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Abstract 18 

The Campania region has been recurrently hit by severe landslides in volcanoclastic deposits. The 19 

city of Naples, and in particular the Camaldoli and Agnano hills (Phlegraean Fields), also suffered 20 

several landslide crises in weathered volcanoclastic rocks as a consequence of intense rainfalls or 21 

wildfires. To identify slope failures phenomena occurred in the winter season 2019 – 2020 an 22 

innovative procedure has been proposed. The purpose of this procedure is to highlight areas where 23 

major land cover changes occurred within our area of study, which can be potentially related to mass 24 

movements. The amplitude of spaceborne SAR images has been exploited for the change detection 25 



analysis and the output derived from the segmentation procedure has been compared with field 26 

observations. The amplitude-based method has been already applied in the detection of landslides, 27 

but never on the event with limited extensions, such as for this application. The achieved outcomes 28 

allowed the mapping of 62 new landslides that have been used to update the current landslide 29 

inventory database. This type of information is expected to help decision-makers with land planning 30 

and risk assessment. 31 
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1. Introduction 35 

The request for additional spaces in expanding cities and villages, driven by the continuous population 36 

increase, has led to deforestation and cut slopes (Altan et al. 2015; Gariano and Guzzetti 2016). These 37 

processes inevitably increase the incidence of landslides, by altering hydrological processes and 38 

shear-stress distribution (Wilkinson et al. 2002; Crosta and Frattini 2008). Landslide events globally 39 

result in tens of billions of US$ worth of damage and > 4300 lives lost annually (Froude and Petley, 40 

2018). In Europe, and principally in Italy, slope failures represent the main cause of death produced 41 

by natural hazards (Guzzetti et al. 2012; Reichenbach et al. 2018). In Italy, only in 2019, 3 deaths and 42 

27 injured have been reported and approximately 3,000 people evacuated or remained homeless 43 

while, from 1969 to 2020, about 1,100 deaths, 1,500 injured people and thousands of additional 44 

evacuees and homeless people have been recorded (https://polaris.irpi.cnr.it/report/last-report/). 45 

Different studies have demonstrated the importance of available up-to-date and complete risk maps, 46 

which are based on Landslide Inventory Maps (LIMs), reducing the impact of these phenomena on 47 

society (Guzzetti et al. 2012). To this respect, it is noteworthy to mention that Italy is one of the very 48 

few countries in the world entirely covered with landslide susceptibility and risk maps since the 49 

beginning of the present century. However, considering the number of events (~620,000; ISPRA, 50 

2018), there still is an urgent need to develop better tools for improving landslide risk management 51 

https://polaris.irpi.cnr.it/report/last-report/


starting from the identification and mapping of landslides reported in the LIMs. The latter provides a 52 

detailed picture of landslides within an area by reporting location and, if known, date of occurrence 53 

and types of mass movements (Fell et al. 2008; Corominas et al. 2014). LIMs are basic elements in 54 

land-use planning and represent powerfully and easily understandable tools for researchers and 55 

authorities involved in landslide susceptibility analyses (Lombardo et al. 2015; Segoni et al. 2018; Di 56 

Napoli et al. 2020a, 2021; Arabameri et al. 2021; Yin et al. 2021) and landslide risk management (Dai 57 

et al. 2002; van Westen et al. 2006; Zhang et al. 2020). Regularly updating LIMs is a strategic activity 58 

for territorial planning, also considering that landslides can reactivate over time, even after long 59 

periods of quiescence (Guzzetti et al. 2012; Solari et al. 2020).  60 

Over the last three decades, Remote Sensing (RS) technologies based on satellite optical and 61 

