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Phenotypic plasticity represents an important first-line organism response to newly
introduced or changing environmental constraints. Knowledge about structural
responses to environmental stressors could thus be an essential measure to predict
species and ecosystem responses to a world in change. In this study, we combined
morphometric analyses with environmental modelling to identify direct shape responses of
the predatory gastropod Nucella lapillus to large-scale variability in sea surface
temperature and the carbonate system. Our models suggest that the state of the
carbonate system and, more specifically, the substrate inhibitor ratio (½HCO−

3�½H+�−1)
(SIR) has a dominant effect on the shell shape of this intertidal muricid. Populations in
regions with a lower SIR tend to form narrower shells with a higher spire to body whorl
ratio, whereas populations in areas with a higher SIR form wider shells with a much lower
spire to body whorl ratio. These results indicate that a widespread phenotypic response of
N. lapillus to continuing ocean acidification can be expected, potentially altering the
phenotypic response pattern to predator or wave exposure regimes with profound
implications for North Atlantic rocky shore communities.

Keywords: biomineralisation, resistance, shape plasticity, calcification, compensatory abilities, multiple stressor,
dog whelk, ocean acidification (OA)
INTRODUCTION

Together with genetic predispositions, environmental constraints are the primary causes for shape
variability within and among populations. Phenotypic plasticity is the ability of a single genotype to
produce a range of different forms in response to its environment (Bradshaw, 1965; West-Eberhard,
1989; Sultan and Stearns, 2005). This trait, if adaptive, is generally perceived advantageous for an
organism or population because it facilitates resistance to a range of different stressors allowing
similar genotypes to populate heterogeneous habitats (Chevin and Hoffmann, 2017). Therefore,
changes in morphology can be strong indicators for increasing or changing environmental stressors,
knowledge about which may be important when monitoring the consequences of anthropogenically
induced global climate change (Telesca et al., 2018). So far, studies have focused predominately on
population and community composition responses (Ashton et al., 2017) or genetic markers to study
the effect of global change. However, an understanding of phenotypic consequences was also found
in.org June 2022 | Volume 9 | Article 8941821
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to be crucial to forming a complete picture of biological
responses to a world in change (Hellberg et al., 2001; Cross
et al., 2018; Telesca et al., 2018; Morley et al., 2019; Telesca
et al., 2021).

Climate change associated with rising atmospheric carbon
dioxide levels, increasing terrestrial and seawater temperatures,
ocean acidification (OA) and more frequent extreme weather
events is an emerging global threat to most of the Earth’s
biosphere (Collins et al., 2013). In the oceans, annually
increasing sea surface temperatures and OA pose strong
stressors for marine organisms (Byrne, 2011; Fitzer et al.,
2015). Species with calcium carbonate (CaCO3) shells or
skeletons are expected to be especially impacted by global
climate change (Waldbusser et al., 2013; Waldbusser et al.,
2014; Przeslawski et al., 2015; Suckling et al., 2015; Thomsen
et al., 2015). The reduction in seawater pH associated with rising
atmospheric CO2 concentration results in potentially harmful
effects (e.g., shell dissolution), making an organism more
susceptible to predation, parasites, or infectious diseases
(Gaylord et al., 2011; Viotti et al., 2019; Barclay et al., 2020).
Marine calcifiers are reported to be especially vulnerable at the
larval stage to the synergistic effects of OA and ocean warming
(Przeslawski et al., 2015), as this can lead to premature death or
severe retardation of shell formation (Gazeau et al., 2011;
Thomsen et al., 2015; Waldbusser et al., 2015). To overcome
these impacts, CaCO3 bearing organisms are required to spend a
larger proportion of their metabolic energy on calcification
to maintain the status quo (Melzner et al., 2011), which could
have far-reaching implications for their energy balance
and competitiveness.

There is a consensus that calcification is linked to CaCO3

substrate abundance and speciation, i.e., to the CaCO3 saturation
state WCaCO3

in seawater, although its exact role in the acidified
ocean is still debated (Bach, 2015; Cyronak et al., 2015;
Waldbusser et al., 2016). The WCaCO3

is a function of both
calcium ion [Ca2+] and bicarbonate ½CO2−

3 � availability as well
as the thermodynamic solubility product Ksp of the respective
CaCO3 polymorphs (for molluscs, most important are aragonite
and calcite) at a specific pressure, salinity and temperature
(Zeebe and Wolf-Gladrow, 2001) (eq. 1).

