind that emanates from the Sun. It is the variable nature of the solar wind that leads to 
a highly dynamic environment in near-Earth space. There are many different facets to space weather, includ-
ing the changing radiation environment in near-Earth space, a hazard that faces Earth orbiting satellites (Baker 
et al., 1987; Iucci et al., 2005), and strong ground magnetic field variability that can induce damaging currents 
(Geomagnetically Induced Currents, GICs) in conductive infrastructure (Boteler,  2021; Boteler et  al.,  1998; 
Rajput et al., 2020). Forecasting intervals of risk in a timely manner is key; this allows necessary mitigating 
action to be taken.

Abstract Space weather represents a severe threat to ground-based infrastructure, satellites and 
communications. Accurately forecasting when such threats are likely (e.g., when we may see large induced 
currents) will help to mitigate the societal and financial costs. In recent years computational models have 
been created that can forecast hazardous intervals, however they generally use post-processed “science” solar 
wind data from upstream of the Earth. In this work we investigate the quality and continuity of the data that 
are available in Near-Real-Time (NRT) from the Advanced Composition Explorer and Deep Space Climate 
Observatory (DSCOVR) spacecraft. In general, the data available in NRT corresponds well with post-processed 
data, however there are three main areas of concern: greater short-term variability in the NRT data, occasional 
anomalous values and frequent data gaps. Some space weather models are able to compensate for these issues 
if they are also present in the data used to fit (or train) the model, while others will require extra checks to be 
implemented in order to produce high quality forecasts. We find that the DSCOVR NRT data are generally 
more continuous, though they have been available for small fraction of a solar cycle and therefore DSCOVR 
has experienced a limited range of solar wind conditions. We find that short gaps are the most common, and 
are most frequently found in the plasma data. To maximize forecast availability we suggest the implementation 
of limited interpolation if possible, for example, for gaps of 5 min or less, which could increase the fraction of 
valid input data considerably.

Plain Language Summary The variable plasma conditions in near-Earth space can create 
hazards for modern society. These include the generation of anomalous ground currents that pose a threat to 
the operation of infrastructure such as high voltage power grids. Forecasts of intervals when we are likely to 
be at risk generally use solar wind measurements gathered by satellites from upstream of the Earth. Various 
computational models have shown skill in predicting risk intervals; however, they are generally created using 
scientific quality data which are not available in near-real-time (NRT). To prepare for transitioning such models 
to operational use we assess the similarities and differences between the scientific quality and NRT data. We 
assess the properties and frequency of data gaps in the NRT data, to build an understanding of how to maximize 
the time for which forecasts can be successfully created.
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Space weather forecasts are typically driven by data obtained upstream of the Earth at the L1 point (e.g., Baker 
et al., 1990; Chu et al., 2021; Forsyth et al., 2020; Keesee et al., 2020; Smith, Forsyth, Rae, Garton, et al., 2021; 
Wing et al., 2005), approximately 1.5 million km ahead of the Earth. Given the speed of the solar wind, this 
provides between 20 and 90  min of warning before solar wind plasma encounters the Earth (Baumann & 
McCloskey, 2021). To account for the variable time delay between the plasma measured at L1 and the arrival of 
that plasma at the Earth, many forecast models propagate the measurement to a fixed point relative to the Earth, 
the bow shock for example, (e.g., Baumann & McCloskey, 2021; Cash et al., 2016). Such methods are present 
in commonly used scientific datasets, such as the OMNI database (https://omniweb.gsfc.nasa.gov/) (Weimer & 
King, 2008), and will have implications for data continuity.

Further, most current space weather forecasting models have been developed using post-processed, scientific 
quality data provided by the spacecraft at L1, or combined data products such as OMNI (e.g., Keesee et al., 2020; 
Smith, Forsyth, Rae, Garton, et al., 2021; Wintoft et al., 2017). Such data are generally only available after an 
extended period, beyond the interval in which a timely forecast must be made. Data are also available in near-real 
time (NRT), usually within 5 min of acquisition by the spacecraft (e.g., Zwickl et al., 1998). However, given 
limited telemetry and processing the NRT data are an approximation of the full scientific data that will later be 
available. This may lead to differences in the value that the data take, and also whether data are available for 
some intervals (e.g., Machol et al., 2013). Nonetheless, the NRT data must be used in order to provide actionable 
forecasts of upcoming hazardous space weather.

In this work we explore how we may best use the data available in NRT to produce space weather forecasts. 
We will use the example of the space weather threat to ground based infrastructure through GICs. GICs pose a 
severe threat to continuous and reliable power network operation in many countries around the world (e.g., Gaunt 
& Coetzee, 2007; Marshall et al., 2012), particularly at higher latitude locations (e.g., Bolduc, 2002). Even at 
mid-latitude locations, such as the UK, the estimated cost of a major geomagnetic storm—one that leads to a 
widespread and long-lasting interruption of electrical supply—has been estimated at billions of dollars a day 
(Oughton et al., 2017). However, with sufficient warning mitigating actions may be taken that would reduce this 
cost considerably (Eastwood et al., 2018; Oughton et al., 2019). Therefore, the forecasting and mitigation of large, 
damaging GICs is a critical endeavor.