Synthetic Aperture Radar (SAR, Franceschetti et al. 1992) imagery have been used for landslides 62 

detection and mapping (Stumpf et al. 2017; Novellino et al. 2017; Del Soldato et al. 2018; Guerriero 63 

et al. 2019). Differently from optical images, SAR sensors have the advantage to be able to gather 64 

ground surface information regardless of weather and illumination conditions. Geoscientists have 65 

widely exploited Interferometric SAR (InSAR, Gabriel et al. 1989) techniques to resolve the spatial 66 

distribution and temporal evolution of ground instabilities by considering phase values associated 67 

with SAR scenes (Novellino et al. 2015; Confuorto et al. 2017; Raspini et al. 2017; Spinetti et al. 68 

2019). Due, to the inherent limitations of current space observation systems and data processing 69 

techniques (Colesanti and Wasowski 2006; Wasowski and Bovenga 2014), InSAR approaches are 70 

mostly applicable to extremely slow (<16mm/yr) and very-slow movements (≥1.6mm/yr and 71 

≤16mm/yr) landslides (Cruden and Varnes 1996) which typically correspond to deep-seated 72 

gravitational slope deformations, creep, and, in some cases, slides and complex landslides (Saroli et 73 

al. 2005; Di Martire et al. 2016; Bozzano et al. 2017). Recent studies have used interferograms to 74 

detect precursor signals of fast movement landslides (falls and topples) or to identify areas where a 75 

mass movement has potentially occurred (Barra et al., 2016; Casagli, 2017; Kyriou & 76 

Nikolakopoulos, 2018). 77 



To map deformations induced by relatively rapid landslides, the analysis of amplitude signal 78 

associated with the SAR images can be an effective alternative (Mondini et al. 2019). Amplitude-79 

based methods analyse the changes across two images (pre-and post-event) induced by a landslide. 80 

Despite changes in SAR amplitude have been already used to monitor land cover (Freitas et al. 2008; 81 

Qi et al. 2012), many studies have demonstrated the valuable contribution of this approach to detect 82 

landslides (Mondini et al. 2017). Still, fewer are applications of polarimetric SAR based on amplitude 83 

information data for landslides mapping which are limited to large landslides, typically in the order 84 

of km2 of extension (Shimada et al. 2014; Plank et al. 2016). In this work, amplitude-based methods 85 

were explored to map landslides with limited extension (hundreds of square meters).  86 

Such a semi-automatic procedure aims at highlighting land cover changes (potentially related to 87 

rapid-moving landslides) by exploring radar backscattered signals differences in consecutive 88 

spaceborne SAR images. The mass movement phenomena occurred during the 2019 – 2020 winter 89 

season in the Agnano plain and Camaldoli hill located within the city of Naples (Campania region, 90 

southern Italy, Figure 1) were analysed. Most of these events were triggered by high-intensity and 91 

short-duration precipitations or prolonged rainfalls affecting the most superficial loose pyroclastic 92 

deposits.  93 

The paper is organized as follows: first, the geological and geomorphological setting of Naples’ 94 

municipality area is presented. The data and methods used in the work are successively analysed. 95 

Further, an overview of basic concepts of the polarimetric SAR amplitude technique is described. 96 

Finally, polarimetric outcomes are compared with field surveys data to evaluate the applicability of 97 

the semi-automatic procedure to landslide detection. 98 

 99 

2. Study area 100 

The Agnano plain and Camaldoli hill are located in the eastern sector of the Phlegraean Fields, a ~450 101 

km2 active volcanic area located in the western sector of the city of Naples. The area has experienced 102 

numerous eruptions from monogenic volcanoes over the past 70,000 years (Scarpati et al. 2013, 2015, 103 



Figure 1) with the local landscape and bedrock geology mainly shaped by two eruptions: Campanian 104 

Ignimbrite eruption (CI - occurred 39,000 years; Rolandi et al., 2020)  and the Neapolitan Yellow 105 

Tuff eruption (NYT- occurred 15,000 years ago; Scarpati et al., 2013). These sequences are covered 106 

by pyroclastic, anthropogenic, and epiclastic deposits with abrupt variations in thickness and facies 107 

that have proven to be very susceptible to landslides (Calcaterra et al., 2007). 108 