WCaCO3
=

Ca2+
� �

CO2−
3

� �

Ksp
(1)

In seawater, both [Ca2+] and the dissolved inorganic carbon
concentrations (DIC) are tightly coupled to seawater salinity,
whereby the speciation of DIC in seawater is pH-dependent. This
means that both a reduction in the salinity and the pH can
reduce the saturation state of seawater. At WCaCO3

< 1, CaCO3

dissolution becomes thermodynamically favourable; however, as
pointed out by Waldbusser et al. (2016), low WCaCO3

states likely
pose more of a kinetic rather than a thermodynamic constraint
on marine calcifiers considering the rapid rate of calcification
observed especially at the larval stage (Waldbusser et al., 2016).
Irrespective of whether thermodynamic or kinetic bottlenecks
are responsible, continuously low WCaCO3

states can have serious
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implications for shell-forming organisms (Doney et al., 2009;
Watson et al., 2012; Waldbusser et al., 2014). In recent years,
many in-situ and laboratory studies have added to our
understanding of the effect of climate change on marine
calcifiers (Byrne, 2011; Byrne and Przeslawski, 2013; Kroeker
et al., 2013; Parker et al., 2013; Fitzer et al., 2015; Kroeker et al.,
2016; Cross et al., 2018). However, relatively short-term
experiments (Hofmann et al., 2010), heterogeneous study
designs, and partly conflicting results among studies have
complicated interpretations and highlight the complexity of
possible organism responses to a changing environment. While
long-term, multi-generational experiments are key to studying
phenotypic and genetic adaptions to environmental change
(Hofmann et al., 2010), they require many months to years
and thus pose a serious time constraint (Clark et al., 2019a; Clark
et al., 2019b). This is especially true if organisms with long
lifespans and/or a slow reproductive cycle are to be studied. Thus
different approaches to investigating the effect of climate change
in a natural setting that also account for both phenotypic and
genetic adaptions receive increasingly more attention (Cross
et al., 2018; Telesca et al., 2019; Bullard et al., 2021; Telesca
et al., 2021). These types of studies focus on organism responses
in the temporal domain by comparing archival collections with
modern specimens collected from a strongly constrained spatial
range (Fisher et al., 2009; Cross et al., 2018; Telesca et al., 2021)
or in the spatial domain by studying the effect of environmental
constraints on an organism over an extensive geospatial range,
made possible by recent advances in ecological modelling
(Telesca et al., 2018; Telesca et al., 2019).