GICs are driven by magnetic field variability at Earth's surface as a consequence of Faraday's law of induction. 
Though mainly discussed with respect to power networks (e.g., Divett et  al., 2018; Mac Manus et  al.,  2017; 
Pulkkinen et al., 2005; Rajput et al., 2020), GICs may be induced in any large scale conducting infrastructure, 
such as pipelines (e.g., Campbell, 1980; Dimmock et al., 2021; Gummow & Eng, 2002; Viljanen et al., 2010) and 
railways (e.g., Liu et al., 2016; Love et al., 2019; Wik et al., 2009), with consequences ranging from increased 
corrosion to direct component failure. Ultimately strong magnetic field variability is driven by a myriad of magne-
tospheric processes in near-Earth space (e.g., Heyns et al., 2021; Rogers et al., 2020; Tsurutani & Hajra, 2021). 
Extreme field fluctuations are often linked to global scale transient phenomena such as geomagnetic storms 
(Dimmock et al., 2019; Kappenman & Albertson, 1990), substorms (Freeman et al., 2019; Turnbull et al., 2009; 
Viljanen et al., 2006) and sudden commencements (Rodger et al., 2017; Smith et al., 2019; Smith, Forsyth, Rae, 
Rodger, & Freeman, 2021).

Work in recent years has explored both empirical and first-principles methods to forecast the surface geomag-
netic field or geomagnetic perturbations. These methods have included statistical techniques (e.g., Shore 
et al., 2017; Weigel et al., 2002; Weimer, 2013), global scale physics-based (Magneto-HydroDynamic, MHD) 
models (e.g., Pulkkinen et al., 2011, 2013; Tõth et al., 2014; Welling, 2019), machine learning-based techniques 
(e.g., Blandin et al., 2022; Gleisner & Lundstedt, 2001; Keesee et al., 2020; Pinto et al., 2022; Smith, Forsyth, 
Rae, Garton, et al., 2021; Upendran et al., 2022; Wintoft et al., 2015, 2017), or combinations of these methods 
(e.g., Camporeale  et  al.,  2020). The forecast geomagnetic (or geoelectric) field predictions can then be used 
to drive models based on the local geology and properties of the power network to indirectly obtain GIC esti-
mates (Beggan et al., 2013; Blake et al., 2016, 2018; Dimmock et al., 2021; Divett et al., 2018, 2020; Grawe & 
Makela, 2021; Mac Manus et al., 2022). Each model that is used to forecast the geomagnetic consequences of 
space weather will use the input solar wind data in a distinct fashion, and therefore may be impacted differently 
by the ways in which the NRT and scientific data differ.

https://omniweb.gsfc.nasa.gov/
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In this study we explore the data that are available from the L1 point in NRT and investigate how they may be used 
by space weather forecasting models. In Section 2 we describe the data, while in Section 3 we evaluate the NRT 
data, including comparisons to the more commonly used scientific quality data. In Section 4 we show the results 
of training an example forecasting model on the NRT data, using a model based on Smith, Forsyth, Rae, Garton, 
et al. (2021). Section 5 then discusses the results in the context of producing space weather forecasts in NRT.

2. Data
In this study we use and explore the data made available by SWPC (the Space Weather Prediction Center) in NRT 
from the ACE (Advanced Composition Explorer) and DSCOVR satellites located at L1. ACE launched in 1997 as 
a part of the NASA Explorer program and has provided solar wind observations since 1998 (Stone et al., 1998). 
Meanwhile, DSCOVR was a NASA/NOAA mission that launched more recently in 2015. The NRT data is 
provided at 1 min resolution (Zwickl et al., 1998). For the magnetic field we consider the three GSM (Geocentric 
Solar Magnetospheric) components of the magnetic field (𝐴𝐴 𝐴𝐴

𝐺𝐺𝐺𝐺𝐺𝐺

𝑋𝑋
 , 𝐴𝐴 𝐴𝐴

𝐺𝐺𝐺𝐺𝐺𝐺

𝑌𝑌
 , 𝐴𝐴 𝐴𝐴

𝐺𝐺𝐺𝐺𝐺𝐺

𝑍𝑍
 ) and the total field strength (|B|) 

(Smith et al., 1998). Meanwhile, for the plasma data we evaluate the derived proton density (np), solar wind bulk 
speed (V) and ion temperature (Ti) (Aellig et al., 2001; McComas et al., 1998).

The ACE spacecraft was the operational real time solar wind monitor at L1 until mid-2017, at which time it 
was replaced by DSCOVR. In this study we therefore use data from ACE between 1999 and 2015 (inclusive) 
and from DSCOVR between 2018 and 2020 (inclusive). This selection ensures we are using intervals in which 
each spacecraft was the primary real time operational solar wind monitor, and therefore prioritized for telemetry 
downlink. We note that even though DSCOVR is currently the operational real time solar wind monitor, data 
from ACE may occasionally be used to fill large missing intervals in the DSCOVR data. Due to issues with the 
spacecraft, DSCOVR data are largely absent between 26 July 2019 and 26 February 2020, however we do not 
perform any substitution with ACE during this period, and simply use the data that are available. Switching the 
data between spacecraft that are not co-located or cross-calibrated results in its own challenges that are beyond 
the scope of this work.

In Sections 3 and Section 4 we use scientific quality data for comparative purposes. For ACE we use H0 data 
(level 2), that have been re-sampled to the same 1 min cadence as the NRT data. For the magnetic field data this 
means they are down sampled from a 16s cadence, while the plasma moments are up sampled from a 64s cadence. 
We note that if we instead down sampled the NRT measurements to 64s prior to running the analysis it would 
result in very small changes (≤0.4%) to the quantitative comparisons performed. Meanwhile, for DSCOVR we 
use H0 magnetic field data (down-sampled from 1s resolution), and H1 plasma moments at a 1 min resolution. 
The DSCOVR H1 plasma moments are currently only available until 27 July 2019, limiting the time interval for 
which the comparison with the NRT data can be evaluated.

3. Data Evaluation
The NRT data from the DSCOVR and ACE spacecraft at L1 are available within minutes of recording by the 
spacecraft and are therefore automatically processed. On the ground further processing steps, such as manual 
data review, data cleansing, more complex fitting methods and recalibration are used to produce science quality 
data. It is important to consider any differences between these two types of data when moving space weather 
models from the science quality data on which they were likely developed/evaluated to the operational NRT data. 
Though DSCOVR is the current operational solar wind monitor some models require large quantities of training 
data and thus the historical ACE NRT data are also of interest. Below, we evaluate the NRT data values for ACE 
and DSCOVR, as well as their continuity.