 109 

Figure 1. a) Geological sketch map of the urban area of Naples (modified from Scarpati et al. 2015); b) and c) detailed 110 

view of Camaldoli hill and Agnano plain, respectively (western sector of city of Naples, purple and blue bold lines in a). 111 

The morphology of the whole Phlegraean area reflects the evidence of volcano-tectonic Quaternary 112 

events and the slopes are the remains of ancient volcanic buildings. These hills consist of several tens 113 

of metre thick NYT and are generally covered by younger (< 15 ka) loose and unconsolidated 114 

pyroclastic deposits (Ascione et al. 2020). Additionally, the energy of relief is quite high where local 115 

hills are characterized by high slope angles (> 30°). The caldera inner slopes have typical semi-116 

circular planar shapes and steep profiles that make them prone to landsliding (Calcaterra et al. 2007; 117 

Ascione et al. 2020). Also, the drainage network presents a pronounced structural control, where low-118 

order straight channels are exposed (Di Martire et al. 2012). Sea level variations also greatly 119 



contributed to the present morphological setting. These conditions have represented predisposing 120 

factors for the development of landslides since the Roman era (Morra et al. 2010). 121 

Landslides are the main geomorphic processes within Naples municipality. Although landslides have 122 

generated disruption and damage over time, only in recent decades more attention has been posed to 123 

these phenomena, following the February 1986 rainfall event, representing a threshold between 124 

historical and recent mass movements (Beneduce et al. 1988; Calcaterra et al. 2002; Di Martire et al. 125 

2012) which led to complete landslide inventory in the Phlegraean area (Carratù et al. 2015; Finicelli 126 

et al. 2016). The inventories reveal that landslides mostly affect the shallow pyroclastic cover and 127 

have thicknesses in the order of 0.5 to 2 m (Calcaterra et al. 2007) and are characterized by relatively 128 

low mobility. 129 

 130 

3. Materials and methods 131 

The procedure for the individuation and validation of the landslides consists in two independent steps. 132 

The former includes the identification of slope failures through field surveys and Google Earth images 133 

inspection leading to a creation of a landslide inventory, while the latter is characterized by the 134 

collection and processing of radar polarimetric satellite images for the development of another 135 

landslide inventory. Finally, the two outputs have been compared to assess the results (Figure 2).  136 



 137 

Figure 2. Flowchart of the proposed methodology. Additional information on part 2 are provided in Section 3.2. 138 

 139 

3.1 On-site investigation data  140 

Landslide inventories represent essential input data to implement any study on landslide 141 

susceptibility, hazard or risk assessment. Very often this data is missing or not homogeneous in space 142 

and time, leading to an incorrect evaluation of the above-mentioned analyses. In the investigated area, 143 

several studies have already compiled a partial census of landslide phenomena (Calcaterra et al. 2002; 144 

Di Martire et al. 2012; Carratù et al. 2015; Finicelli et al. 2016) in addition to the I.F.F.I. (Landslide 145 

Inventory in Italy) national landslides database.  146 

This database covers a time span of about two centuries (1816 - 2015) and is based upon field surveys, 147 

aerial photo interpretation and local and national archival research of relevant sources (Di Martire et 148 

al., 2012). As a result, about 1300 landslides were inventoried and classified as “historical” or 149 