The dog whelk,Nucella lapillus (Linnaeus, 1758), is an important
predatory gastropod inhabiting the rocky intertidal zone of the
North Atlantic (Burrows and Hughes, 1989; Hughes and Burrows,
1994). Nucella lapillus preys predominately on habitat-forming
foundation species such as blue mussels or barnacles and thereby
exerts a strong top-down control on rocky-shore ecosystems
(Trussell et al., 2003; Benedetti-Cecchi and Trussell, 2014;
Contolini et al., 2020). Its spatial distribution ranges from the
northern tip of Norway to southern Portugal, spanning three
climate zones. Nucella lapillus is a direct-developing gastropod
without a larval stage (Moore, 1938). Its locomotor activity is
limited to movements between prey (usually no more than a few
centimetres) on which individuals are reported to feed for hours, if
not days (Fretter and Graham, 1962). Nucella lapillus is only
occasionally found below the tide marks and does not voluntarily
crawl over sandy or muddy areas. The absence of a larval stage and
the limited locomotor range of N. lapillus limits its dispersal so that
distinct phenotypes exist within different allopatric populations,
forming numerous discrete gamodemes (Berry and Crothers, 1974).
Its calcareous shell consists of two layers, made of irregular calcite
on the outside and crossed lamellar aragonite on the inside, which
may be separated by a transitional spherulitic layer (Mayk, 2021).
Site-specific exposure to wave action and predators are the most
studied natural causes of shape variability among N. lapillus
populations (Hughes and Elner, 1979; Vermeij and Currey, 1980;
Palmer, 1990; Pascoal et al., 2012). On exposed shores, N. lapillus
usually have short squat shells with a larger aperture size to
June 2022 | Volume 9 | Article 894182
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accommodate a larger foot, which improves adherence to substrata.
Squatter shells and better substratum adherence reduce the risk of
dislodgment and are thus interpreted to be a morphological
adaption to increase survival (Kitching et al., 1966; Guerra-Varela
et al., 2009). Nucella lapillus on protected shores, where individuals
are more regularly exposed to predators, tend to produce stronger
and thicker shells (Currey and Hughes, 1982; Appleton and Palmer,
1988) and have increased growth rates (Burrows and Hughes,
1989). Individuals from protected shores also tend to exhibit
relatively lighter soft tissue body weight as thicker shells provide
comparably less space to accommodate the internal organs
(Kitching et al., 1966). Site-specific exposure regimes have also
been associated with genetic variability (karyotypes).Nucella lapillus
show a pronounced chromosomal polymorphism; first reported in
populations from the coast of Roscoff, France (Staiger, 1953).
Known chromosome numbers range from 2n = 26 to 2n = 36
between populations (Bantock and Cockayne, 1975; Pascoe and
Dixon, 1994). It was suggested that karyotypes correlate with local
conditions, as the 2n = 26 karyotype appeared to be more common
on exposed shores, whereas the 2n = 36 karyotype appeared to be
more common on protected shores (Kirby et al., 1994). However,
other studies did not confirm this finding, suggesting that shell
shape in N. lapillus is a direct response to its physical and biological
environment, expressed within a single generation and without the
need for a change in karyotype (Pascoe, 2002; Pascoe, 2006). In any
case, N. lapillus shows pronounced phenotypic adaptions to its
habitat allowing this intertidal muricid to become a dominant top-
down predator. New and continuous stressors, as brought about by
OA and ocean warming, could, however, endanger its position,
potentially jeopardising the trophic system on large parts of the
North Atlantic rocky shore. While a wealth of studies exists in the
literature that examines local effects onN. lapillus’ shell morphology,
comparatively little is known about large-scale shape trends, despite
its wide distribution. However, this would be of particular interest to
understand how this important intertidal predatory gastropod
adapts to different environments and has the potential to provide
new insights and understanding of this species’ capacity to respond
to a world in change. This paper aims to close this gap by
investigating response patterns of N. lapillus across its entire
latitudinal range with a particular focus on identifying
significant relationships between environmental gradients and
phenotypic responses which may indicate sensitivities of this
intertidal muricid to environmental change. To do so, we
analysed shape variance among N. lapillus populations, sampled
over a 30 degrees latitudinal range, from the northern tip of
Norway to the south of Portugal, and used multivariate ecological
models to identify significant relationships of shell shape to global
change relevant environmental parameters.
MATERIALS AND METHODS

Shell Collection
Specimens used in this study were sampled from the extensive
Crothers collection at the Natural History Museum, London,
United Kingdom (NHM) (Table 1). These samples were
collected by John Crothers and colleagues during the 1970s-
Frontiers in Marine Science | www.frontiersin.org 3
1980s from numerous sites to study shell shape and colour
changes with a special focus on wave exposure levels (Crothers,
1971; Crothers, 1979; Crothers, 1980; Crothers, 1981; Crothers,
1982; Crothers, 1983; Crothers, 1985a). From this collection, we
sub-sampled a total of 1575 specimens from 19 sites spanning
nearly the entire latitudinal range of N. lapillus on the European
North Atlantic and Arctic coast (Figure 1). We only included
specimens with intact apices that showed no extensive signs of
erosion and that had likely reached sexual maturity during their
lifetime (Galante-Oliveira et al., 2010).