3.1. Data Validity

First, we compare the values returned by the NRT data and the equivalent science quality data that is released 
later after post-processing. Figure 1 shows a series of two-dimensional histograms of the occurrence of plasma 
moment values in these data sets for ACE (left) and DSCOVR (right). We note that if either data set (NRT 
or science) is missing then that interval is not represented in Figure 1. Additionally, in this analysis our base 
assumption is that the science data are the “correct” values, to which the NRT data represent an initial estimate. 
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Figure 1. Comparison of the plasma moments in the Near-Real-Time (NRT) data with that recovered in the science quality data. Left column (a, c, and e) shows 
Advanced Composition Explorer and between 1999 and 2015 (inclusive), right column (b, d, and f) shows Deep Space Climate Observatory between 2018 and 
mid-2019. The plasma moments shown are the plasma density (a, and b), bulk velocity (c, and d), and ion temperature (e, and f). The diagonal red dashed line indicates 
where the data returned are equivalent, while the orange dashed lines indicate the region where the NRT values are within ±10% of the science data.
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Therefore, in an ideal situation we would observe the case where both the science and NRT values are close, and 
lie along the red dashed lines (or the NRT data are within ±10% of the scientific values). However, we see devi-
ations from this for both the ACE and DSCOVR data.

Inspecting the results for the ACE data (left of Figure 1) we see that the plasma velocity is best represented in the 
NRT data (Figure 1c), with the histogram most closely following the diagonal line of equality and the vast major-
ity of the data (96%) being bounded by the orange ±10% lines. In contrast, the solar wind density (Figure 1a) 
and ion temperature (Figure 1e) are less well captured by the ACE NRT data, showing much larger spreads: only 
∼20–30% of both NRT data sets are within 10% of the science values. We also see evidence for a hard-coded 
lower limit to the NRT ion temperatures (Figure 1e).

Considering the DSCOVR data (right of Figure 1), we once again find that the plasma velocity is best captured 
by the NRT data (Figure 1d). The vast majority of the DSCOVR data lie along the red dashed line, with 94% 
of the NRT data within 10% of the science values. We find similar spread in the DSCOVR density comparison 
(Figure 1b) as we did for the ACE data (∼20% within ±10%). Near-real time data from both spacecraft appear to 
commonly underestimate the plasma density. Finally, considering the NRT temperatures reported by DSCOVR 
we find 20% of the data within the ±10% lines, slightly less than the 30% found for the ACE data. We note that 
the DSCOVR spacecraft has been operational for a shorter interval, and so has experienced fewer extreme events 
(e.g., at larger np or V).

Figure 2 shows a similar comparison of the magnetic field data, comparing the NRT and science data for ACE 
(left) and DSCOVR (right). Statistically, the ACE data are peaked around the diagonal line of gradient unity, 
though there is wide spread in values. This suggests that the magnetic field values are often corrected later 
on, sometimes by 10s of nT. There is noticeably less spread in the comparison of the 𝐴𝐴 𝐴𝐴

𝐺𝐺𝐺𝐺𝐺𝐺

𝑋𝑋
 values (Figure 2a), 

though interestingly there are a series of values that seem to form a parallel distribution to the red line. This 
would correspond to a small offset of 5 nT or less, where the NRT data under-reported the value of 𝐴𝐴 𝐴𝐴

𝐺𝐺𝐺𝐺𝐺𝐺

𝑋𝑋
 . There 

is also evidence of a distribution perpendicular to the line of equality in the results for 𝐴𝐴 𝐴𝐴
𝐺𝐺𝐺𝐺𝐺𝐺

𝑋𝑋
 and 𝐴𝐴 𝐴𝐴

𝐺𝐺𝐺𝐺𝐺𝐺

𝑌𝑌
 , perhaps 

representing a rotation of the magnetic field in the X-Y plane. We note that despite the spread in the field compo-
nents reported by ACE, 68% of the NRT measurements of the total field magnitude (|B|) are within ±10% of the 
science values.

When we compare the DSCOVR results (right of Figure 2), we again find that the NRT data are much more 
representative of the science data than was observed for ACE, with a clear diagonal distribution dominating the 
results. As with ACE, the NRT total field strength (|B|) is also very close to that later found within the science 
data, with 94% of the values being within 10%.

3.2. Data Continuity

The magnetosphere is a highly dynamic system that couples to the solar wind on a range of time scales (e.g., 
Borovsky, 2020; Coxon et al., 2019; Shore et al., 2019). Space weather models therefore often require information 
regarding the preceding interval of solar wind, rather than a single measurement of the current conditions. Incom-
plete data—those with communication gaps or missing measurements—may pose a problem for this approach. 
Data gaps have also been inferred to cause errors in the derivation of coupling functions (Lockwood et al., 2019). 
There are many reasons why data may be missing from the real time data stream, or should be ignored. Missing 
data are generally flagged with a code according to the reason, be it an operational consideration (e.g., downlink 
issues) or problems/failure of the measurement or recording. It may be possible to develop bespoke solutions 
to account for different missing data flags, however in the following we treat all missing and/or flagged data 
identically.