“recent” conventionally using the February 1986 event as a temporal divide. The main flaw of this 150 



database is the lack of consistency in space and time, the different methodologies adopted and the 151 

different classification criteria used. 152 

Winter season 2019 – 2020 has been characterized by the occurrence of several high-intensity and 153 

short-duration rainfalls, where one of the most severe recorded values of  66 mm of cumulative 154 

rainfall in 30 minutes. Such events have triggered many slope failures and undermining surface 155 

drainage systems in urban areas. As a consequence, visual interpretation of Google Earth images 156 

integrated by geomorphological field survey observations were performed to validate and update the 157 

landslide inventory with the latest mass movements that occurred in the area. Field surveys were 158 

carried out on topographical maps at 1:5,000 scale from December 2019, following the intense 159 

rainfall phenomena that occurred in the Phlegraean area. Based on the adopted scale, only landslides 160 

larger than 25 m2 were considered.  161 

 162 

3.2 Visibility maps 163 

SAR images are very useful tools for detecting and monitoring land cover changes but, being sensed 164 

in a side-looking configuration (Kropatsch and Strobl 1990), it is important to predict if the 165 

measurements over the study area might be affected by geometrical distortions before any processing. 166 

A preliminary analysis was carried out to obtain the Range Index (RI) (Notti et al. 2012, 2014), the 167 

latter is a pixel-by-pixel representation of the relationship between the geometry of acquisition of the 168 

satellite (slant range) and the topography Slope angle (S) and slope Aspect (A); (Plank et al. 2012; 169 

Del Soldato et al. 2021). The RI was applied to the Level-1 GRD products before part 1 in order to 170 

assess the quality of the pixels in the area of interest and to select the most effective stack to process. 171 

The elements needed to calculate the RI are a DEM  and the satellite Line of Sight (LoS) parameters, 172 

namely the incidence angle (α) and heading (θ). The maximum value of RI is 1. This occurs when the 173 

slope is parallel to the LoS. This is the best geometry to obtain SAR features in mountainous areas. 174 

On the contrary, the lowest value of RI occurs in the case of foreshortening (0 < RI < 0.3) or 175 



layovering (RI < 0) effects. Obtained outcomes have been classified according to the four main RI 176 

classes suggested by Notti et al. (2012). 177 

 178 

3.3 SAR images processing 179 

The pre-processing procedure is based on Sentinel-1 images acquired in the Level-1 Ground Range 180 

Detected – High Resolution format (GRD-HR) and Interferometric Wide acquisition mode in VV and 181 

VH polarization (https://scihub.copernicus.eu/). Level-1 GRD products are focused SAR data that 182 

has been multi-looked and projected to ground range using the Earth ellipsoid model WGS84. Only 183 

the amplitude information associated with each pixel in the image was considered 184 

(https://sentinel.esa.int/web/sentinel/missions/sentinel-1/data-products). The resulting product has 185 

squared pixels of 10 m resolution with reduced speckle. 186 

For the purpose of this work, six images were acquired shortly after the heaviest rainfall recorded in 187 

the area, both in ascending and descending orbit and covering the period between 17 September 2019 188 

and 16 January 2020 (Table 1).  189 

  190 

Table 1. Analysed SAR imagery in the amplitude change detection. The listed products correspond only to images 191 

acquired in descending orbit. The whole considered imagery dataset corresponds to GRD-HR dual-pol products. 192 

Date Satellite platform 

17 September 2019 Sentinel-1B 

5 October 2019 Sentinel-1A 

5 November 2019 Sentinel-1B 

4 December 2019 Sentinel-1A 

29 December 2019 Sentinel-1A 

16 January 2020 Sentinel-1A 

Pre-processing of the images is performed to obtain Beta Nought (β0), namely the radar brightness 193 

coefficient in slant coordinates. This part is done using the open-source software SNAP, available 194 

through the European Space Agency (https://step.esa.int/main/download/snap-download/), and 195 

https://scihub.copernicus.eu/
https://sentinel.esa.int/web/sentinel/missions/sentinel-1/data-products


includes the following steps: retrieving the precise orbits, removing the thermal noise and radiometric 196 

calibration (Filipponi 2019). SAR images were co-registered with a 10 m Digital Elevation Model 197 