Environmental Descriptors
To study the effect of environmental constraints on shell
morphology, we used data from the global ocean- in-situ
reprocessed carbon observations product (Copernicus Marine
Service). This comprehensive global data set contains a
compilation of in-situ observational gridded data collected
from 1950 until 2020 for key parameters such as water
temperature, salinity, alkalinity and pH from two up-to-date
carbon and biogeochemistry data products, namely the Surface
Ocean Carbon Atlas (SOCATv2020) and the Global Ocean Data
Analysis Project (GLODAPv2.2020) that underwent rigorous
data quality and bias checks (Bakker et al., 2016; Olsen et al.,
2020). The data has a 1x1 degree spatial resolution at 33 different
water depths. For this study, we used only sea surface data to
reflect the conditions in the intertidal zone. Seawater conditions
used in the further analysis were inferred from the nearest data
grid to each sampling site. To have access to all carbonate system
parameters, we calculated missing values using pH and alkalinity
as input parameters to the function carb() in the R package
seacarb v3.3.0 (Lavigne et al., 2008). The default dissociation
constants (K1 and K2) for the respective temperature and salinity
ranges were used in the calculation (Waters and Millero, 2013).

Morphometric Analysis
We measured standard dimensions, namely shell height, shell
width, aperture height and aperture width, using digital Vernier
callipers. Every dimension was measured three times per shell.
Aperture size was estimated from height and width
measurements using the equation for the area of an ellipse.
Continuous shell shapes (outlines) were obtained using elliptic
Fourier analysis (EFA) (Giardina and Kuhl, 1977; Kuhl and
Giardina, 1982) using an adaptation of the methodology laid out
elsewhere (Telesca et al., 2018). For this, shells were individually
positioned on an illuminated platform with the aperture facing
downward. Images were taken from a fixed distance with a DSLR
Camera (Nikon 3000, Sigma 105 mm macro lens) mounted on a
photo stand in a dark room. This produced images of the shells
as black silhouettes with clear outlines, ideal for automatic
outline tracing. We decided to analyse shell shape variability
with the shell apertures facing downward in a natural position,
rather than in the more common but unnatural aperture
upwards position, to study shape changes that are more
meaningful for N. lapillus in nature. Shell silhouette images
were imported to R (R Core Team, 2020), and outlines were
digitised and subsequently turned into closed shape polygons
(defined by x-y coordinates) using the R package Momocs
June 2022 | Volume 9 | Article 894182
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(Bonhomme et al., 2014). Shape outlines were smoothed using a
running average smoothing algorithm to remove digitisation
noise before each shell was individually aligned along its
longitudinal axis. This was done by defining a secant line that
connected the two furthest apart points (i.e., the shell anterior
with the posterior) within the polygon shape. The shape was then
rotated until the slope of the secant line was zero. Thereafter,
Frontiers in Marine Science | www.frontiersin.org 4
shape polygons were centred and scaled with regard to
orientation and size. An EFA with 10 harmonics encompassing
99% of the total harmonic power was computed on the outlines.
Principal component analysis (PCA) was used to identify the
axes of most variance among individuals (hereafter shape-PCs).
For further analyses, we used the first five shape-PCs that
encompassed more than 86% of the total shell shape variance
TABLE 1 | Sampling details of the Nucella lapillus shells used in this study.

ID site coordinates individuals mean shell height (mm) var. shell height (1s)