3.2.1. Data Gap Occurrence

Figure 3 demonstrates the average yearly occurrence of data gaps with different lengths in the NRT data from 
ACE (top) and DSCOVR (bottom). The equivalent distributions for the science data sets are shown in black. 
Starting with ACE, we can see that the most common data gap length in both data sets is 5 min or less, that is, five 
or fewer data points. We observe that there are nearly 200,000 gaps per year of less than 5 min in the plasma data 
(Figure 3b). The ACE NRT magnetic field data is more complete by comparison, and whilst the sub-five-minute 
data gaps are the most common type, there are only around 4000 of these per year. Comparing the scientific and 
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Figure 2. Comparison of the magnetic field values returned by the Near-Real-Time data and science data. The format is similar to Figure 1, with the Advanced 
Composition Explorer (1999–2015) shown on the left (a, c, e, and g) and Deep Space Climate Observatory (2018–2020) on the right (b, d, f, and h). The top row shows 
the 𝐴𝐴 𝐴𝐴

𝐺𝐺𝐺𝐺𝐺𝐺

𝑋𝑋
 component (a and b), the second row shows the 𝐴𝐴 𝐴𝐴

𝐺𝐺𝐺𝐺𝐺𝐺

𝑌𝑌
 (c and d), while the third and fourth rows show the 𝐴𝐴 𝐴𝐴

𝐺𝐺𝐺𝐺𝐺𝐺

𝑍𝑍
 (e and f) and total field |B| (g and h).
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NRT data, we see that the ACE scientific magnetic field data is much more continuous, with several orders of 
magnitude fewer gaps per year (of any duration). Meanwhile, for the ACE plasma data we see that there are gener-
ally fewer gaps shorter than ∼60 min in the science data, but there are on average more gaps of greater duration, 
perhaps as longer windows of data are later flagged for removal.

Deep Space Climate Observatory NRT data has noticeably fewer data gaps per year than its ACE counter-
part, particularly considering the plasma data. However, we do see the same patterns, with sub-five-minute data 
gaps being the most frequently observed, and the plasma data exhibiting more numerous gaps per year than the 
magnetic field. For instance, there were around 10,000 sub-five-minute data gaps per year in the plasma data, 

Figure 3. The average yearly occurrence of data gaps of different lengths for the Advanced Composition Explorer (top: a and b) and Deep Space Climate Observatory 
(bottom: c and d) Near-Real-Time data, over 16 and 3 years respectively. This is shown for the magnetic field data (left: a and c) and plasma moments (right: b and d). 
The results for the science data are provided in black. Note the logarithmic y-axes.
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while there are approximately 4000 per year in the NRT magnetic field data. If we consider the equivalent distri-
butions for both the DSCOVR scientific magnetic field and plasma data, we see fewer gaps of less than 5 min, but 
additional gaps of an hour or longer, suggesting that—as with ACE—longer periods of data are later discarded.

3.2.2. Windowed Data Validity

Space weather models often require continuous data as an input, and many numerical or computational tech-
niques will not return a result should even a single entry be missing. For example, a model may require a window 
of 30 min of continuous solar wind data as an input (cf. Smith, Forsyth, Rae, Garton, et al., 2021). It is therefore 
important to examine the fraction of input data windows that gaps would invalidate. This is examined in Figure 4, 
for the ACE (top) and DSCOVR (bottom) NRT data, plotted in green. In Figure 4 the windows are evaluated as 
they would present in an operational setting, such that the stride between adjacent windows of data is equal to the 
cadence of the data (1 min), and therefore the intervals of data tested overlap.

When using the ACE NRT data (Figures 4a and 4b), we can see that if 5 min or fewer of continuous data are 
required (i.e., the model requires an interval of 5 min of solar wind data as input) then around 90% of the magnetic 
field data will be available. However, should plasma data also be required then only 55% of input data are valid. 
As the required length of input window increases, the percentage of valid data intervals decreases. If two hours 
(120 min) of continuous input are required then only 75% of magnetic field data suffice, and approximately 1% 
of plasma data are available.

Comparatively, DSCOVR NRT data are more complete (Figures 4c and 4d), noting the different vertical axis 
scale. For DSCOVR, should a 5 min window of data be required then 97% of magnetic field data and 96% of 
plasma data will be valid. Again, this decreases with longer input window lengths, reaching 86% of magnetic field 
and 72% of plasma data as the input window length reaches 120 min. While this represents a major improvement 
on ACE, it still has the potential to be a serious issue for forecasting models.

Given how common we have shown short data gaps to be in the NRT data (Figure 3), it is useful to consider 
how the use of interpolation schemes can increase the quantity of valid, continuous windows of data. Figure 4 
shows the application of two maximum lengths of interpolation, in addition to the use of the “raw” data. We can 
see  that if gaps of 5 min or fewer are interpolated (orange stars in Figure 4) then the fraction of valid data intervals 
increases significantly for both spacecraft and types of data. If the interpolation is permitted over larger gaps of 
15 min or less (blue crosses in Figure 4) then the fractions increase again, though this is a smaller improvement 
than was found for the change from the raw data to interpolation over 5 min or less.

4. Example NRT Forecasting of Ground Magnetic Activity
We now qualitatively compare space weather forecast models using science quality data and NRT data. The 
example model we use is the CNN-based (Convolutional Neural Network) model developed by Smith, Forsyth, 
Rae, Garton, et al. (2021), designed to provide a probabilistic forecast as to whether the rate of change of the 
ground magnetic field (R) would exceed certain fixed thresholds at an observatory on the ground (i.e., may be 
linked to an enhanced GIC risk). In these examples we use the magnetic field at the Lerwick (LER) magnetometer 
station in Scotland as our target. For full model details the interested reader is directed to Smith, Forsyth, Rae, 
Garton, et al. (2021).