(DEM)-assisted procedure (Tarquini et al. 2007). After the co-registration, the resulting stacked 198 

images are filtered for speckling reduction using the adaptive Frost filter (Frost et al. 1982), with a 199 

filter size in X and Y of 5 pixels, and a damping factor of 2. 200 

 201 

3.4 SAR amplitude changes detection 202 

SAR backscatter is dependent on a number of factors, including the polarization and wavelength used 203 

by the SAR system, the local slope orientation relative to the SAR sensor and the roughness and 204 

dielectric properties (e.g. soil moisture, presence of vegetation) of the material that the microwave 205 

energy interacts with at the Earth’s surface (Burrows et al., 2022). 206 

Analysing changes between pre-and post-event amplitude SAR images is based on the assumption 207 

that landslides change the local land cover and its backscattering properties. For instance, when a 208 

mass movement occurs, if the mobilised material covering the previous surface is characterized by a 209 

higher moisture content then the backscatter signal should increase (Novellino et al. 2020). Back-210 

scattering might also increase when the surface roughness (at the scale of the used wavelength) 211 

increases (Oliver and Quegan 2004) for example as a result of trees being ripped off leaving bare soil 212 

or rock. Following the procedure defined by Mondini (2017), the Log-Ratio (LR) index was then 213 

computed in every pixel for each couple of dual-pol consecutive images. LR index estimates change 214 

in brightness that can be induced by land cover changes due to both natural (e.g., landslides, floods, 215 

snow melting) or human-induced activities (e.g., deforestation, mining activities) in a defined time 216 

interval. The obtained ratio image helps suppressing background structures and improve the 217 

detectability of potential changes from SAR data (Ajadi et al., 2016). 218 

For each pair of corresponding pixels belonging to consecutive pre-processed SAR images, LR is 219 

calculated as follows (Esposito et al. 2020, Eq. 1): 220 

                                                                   𝐿𝐿𝐿𝐿 = ln ( 𝛽𝛽0,𝑖𝑖
𝛽𝛽0,𝑖𝑖−1

)                                                                      (Eq. 1) 221 



where β0 is the reflectivity per unit area in slant range; its values are independent from the terrain 222 

covered and i-th image indicate two consecutive pre-processed SAR images. LR pixels can assume 223 

by positive or negative values, depending on the backscattering changes. Then, a subset of Region of 224 

Interest (RoI) is extracted by using the subset tool in SNAP. 225 

 226 

3.5 Image segmentation and matching assessment 227 

Before the segmentation, a filtering step has been performed to mask pixels that cannot correspond 228 

to landslides (i.e., flat urban areas). In fact, to obtain an LR filtered layer, areas potentially affected 229 

by mass movements were separated using morphological parameters derived from slope and plan 230 

curvature. Additionally, areas in shadowing and foreshortening in the RI have been masked out and 231 

removed. Moreover, to ensure the correct identification of urban boundaries, land-use information 232 

derived from the second level of the 2018 Corine Land Cover (CLC) program were taken into account 233 

(https://land.copernicus.eu/pan-european/corine-land-cover/clc2018). CLC classification system is 234 

hierarchical and subdivided into different levels: the second level of the CLC classification for the 235 

urban group includes areas mainly occupied by dwellings and buildings used by administrative/public 236 

utilities, including their connected areas (associated lands, approach road network, parking lots).  237 

LR layer segmentation groups pixels with similar LR values into various unique segments. The image 238 

is partitioned into regions that contain points having nearly the same properties, e.g. mean values or 239 

textural properties (Tang 2010). In this work, the segmentation process is performed with the 240 