1 Bjarkøy 68.99 °N, 16.54 °E 48 29.56 2.87
2 Litløya 68.59 °N, 14.32 °E 53 28.52 3.19
3 Fljótavıḱ 66.45 °N, 22.91 °W 97 30.34 2.29
4 Lurøy 66.37 °N, 12.6 °E 99 32.36 2.19
5 Tjørnuvıḱ 62.3 °N, 7.14 °W 50 32.35 3.25
6 Suðuroy 61.52 °N, 6.78 °W 48 37.75 3.98
7 Hoplandsjøen (Harbour) 60.75 °N, 4.91 °E 94 31.89 2.64
8 Hoplandsjøen (outer) 60.75 °N, 4.91 °E 99 29.14 2.14
9 Ramsøy 60.44 °N, 5.05 °E 49 33.31 2.82
10 Mavis Grind (East) 60.39 °N, 1.38 °W 51 31.02 1.93
11 Voe 60.27 °N, 1.16 °W 101 28.81 2.92
12 St Abbs 55.89 °N, 2.12 °W 104 31.37 2.68
13 Berwick upon Tweed 55.77 °N, 1.99 °W 100 28.88 2.35
14 Mumbles 51.56 °N, 3.98 °W 96 32.75 2.02
15 Shoreham (Harbour) 50.82 °N, 0.25 °W 101 33.98 2.76
16 Ile de Batz 48.75 °N, 4.01 °W 88 31.80 2.41
17 Quiberon (Port Haliguen) 47.49 °N, 3.1 °W 100 29.21 2.09
18 Redondela 42.29 °N, 8.63 °W 101 33.69 1.88
19 São Martinho do Porto 39.52 °N, 9.14 °W 99 26.43 1.31
June 2022 | Volu
For each sampling site the number of specimens, their respective mean shell height and standard deviation are reported. Only specimens with clearly identifiable sampling site were used.
Sampling sites are sorted by latitude from north to south.
FIGURE 1 | Sampling map of Nucella lapillus specimens and environmental gradients of sea surface temperature, seawater salinity, pH and WCa. The sampling sites
ranged from 40°N to almost 70°N, spanning three distinct climate zones. Names of corresponding sampling site IDs can be obtained from Table 1. The colour
gradient in the sampling map corresponds to that in the temperature plot, and all gradient colours are in accordance with Thyng et al. (2016).
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among specimens as representative shape descriptors. A
graphical representation of the shell shape analysis pipeline can
be obtained from the Supplementary Material. To visualise the
transition between extremes of the morphospace, we generated
deformation grids (Thompson, 1992) and iso deformation lines
(Bookstein, 1992) for each shape-PC. Individual relationships of
the first five shell shape descriptors with sampling site latitude
were analysed using simple linear regression analyses (Figure 2).

Data Analysis and Model Formation
The effect of key environmental parameters on shell shape
variability was investigated using generalised additive mixed
models (GAMM, mgcv) (Wood, 2011) to accommodate the
hierarchical structure and non-linear relationships in our
dataset. Initial data exploration was done following Zuur et al.
(2010). No significant outliers were detected among shape-PCs.
Boxplots of shape-PCs by sampling sites showed heterogeneous
variances between shape-PCs which was an expected
consequence of the PCA. Since the aim of this work was to
study the effect of global change on shell formation, we
considered a range of associated environmental parameters of
the physical and chemical domain as model predictors. As stated
earlier, WCaCO3

states are indicators for spontaneous carbonate
precipitation and, as such, have been shown to be good
predictors of bio-calcification (Sanders et al., 2021). However,
apart from the theoretical framework, there is little evidence
Frontiers in Marine Science | www.frontiersin.org 5
supporting its mechanistic role in molluscan shell formation
(Bach, 2015). There is growing evidence that hydrogencarbonate
concentration ½HCO−

3 � rather than ½CO2−
3 � is likely the primary

carbon species used in bio-calcification (Herfort et al., 2002;
Allemand et al., 2004; Mackinder et al., 2010; Stumpp et al.,
2012). Thus, we also included the substrate inhibitor ratio (SIR)
along with the other parameters as possible predictors to describe
variability in the carbonate system that is likely more
mechanistically relevant to biological calcification (Jokiel, 2013;
Bach, 2015; Cyronak et al., 2015). The SIR is a ratio of ½HCO−

3 �
concentration by proton availability (H+) in mol μmol-1 (eq. 2)
and, as such, is a representative of the inorganic carbon substrate
availability in relation to precipitation conditions.

SIR =
HCO−

3½ �
H+½ � (2)

The predictors included in the initial model were:
temperature, salinity, total alkalinity (AT), pH, ½HCO−

3 �, WAr,
WCa, SIR, sampling site ID and shell height. We selected the first
three shape-PCs that exhibited a significant correlation with
latitude (Figure 2) to be included in the GAMM. Given that all
three selected shape-PCs are shape-representatives of the same
shell, normalised shape-PC1 to shape-PC3 descriptors were
included simultaneously within the same GAMM to allow for
a holistic description of the shell shape variability. The number of
knots per descriptor was manually defined to constrain
A