The models were trained on data between 2003 and 2014, with 1998–2002 being used as a validation set during 
training. This means that the data from 2015 to 2016 can be used as an unseen test of model performance, for 
example, the selected storms discussed below. The models require copious amounts of data to train, covering 
as complete a record of possible solar wind conditions as can be sourced, and thus we are limited to the ACE 
datasets. Training a model on the combined ACE and DSCOVR datasets is beyond the scope of this work. 
Following on from Section 3.2, we interpolate linearly over gaps smaller than 15 min in order to maximize the 
data availability, and perform this consistently for both the ACE NRT and science data. We note that in an NRT 
data situation we will not necessarily know the next available value as the more recent time intervals may have 
no data, but we can repeat the last recorded value for a short interval of time. A forecast horizon of 180 min has 
been used for both models.

First, we show the 17/18th March 2015 St Patrick's Day storm in Figure 5, which has been previously noted for its 
ionospheric (e.g., Astafyeva et al., 2015) and ground impacts (e.g., Carter et al., 2016; Kozyreva et al., 2018). We 
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can compare the NRT and science data in the top three panels of Figure 5, from which we can observe some of the 
results previously discussed in Section 3. It is clear from the velocity and density that there is more rapid tempo-
ral variability in the NRT data than is seen in the post-processed ACE data (i.e., Figures 5a and 5c compared 
to Figures 5b and 5d). This short term-variability would explain some of the scatter in Figure 1. There are also 
significant data gaps in the science density data that are not present in the NRT data (e.g., a few hours around 
1200 UT on the 17th March), suggesting that this data was later removed. On the other hand, there is a data gap in 
the NRT magnetic field data that appears to have been filled with further post-processing (e.g., around 1800 UT 
on the 17th March). Overall, there is an extended period during this storm when both the NRT and science-based 

Figure 4. The fraction of data windows that are continuous, without data gaps for the Advanced Composition Explorer (top: a and b) and Deep Space Climate 
Observatory (bottom: c, d) Near-Real-Time data. The results for the magnetic field (left: a and c) and plasma data (right: b and d) are shown. The fraction of complete 
data windows are provided as a function of input window length required to be continuous. Three different interpolation schemes are presented: no interpolation (green 
circles), interpolation of gaps 5 min or shorter (orange stars) and interpolation of gaps 15 min or shorter (blue crosses).
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models are unable to produce a forecast, corresponding to a gap in the NRT magnetic field data and the scientific 
density data, emphasizing the operational challenges in providing space weather forecasts. This appears to be 
precisely the kind of interval when predictions of large ground magnetic field variability would be desirable. 
Nonetheless, both models show increased probabilities during the storm, qualitatively reflecting the ground truth.

Next, we show a second example geomagnetic storm (Figure 6), this time on the 22/23rd June 2015, which 
was notably observed to have adverse impacts on a mid-latitude railway system (Liu et al., 2016). This storm 
offers opportunities to further explore several similarities and differences between the scientific and NRT driven 
models. The increased short-term variability present in the NRT data is once again apparent, and significant inter-
vals of the density data on the 21 June are not present. Inspecting the NRT solar wind velocity data (Figure 6a) 
we see two anomalous spikes; at 0400 UT on the 21st June and at 1000 UT on the 23rd June. Naively in the NRT 
data these may initially resemble very large solar wind shocks, to which space weather models may respond. 

Figure 5. Space weather model forecasts produced during a geomagnetic storm in March 2015. Advanced Composition Explorer (ACE) Near-Real-Time data and 
the relevant model are shown on the left (a, c, e, g and i), while the scientific ACE data and relevant model are on the right (b, d, f, h and j). The solar wind velocity, 
density, magnetic field strength and 𝐴𝐴 𝐴𝐴

𝐺𝐺𝐺𝐺𝐺𝐺

𝑍𝑍
 are shown in the top three panels (a–f), while the rate of change of the horizontal ground magnetic field observed at Lerwick 

(R) is shown in the fourth panel (g and h). Four model variants are shown, forecasting whether four thresholds of R will be exceeded (horizontal lines in panels g and h). 
The bottom panels (i and j) show the model predictions, while the horizontal bars indicate the perfect forecast and the “maximum” threshold exceeded.
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However, we see that the NRT model does not report increased probabilities around these intervals, presumably 
as the model has seen this anomalous behavior in the training data and only responds to more sustained changes 
in the solar wind that are corroborated by changes in other solar wind parameters.

Regarding the predicted model probabilities, from single case studies we cannot quantitatively assess the perfor-
mance of the models, however we can see that during the period of disturbed ground magnetic field activity 
during the storm that the models are reporting elevated probabilities, as would be desirable, and the NRT and 
science-based model results qualitatively appear similar. We may compare the metrics returned by the models 
when applied to the “unseen” NRT and science data between 2015 and 2016. Figure 7 shows three metrics as a 
function of threshold of the ground magnetic field: the receiver-operator characteristic (ROC), precision-recall 
(PR) score and Brier skill score (BSS). In terms of ROC score, the scientific and NRT models perform very simi-
larly, while in terms of PR and BSS the model based upon the scientific data performs slightly better. We note that 
due to the presence of different data gaps the metrics are not precisely comparable, and this will be most evident 
at the highest thresholds which are less frequently exceeded. Nonetheless, the NRT-based model is achieving at 
least comparable performance to the model employing the science quality data.