“i.segment” module in GRASS GIS 7.8.3 using the “Mean Shift” algorithm and the adaptive 241 

bandwidth option (Fukunaga and Hostetler 1975).  242 

For the segmentation of the filtered LR, the algorithm requires the definition of the following 243 

parameters: i) a selective threshold with a value between 0 and 1; ii) the kernel size; iii) the minimum 244 

number of cells falling into a cluster and iv) the minimum number of iterations. A threshold of 0 245 

would allow only pixels with identical values to be considered similar and clustered together in a 246 

segment, while a threshold of 1 would allow everything to be included in a large segment (Momsen 247 

https://land.copernicus.eu/pan-european/corine-land-cover/clc2018


and Metz 2017). Mean Shift algorithm recalculates central pixel values using the user-defined 248 

maximum number of iterations or until the shift between the central pixel and pixels within the kernel 249 

results is smaller than the user-defined threshold. The threshold choice depends on the purpose of the 250 

application and the image resolution (Comaniciu and Meer 1999; Tao et al. 2007). To select the 251 

appropriate parameter values, iterative steps have been carried out manually. According to Esposito 252 

et al. (2020), the criterion for selecting the best input values is to search for the combination of values 253 

that optimize, at the same time, the number of clusters and their average size concerning the expected 254 

land cover changes. To avoid over-segmentation, a threshold value of 0.1 has been chosen and a 255 

minimum of 3 pixels has been used as criteria to determine the presence of a cluster with the Euclidean 256 

calculation method. Considering the approximate expected size of the land cover changes, the size of 257 

the spatial kernel was set to 10 pixels with 200 iterations to detect significant differences in LR values 258 

and to minimize the “salt and pepper effect” both for VH and VV polarization LR layers. 259 

The obtained outcomes have been matched with the surveyed data reported in the LIM map. This 260 

procedure allowed to compare the two datasets in terms of the number of landslides recognized and 261 

their areal extension. 262 

 263 

4. Results and discussion 264 

4.1 On-site investigation outcomes 265 

The field inspection was conducted into the whole municipality of Naples by using Google Earth 266 

images as ancillary data (Figure 3). Through this examination, 62 landslides were recognized and 267 

added to the previous landslide inventories available for the city of Naples (Di Martire et al, 2012; 268 

Carratù et al., 2015; Finicelli et al., 2016), bringing the total number of phenomena surveyed to 1322. 269 

Of the 62 new mass movements, 29 are located on the slopes of the Agnano plain and the Camaldoli 270 

hill so confirming that these areas have the highest susceptibility within Naples (Figure 1b). 271 

According to Cruden and Varnes (1996) classification, the detected slope failures can be classified as 272 

rotational or translational slides, which are typical phenomena affecting local hilly areas, particularly 273 



in case of prolonged or intense rainfall events. In fact, considering the geological and 274 

geomorphological setting of the Phlegraean Field, rainfall is the main triggering factor of mass 275 

movements (Calcaterra et al., 2000; Fusco et al., 2019) and between September and December 2019, 276 

the Campania region was affected by several rainfall events of high intensity and short duration 277 

(http://centrofunzionale.regione.campania.it). Moreover, by consulting the reports on hydrological 278 

events, it was possible to note that, especially in September 2019, the city of Naples was hit by severe 279 

precipitation. From field observations, it was noted that the tuffs are affected by falls and topples, 280 

which move from high-angle walls and, more frequently, from cut slopes or quarry walls (Calcaterra 281 

et al. 2002). Moreover, many landslides with complex evolution can be observed along the Phlegrean 282 

hilly slopes. These phenomena are characterized by localized residual movements and occasional 283 

reactivations. 284 

 285 

Figure 3. Landslide inventory map for the Naples municipality where red dots show the new surveyed landslides, 286 

whereas, green ones indicate the mass movements already obtained from official inventories. The black polygons refer to 287 

the outcome obtained with the segmentation step. 288 



Hence, different change detections have been accomplished to identify the number of landslides 289 

associated with the different rainfall events and to create a multi-temporal catalogue of the mass 290 

movements triggered in the study area. 291 

The heavy rainfalls and severe wildfires, together with land-use changes (i.e., abandonment of 292 

agricultural practices; Figure 4) have caused a progressive increase in landslide occurrence over time. 293 

These problems combined with the urban sprawl has increased the landslide risk in this context 294 