B

FIGURE 2 | (A) Latitudinal trends of shell shape descriptors (shape-PC1 to shape-PC5) of the intertidal gastropod Nucella lapillus. Points represent the mean at
every sampling site, and error bars denote the standard deviation. Linear regression significances are reported for each shape-PC (Significance levels: n.s. p > 0.05,
*p < 0.05, **p < 0.001, ***p < 0.0001). (B) Deformation grids of shape-PC1 to shape-PC5 visualising the transition between extremes of the morphospace
represented by each shape-PC (blue: mean - 3s, red: mean + 3s). Percentage contributions to total shape variance between individuals are reported for each
shape-PC.
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unnatural degrees of wiggliness, and cubic regression splines
were used. The dredge() function in the R package MuMIn
(Bartoń, 2020) was used to analyse all possible combinations of
predictors, and the Akaike Information Criterion (AIC) was used
as the principal tool in the model optimisation process. To
overcome potential complications with collinearity in the
model caused by correlated independent variables only models
with an acceptable VIF factor < 3 of covariates were considered.
The sampling site ID was included as a random effect term to
account for the dependency of specimens from the same
collection site. The best-supported model was then fitted using
the restricted maximum likelihood approach (REML) and
validated by inspection of standardised residual patterns to
verify model assumptions. Variogram inspection suggested no
significant spatial autocorrelation. The final model was of the
form:

shapePCij ∼ N mij;  s 2
� �

mij = f temperatureið Þ ∗ fshapej + f alkalinityið Þ ∗ fshapej + f SIRið Þ ∗
fshapej + f shell heightið Þ ∗ fshapej+ ∈i

∈i∼ N 0;  s 2
i

� �

(3)

where shapePCij represents the j
th observation for each shape-PC

(j = 1-3) at every sampling site i (i = 1-19). f() * fshape denote the
smoothing functions of temperature, alkalinity, SIR and shell
height expressed by individual smoother for each level of j and
∈i is the normally distributed random intercept. Effect size
estimates of standardised predictors were calculated from
the GAMM following Telesca et al., (2018). The standardisation
of model predictors was done by subtracting the predictor’s mean
from its standard deviation. 95% confidence intervals were
constructed along mean effect sizes to compare the magnitude
and significance of environmental predictors on shell shapes. All
exploratory data analyses and modelling were performed in R (R
Core Team, 2020) and all data and scripts are publicly available
(see data availability statement).
RESULTS

Mean plots of environmental parameters revealed clear gradients
from north to south (Figure 1). As expected, mean sea surface
temperature increased gradually towards the south. Maximum
difference in average temperature between sampling sites was
11.49°C. Seawater salinity showed an increasing trend towards the
south with pronounced local variability (Figure 1, sampling sites 7-
9). Salinity variations between sampling sites were up to 3.14 PSU.
Seawater pH decreased between 70°N to 50°N, but sampling sites
south of 50°N exhibited higher seawater pH (Figure 1). The
maximum seawater pH range encompassed between our
sampling sites was 0.13. Minimum seawater WCa and WAr values
at the sampling sites were 3 and 2 respectively. Seawater WCa states
showed no apparent trend over the whole studied latitudinal range
but a significant increase in saturation south of 50°N.
Frontiers in Marine Science | www.frontiersin.org 6
Relative contributions of the first five shape-PCs to the total
morphospace range are shown in Figure 2B. Overall, shape
variance explained by shape-PC1 (53.17%) was a widening of the
shell. Higher shape-PC1 values described wider, more globular
shells with almost rectangular shoulders and proportionally
larger body whorls. Lower values described a narrowing of the
shell with proportionally smaller body whorls and flatter
shoulders. Shape-PC2 (14.76%) described a rounding of the
body whorl. Higher shape-PC2 values described an overall
rounding of the body whorl with a less contoured siphonal
canal. Shape-PC3 (8.65%) described an “offsetting” of the body
whorl to the spire, which gave the impression of tilting the shell’s
longitudinal axis. Shell shape-PC4 (5.94%) and shape-PC5 (4%)
only explained minor shape variations. Shape-PC4 described a
slight widening and shift of the body whorl, especially around the
shoulder, and shape-PC5 described contouring of the shell. A
plot of among-population variation described by shape-PC1 and
shape-PC2 showed a clear separation among populations,
especially along the shape-PC1 axis (Figure 3). Mean plots of
selected shell descriptors (shape-PC1 to shape-PC5) also showed
a clear effect of locality and significant latitudinal trends. Linear
regression analyses confirmed significant shell shape changes in
relation to sampling site latitude as expressed by shape-PC1,
shape-PC2 and shape-PC3. Shape-PC4 and shape-PC5 did
change significantly with latitude (Figure 2).