Figure 6. Space weather model forecasts produced during a geomagnetic storm in June 2015, with the same format as Figure 5.
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5. Discussion
The magnetosphere reacts to the impinging solar wind on a range of timescales, and the results are heavily depend-
ent upon the history of the coupled system. For example, even the response to fast changes in solar wind dynamic 
pressure (e.g., Oliveira & Raeder, 2015; Shinbori et al., 2012; Smith, Forsyth, Rae, Rodger, & Freeman, 2021; 
Yue et al., 2010) may be modulated by the magnetospheric state that was induced in the preceding intervals (Zong 
et al., 2021). Further, characteristic timescales for the response of the currents linking the magnetosphere and 
ionosphere, and consequent ground magnetic field variability, range from 10s of min to several hours (Coxon 
et al., 2019; Shore et al., 2019). Magnetospheric physics therefore dictates that space weather models need to 
interpret—in some fashion—the history of the coupled solar wind magnetosphere system. There are two main 
methods in which models can infer the historical behavior: first, they can use statistical properties of a period of 
data, such as the variability or range of a solar wind property (e.g., Camporeale et al., 2020; Wintoft et al., 2017; 
Shprits et al., 2019; Smith et al., 2020; Zhelavskaya et al., 2019). Second, models can process entire time intervals 
of data and extract the necessary information themselves (e.g., Keesee et al., 2020; Kunduri et al., 2020; Smith, 
Forsyth, Rae, Garton, et al., 2021). Discontinuities and unreliable values in the NRT solar wind data thus pose 
potential risks and limitations to the validity and utility of these models.

5.1. Data Validity

Figures 1 and 2 clearly showed that there are often differences between the reported NRT data and the values that 
are later found in the post-processed science data. We also showed that the velocity is the most reliable plasma 
moment returned by the NRT data, compared to the density and temperature. Regarding the magnetic field, while 
there is considerable spread in the reported magnetic field components, the total magnetic field magnitude is 
mostly within 10% of the reported NRT value. Meanwhile, we note the limited interval for which DSCOVR data 
were available has constrained the solar wind conditions to which DSCOVR has been exposed. On inspection, 
we showed examples of two types of “error” that are present in the NRT data: first, the NRT data tend to exhibit 

Figure 7. Metrics returned by the Near-Real-Time and Science models when applied to the test data set (2015–2016) as a function of threshold of ground magnetic 
field variability. The receiver-operator characteristic (a), precision-recall (b), and Brier skill score (c) metrics are shown. An input of 60 min of solar wind data are used, 
along with a forecast horizon of 180 min (as in Figures 5 and 6). The error bars represent the 95% confidence intervals calculated from 100 iterations of a bootstrap 
method (with replacement).
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short time scale variability that can be resolved with post-processing; second, 
there are occasionally very transient anomalous values present in the data 
(e.g., spikes, Figure 6).

These factors have strong implications for space weather model design and 
development. The differences between the science and NRT data suggest 
that—as is best practice—models should be trained upon the data type that 
will be used in the future. For example, the larger short term variability of the 
NRT data will need to be found in both the training and evaluation data. We 
showed that in Figures 5 and 6, the selected model was able to compensate 
for the additional short-timescale variability in the NRT data. Additionally, 

artifacts in the data (such as the anomalous spikes in Figure 6) may also be tolerated by some models. However, 
this is a particular problem if a statistical parameter such as the range of the solar wind velocity is evaluated (e.g., 
Smith et al., 2020; Zhelavskaya et al., 2019). This may require simple additional processing of the NRT data, for 
example, through smoothing or averaging, prior to its use by a forecasting model.

Space weather models may employ solar wind-magnetosphere coupling functions (e.g., Milan et  al.,  2012; 
Newell et al., 2007) in order to assess the geoeffectiveness of the solar wind (e.g., Tan et al., 2018). We note that 
the selection of coupling function requires careful consideration of the magnetospheric prediction to be made 
(Lockwood, 2022; Lockwood & McWilliams, 2021). However, one commonality between the various coupling 
functions is their reliance on the orientation of the interplanetary magnetic field, and therefore the relative sign 
and value of 𝐴𝐴 𝐴𝐴

𝐺𝐺𝐺𝐺𝐺𝐺

𝑌𝑌
 and 𝐴𝐴 𝐴𝐴

𝐺𝐺𝐺𝐺𝐺𝐺

𝑍𝑍
 , in particular. As we have shown in Figure 2, particularly with the ACE NRT data, 

the reliability of these components must be considered with care. Of greatest concern are instances showing 
evidence of 𝐴𝐴 𝐴𝐴

𝐺𝐺𝐺𝐺𝐺𝐺

𝑌𝑌
 and 𝐴𝐴 𝐴𝐴

𝐺𝐺𝐺𝐺𝐺𝐺

𝑍𝑍
 changing sign upon further processing/calibration (e.g., data in the upper left or 

lower right quadrants of Figure 2). Table 1 shows the percentage of magnetic field data that has an inconsistent 
sign between the scientific and NRT data sets. We can see that the fractions are quite considerable, and that—as in 
the previous evaluations—the DSCOVR data are more consistent than that from ACE. The reliability (and short 
term variability) in other NRT solar wind parameters, such as the density, should also be considered. These would 
result in large fluctuations of the coupling functions that would not be present in the post-processed science data.

5.2. Data Continuity

To provide a useful and practical NRT forecast of geomagnetic conditions it is important to maximize the length 
of time for which it is available. Many magnetospheric models require several hours of historical measurements 
order to provide a result (e.g., Bortnik et al., 2016; Keesee et al., 2020; McGranaghan et al., 2020; Smith, Forsyth, 
Rae, Garton, et al., 2021; Wintoft et al., 2015). The implementation of such models requires careful design, given 
the nature of the input data available. Additionally, many space weather models will also wish to maximize the 
data available to allow the largest possible training data sets.

In this work we have shown that data gaps are more numerous in the NRT data sourced from ACE than they are 
in the data from DSCOVR. Therefore, if only a limited quantity of training data is required then the DSCOVR 
data would appear to be a good choice. However, the ACE NRT data covers a much longer period of time. This 
is important as heliospheric conditions and space weather vary over the solar cycle (Chapman et al., 2018, 2020; 
Luhmann et al., 2002) and between cycles (Hajra et al., 2021; Lockwood et al., 2014; Reyes et al., 2021), while 
rare, extreme events are the most concerning (Kilpua et al., 2015; Owens et al., 2021; Thomson et al., 2011; 
Vennerstrom et al., 2016; Wintoft et al., 2016). For this reason, the longer time-span ACE NRT data is an appeal-
ing training data set despite its limitations.