(Calcaterra et al. 2007). 295 

 296 

Figure 4. Interaction between land-use change (green) and landslides (light red). Lateral landslides were detached at the 297 

base of the terraced areas where the agricultural practices are still active, differently from the central landslide. 298 

 299 

4.2 Change detection analyses 300 

The preliminary analysis based on the RI calculation shows that most of the slopes in the Agnano and 301 

Camaldoli areas is affected by topographic effects limiting SAR applications (Figure 5). The 302 

ascending orbit is characterized by a low RI (< 0.3) affected by foreshortening and the terrain 303 

geometry has a high impact on the backscattered signal, then limiting the effectiveness of the 304 

amplitude analysis on the ascending stack that has been, therefore, excluded. As shown in Figure 5, 305 

the western side of Camaldoli hill and almost all of the Agnano slopes fall into a low RI class. By 306 

comparing ascending and descending orbits, it is possible to note that the descending geometry is 307 

better suited for slopes facing West. On the contrary, the ascending geometry allows to better 308 



investigate slopes oriented to the East. Considering the western wards landslides’ directions of 309 

motion, only descending SAR images have been employed in this work. 310 

 311 

Figure 5. R-Index maps of Camaldoli hill and Agnano plain in the ascending geometry (a) and descending geometry (b). 312 

In ascending geometry most of the slopes are affected by layover and shadowing problems due to the topography effects 313 

and LoS parameters. 314 

Subsequently, LR has been filtered by selecting out flat urban areas. In our study area, flat areas 315 

correspond to built-up zones while the unstable slopes involve only vegetated areas. For this reason, 316 

urban areas have not been considered, while acknowledging that mass movement phenomena can 317 

also be triggered in urban contexts (Di Napoli 2020b, Novellino et al., 2021, Miele et al., 2021). 318 

After the segmentation of the LR filtered layer, segments with a minimum size of 3 pixels, 319 

corresponding to a minimum area of 300 m2, were extracted in the RoI. The output of the 320 

segmentation algorithm returned 39 clusters in the Camaldoli and Agnano areas (Figure 6). The 321 

obtained outcomes correspond to small and isolated clusters (black pixels) in a homogeneous region, 322 

where the backscattering variations were most significant (Δβ0 ranging from 0.6 and 0.7). In large 323 

parts of the investigated area, there weren’t significant variations in terms of the backscattered signal 324 

and these outputs have been interpreted taking into account the geometry of the cluster. Namely, 325 

clusters running perpendicular to the line of the maximum slope were not considered as well as 326 



clusters that cover areas too large are not compatible with the typical landslides historically occurred 327 

in the study area.  328 

 Concerning the multi-temporal analysis, different change detections were analysed considering 329 

different images acquired at monthly intervals. Specifically, in the period between September and 330 

October two landslides were recorded on the Camaldoli hill while four phenomena were identified 331 

between October and November in Agnano. Between November and December, a total of five 332 

landslides were identified in Agnano (i.e., 3) and Camaldoli (i.e., 2) and finally, the eleven events 333 

were mapped between December 2019 and January 2020 on the slopes of the Agnano plain (Table 2 334 

and Figure 6). 335 

 336 

 337 



Figure 6. Outputs from the segmentation step: a) LR amplitude layer of the RoI within part of Phlegrean Fields obtained 338 

stacking the last two SAR images considered (29 December 2019 and 16 January 2020) clipped around the Agnano plain 339 

and Camaldoli hill areas; b) segmentation results for the October-November period in the Camaldoli hill; c) results for 340 

the December-January period over the Agnano plain; d) results for December at the Agnano plain. The background 341 

different colours represent the segmentation output and green polygons correspond with the mass movements shape 342 

surveyed. Potential pixels associated with landslides, detected after the segmentation, are represented with the same colour 343 

(i.e., black). 344 

 345 

 Table 2. Summary of landslides recognition for each change analysis computed. 346 