We also showed that short data gaps are the most common, for both ACE and DSCOVR NRT data. These 
frequent but short data gaps significantly impair the continuity of the data. For example, if an hour of continuous 
data is required as a model input then only 3% of ACE NRT plasma data is valid (Figure 4b). A simple solution 
is to interpolate over short data gaps. Interpolating over gaps of 5 min or less significantly increases the portion 
of valid ACE NRT plasma data to 80% (if an hour of continuous data is required). Previous forecasting models, 
using the somewhat analogous one-minute resolution OMNI data, have applied simple linear interpolations over 
gaps of 10 (Keesee et al., 2020) or 15 min (Smith, Forsyth, Rae, Garton, et al., 2021; Wintoft et al., 2015) to 
good effect. Figure 4 also shows that the data gaps are far more prevalent in the plasma data, and so models have 

Magnetic field component ACE DSCOVR

𝐴𝐴 𝐴𝐴
𝐺𝐺𝐺𝐺𝐺𝐺

𝑋𝑋
 6.9% 1.8%

𝐴𝐴 𝐴𝐴
𝐺𝐺𝐺𝐺𝐺𝐺

𝑌𝑌
 7.4% 1.9%

𝐴𝐴 𝐴𝐴
𝐺𝐺𝐺𝐺𝐺𝐺

𝑍𝑍
 12.7% 3.1%

Table 1 
The Percentage of Magnetic Field Data With an Inconsistent Sign in the 
Scientific and Near-Real-Time Data Sets
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been developed that only use the magnetic field data (e.g., Wintoft et al., 2015). Such models may give slightly 
impaired performance, but they would allow forecasts to be produced during times when the more complete 
models would otherwise be unavailable. Additionally, techniques such as sub-sampling of the available data (e.g., 
McGranaghan et al., 2020) may be implemented in such a way as to reduce the effects of short data gaps.

While space weather forecasts have often employed simple (e.g., linear) interpolation methods, reconstructions of 
the solar wind data using statistical methods have also shown great promise (Kondrashov et al., 2014). A “pattern 
matching” approach could also be employed to identify historical analogous intervals to provide a surrogate input 
(cf. Haines et al., 2021). Meanwhile, longer time-scale reconstruction of solar wind data has also been performed 
using ground based indices (Kataoka & Nakano, 2021; Machol et al., 2013) and magnetosheath data (Nabert 
et al., 2015). However, while ground magnetometer data may be available in NRT, filling NRT data gaps with 
such reconstructions may be challenging in an operational forecast.

If interpolation is employed then it is useful to consider the solar wind autocorrelation timescales, in order to 
maximize the data available while minimizing the impact of the interpolation on the quality of the input data. 
The autocorrelation describes how similar a time series is with a lagged version of itself, and is evaluated for 
a series of different time offsets, or lags (Appendix A). Figures 8a and 8b show the autocorrelation and partial 
autocorrelation of four selected NRT solar wind parameters. We will assess these qualitatively. The precise auto-
correlations depend on solar wind conditions, but such an analysis is beyond the scope of this work. The autocor-
relations have been calculated for the longest continuous intervals of DSCOVR NRT data, though we note that 
the results do not change significantly based upon the time period selected (so long as it is of sufficient duration 
and includes  both dynamic and quiescent solar wind).

The solar wind properties tested all show significant autocorrelations beyond the 60 min shown in Figure 8i, 
though we do see that the autocorrelation of 𝐴𝐴 𝐴𝐴

𝐺𝐺𝐺𝐺𝐺𝐺

𝑍𝑍
 has nearly reduced to the 95% confidence bound by 60 min. 

This suggests that—in a broad statistical sense—gaps shorter than 60  min could be reasonably interpolated. 
However, this completely neglects the importance of short-timescale variability in the coupling of the solar 
wind and magnetosphere, for example, rapid changes in parameters found during phenomena such as interplan-
etary shocks. Therefore, while quiescent solar wind data may undoubtedly be interpolated over relatively large 
intervals, such large interpolation is unadvised during the active intervals of most importance to space weather 
models.

An additional complication is created if the data gap is present in the most recently acquired NRT data. Conse-
quently there will be no opportunity to interpolate (e.g., linearly) as one side of the data gap is unknown. In this 
case techniques such as repeating the last recorded value can be performed, and we should consider the partial 
autocorrelation: it ignores the data within the lag period (i.e., it treats the lag period as a gap). For the solar wind 
velocity and density (Figures 8aII and 8bII) the partial autocorrelations diminish rapidly, and are within the 95% 
confidence intervals by around 15 and 5 min, respectively. Meanwhile, for the solar wind magnetic field magni-
tude and 𝐴𝐴 𝐴𝐴

𝐺𝐺𝐺𝐺𝐺𝐺

𝑍𝑍
 (Figures 8cII and 8dII) the significant partial autocorrelation timescales are short at around 8 and 

5 min, respectively. From this we can conclude that—again a statistical sense—repeating the last recorded value 
for approximately 5 min will not hugely impact the data quality, while performing this for 15 min or more will 
begin to become problematic, particularly in active geomagnetic conditions.

It would be possible to use this kind of analysis to set variable interpolation limits separately for the magnetic 
field and plasma data, if models only required one type of data (cf. Wintoft et al., 2015). We emphasize that these 
are statistical results on a long time interval of continuous data, and therefore likely not representative of more 
extreme or highly transient solar wind conditions under which data gaps may be more likely (e.g., due to instru-
ment saturation effects). Additionally, these autocorrelations have been calculated from the NRT data which, 
given the short-time scale variability we have shown above, may cause this to underestimate the “true” solar wind 
autocorrelation timescales. Nonetheless, these provide a useful estimate of approximate interpolation timescales 
for the NRT data.

Generally, linear interpolations have been employed in the past (e.g., Smith, Forsyth, Rae, Garton, et al., 2021; 
Wintoft et al., 2015), however in the future more complex interpolation methods may give more confidence to 
interpolating over larger data gaps, for example, using similar historical analogs (Haines et al., 2021), or the use 
of auto-regressive models, given the high level of autocorrelation observed. Nonetheless, future space weather 
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Figure 8.
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missions should look to minimize NRT data gaps, those due to instrument saturation effects for example, (e.g., 
Nicolaou et al., 2020).

6. Summary and Conclusions
Space weather hazards pose a severe threat to infrastructure such as electricity networks. Recognizing this threat, 
models have been developed to forecast magnetospheric parameters, such as indices (Chakraborty & Morley, 2020; 
Tan et al., 2018; Tasistro-Hart et al., 2021) or direct space weather consequences such as auroral-related particle 
precipitation (McGranaghan et al., 2020), radiation belt enhancements (Forsyth et al., 2020), or ground magnetic 
perturbations (Keesee et al., 2020; Smith, Forsyth, Rae, Garton, et al., 2021; Wintoft et al., 2015). Such space 
weather models are most often trained and evaluated on post-processed scientific quality data from spacecraft 
upstream of the Earth at the L1 point. In this work we have assessed the validity and continuity of the Near-Real-
Time (NRT) data that is available much more rapidly, and showed an example of a forecasting model using such 
data.

When the NRT data are compared to the post-processed, science quality data we found that the NRT data are 
subject to greater short-term variability and occasional anomalous values. Nonetheless, the solar wind velocity 
is mostly accurate to within ±10%. While the NRT solar wind density and temperature are generally close to the 
more processed values, they are also subject to greater uncertainty. Regarding the magnetic field, the total field 
magnitude is generally reported to within 10% of its processed value. Meanwhile, there is a greater spread in 
the individual components of the field, including some occasions when the sign of the 𝐴𝐴 𝐴𝐴

𝐺𝐺𝐺𝐺𝐺𝐺

𝑌𝑌
 and 𝐴𝐴 𝐴𝐴

𝐺𝐺𝐺𝐺𝐺𝐺

𝑍𝑍
 is later 

corrected. Some models may be able to compensate for the differences between the science quality and NRT 
data (if they are trained on the appropriate data source), while others may require additional data pre-processing.

When considering an operational space weather model it is important to maximize its availability. To this end 
we investigated the occurrence and lengths of data gaps that could impede an operational model. We found that 
short data gaps are frequently found in the NRT data, and are more numerous in the plasma data (compared to 
the magnetic field data). Additionally, DSCOVR NRT data shows gaps less frequently than the NRT data from 
ACE. Nonetheless, short interpolations (e.g., over gaps of 5 min or less) can dramatically increase data and hence 
model availability, even when long continuous windows are required.

Appendix A: Autocorrelation Analysis
In Figure 8 we evaluate the autocorrelation functions of several solar wind parameters. Practically, we employ the 
python statsmodels package. Theoretically, if we let x1, x2, …xn be the observations of a sample of the time series, 
we take the mean of the time series as:

�̄�𝑥 =
1

𝑛𝑛

𝑛𝑛
∑

𝑡𝑡=1

𝑥𝑥𝑡𝑡 (A1)

The sample auto-covariance function for lag h (h < n) is then defined as:

�̂�𝛾(ℎ) = 𝑛𝑛
−1

𝑛𝑛−ℎ
∑

𝑡𝑡=1

(𝑥𝑥𝑡𝑡+ℎ − �̄�𝑥) (𝑥𝑥𝑡𝑡 − �̄�𝑥) (A2)

We then take the sample autocorrelation function for lag h as:

�̂�𝜌(ℎ) =
�̂�𝛾(ℎ)

�̂�𝛾(0)
 (A3)

Figure 8. The autocorrelation (left, I) and partial autocorrelation (right, II) of four Near-Real-Time solar wind measurements made by Deep Space Climate 
Observatory. The autocorrelations for the solar wind velocity (V, a), proton density (np, b), magnetic field magnitude (|B|, c) and 𝐴𝐴 𝐴𝐴

𝐺𝐺𝐺𝐺𝐺𝐺

𝑍𝑍
 component of the magnetic field 

(d) are presented. The shaded blue regions represent the 95% confidence bound within which points exhibit no significant autocorrelation. The autocorrelations were 
evaluated during the longest periods of continuous data present between 2018 and 2020 (inclusive). For the plasma properties (a, b) the autocorrelations were calculated 
on 350 hr of data between 01–16 2018, while for the magnetic field properties (c, d) the autocorrelations were evaluated for 370 hr of data between 29 May 2019 and 13 
June 2019.



Space Weather

SMITH ET AL.

10.1029/2022SW003098

17 of 20

Meanwhile, the sample partial autocorrelation is the sample autocorrelation between xt and xt+h but with the linear 
dependence of xt on xt+1 through xt+h−1 removed. For more details the interested reader is directed to Brockwell 
and Davis (2002).

Data Availability Statement
Information on the NRT solar wind data may be found at https://www.swpc.noaa.gov/products/real-time-solar-
wind, while we use data provided by SWPC but archived by the BGS (British Geological Survey) which may be 
found at the UK NGDC https://webapps.bgs.ac.uk/services/ngdc/accessions/index.html#item172549. Scientific 
DSCOVR data may be accessed at https://cdaweb.gsfc.nasa.gov/pub/data/dscovr/, while the scientific ACE data 
may be accessed at https://cdaweb.gsfc.nasa.gov/pub/data/ace/.
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