TIME SPAN AGNANO CAMALDOLI 

SEPTEMBER/OCTOBER - 2 

OCTOBER/NOVEMBER 4 - 

NOVEMBER/DECEMBER 3 2 

DECEMBER/DECEMBER - 5 

DECEMBER/JANUARY 11 - 

SUM OF CHANGE DETECTION 18 9 

 347 

4.3 SAR and field surveys comparison 348 

Twenty-seven out of the 39 clusters individuated with the segmentation process correspond to 349 

landslides detected in the field. The remaining 12 clusters could be interpreted as False-Positive (FP), 350 

because small landslides can be immediately obliterated or the amplitude-based method might detect 351 

slope failures in areas inaccessible to survey, or False-Negative (FN) due to limited spatial resolution 352 

of the SAR products. FP and FN have been also considered in the comparison analysis. Both FP and 353 

FN, as well as validated landslides, are located near the slope breaks and in correspondence of 354 

relatively high acclivity (i.e., greater than 35°). In particular, on the Camaldoli slopes have been 355 

identified 2 FN and 5 FP, whereas, in Agnano plain have been recognized 2 FN a 3 FP. True Positives 356 

(TP) correspond to 78.8% and, if landslides >300 m2 are taken into account, TP increases to 80% 357 

(Figure 7). 358 



The recognised clusters show an areal extent of landslide slopes larger than the areas mapped during 359 

the field survey. This overestimation is unfortunately due to the low satellite images resolution that, 360 

when small landslides occur, do not allow the exact delimitation of the landslide area (East sector of 361 

Camaldoli hill, Figure 7).  362 

As already discussed in a previous similar study (Barra et al., 2016), the use of interferometric 363 

processing for landslide detection was proved. The main add-on of the current study regards the 364 

amplitude-based approach to prove the likelihood to map the scars caused by the landslide. However, 365 

this approach could be particularly useful in rapid landslide investigation allowing precise 366 

identification of landslides location, especially when are present area inaccessible to field detectors, 367 

as demonstrated on Camaldoli hill. 368 

 369 

Figure 7. Comparison between the SAR derived segmentation map and the field investigation. In the Agnano plain (right ) 370 

there is a  good correspondence between landslides’ shapes and clusters. The Camaldoli hill area presents many clusters 371 

corresponding to false-positive objects due to issues of visibility parameters (see visibility maps). 372 

 373 

5. Conclusions 374 

Over the last decades, remote sensing technologies have supported landslide monitoring and detection 375 

analyses at relatively low costs. Among them, amplitude-based methods have been employed in very 376 

large mass movements identification. A semi-automatic procedure to identify rapid landslide 377 

occurrence in measures of SAR amplitude changes has been tested in this work in the outskirts of 378 



Naples (Italy). The scope of our method is to obtain preliminary information from radar imagery on 379 

mass movements when atmospheric conditions (cloud coverage) prevent the use of optical images. 380 

However, in the presented analyses all the data and software adopted are completely free-of-charge. 381 

For the chosen study area, only SAR images acquired in descending orbit were considered due to the 382 

geometrical constraints recorded in the ascending orbit. At the same time, extensive field surveys 383 

activities have been executed in the study area. The results obtained, with 27 events confirmed by 384 

field surveys, assert that SAR Sentinel-1 images are successful in capturing rapid landslides. SAR 385 

images permit to obtain quick and reliable information in supporting disaster management civil 386 

protection operations on landslides occurrence following a rain event. Moreover, in bibliography, 387 

polarimetric applications have been already presented focusing on very huge mass movements 388 

detection. As shown in the results section, it is possible to identify also landslides with limited 389 

extension (hundreds of square meters) which are more likely in the Phlegrean setting. Further 390 

applications could be implemented by using SAR images with a very high resolution allowing more 391 

accurate results.  392 

The integration between RS and conventional geological methods can represent a significant tool for 393 

intervention works planning, providing the right indication on how and where to operate to reduce 394 

the risk and to increase the safety of the area. 395 
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