The best-supported model (Table 2) revealed a significant
relationship between the selected shape descriptors and
environmental gradients. The model comparison revealed that
sea surface temperature, AT, SIR, shell height, and sampling site
ID (as a random effect term) best described the observed changes
in shape-PCs. The model identified highly significant non-linear
relationships of shape-PC1 with sea surface temperature, AT, SIR
and shell height (Figure 4A). Shape-PC2 showed a non-
significant relationship with sea surface temperature but highly
significant relationships with AT and SIR. Shell height had only a
minor effect on shape-PC2 (Figure 4B). Shell shape variance
described by shape-PC3 was also not associated with sea surface
temperature, but showed significant correlations with AT, SIR
and shell height (Figure 4C). Mean effect size estimates
(Figure 5) revealed differences in the relative contribution of
environmental predictors on observed changes in shape. The SIR
and shell height showed a significant effect on shell shape-PC1 to
shape-PC3, and in addition, AT exhibited a significant effect size
for shape-PC2. Overall, effect size estimates primarily linked
changes in the carbonate system as represented by AT and
especially the SIR to changes in shell shape. Most notably, we
identified increasing SIR values resulted in the formation of
wider, more globular shells with a more pronounced shoulder.
Effect size estimates for sea surface temperature were non-
significant for any of the three shape descriptors.
DISCUSSION

Using a combined EFA and GAMM approach, we identified
significant shape changes in the intertidal N. lapillus that
June 2022 | Volume 9 | Article 894182

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Mayk et al. Carbonate System Mediated Shape Shift
followed latitudinal (Figure 2) and environmental trends
(Figures 4, 5). We identified a significant narrowing of shells
(i.e., a reduction in the shell aspect ratio) with relatively smaller
body whorls from north to south. While we did not identify
microclimate effects of individual sites on shell formation, which
likely contributed to the observed considerable shape variation
between individuals from the same population (Figure 2), our
large scale trends are so clear that the variability of mean
environmental conditions among sampling sites must have
been significant enough to influence the shell formation in the
studied specimens. Although the intertidal zone is known to
exhibit pronounced temporal and spatial variability in the
carbonate system (Krause-Jensen et al., 2015), our results
suggest that a shift in the mean has a significant influence on
shell formation. Effect size estimates of environmental predictors
on shape-PCs revealed that differences in the carbonate system
had the strongest influence of all environmental predictors on
shell shape. In contrast, sea surface temperature showed a non-
significant effect size for any of the three shape-PCs (Figure 5).
Despite overall high WCa and WAr throughout the sampling sites,
shell formation of N. lapillus appears to be remarkably sensitive
to variations in the carbonate system. Our models indicate a
significant link between shell formation of N. lapillus to
variations in the “reactant” ½HCO−

3 � and “inhibitor” [H+] ratio
(SIR) (Jokiel, 2011a; Jokiel, 2011b; Jokiel, 2013), which is
expected to decrease in the coming years and centuries under
increasing OA conditions. This suggests an overall shift in N.
Frontiers in Marine Science | www.frontiersin.org 7
lapillus shell shape can be expected as a response or consequence
to changing water chemistry constraints.

There is only a handful of studies explicitly investigating shell
shape responses of marine gastropods to changes in the carbonate
system, and these have produced partly conflicting results. A study
of the shell aspect ratio in the gastropod Phorcus saucciatus
collected from a CO2 vent and a control site reported a similar
shape response to those here, as specimens from the vent site tend
to form narrower and more elongated shells (Viotti et al., 2019).
However, seemingly conflicting results were reported from
laboratory studies where the combined effect of increasing
seawater temperature and decreasing pH resulted in the
formation of more globular shells in the intertidal gastropod
Littorina littorea and in juvenile N. lapillus (Melatunan et al.,
2013; Rühl et al., 2017). This discrepancy among studies is not
easily resolved but highlights the complexity of comparing species
responses from laboratory and field studies. One of the biggest
issues in comparing gastropod shape studies is the lack of a
common vocabulary and methodology to describe shape
responses. One prominent example here is the interchangeability
of the words “globular”, “wide”, “spherical”, “squat”, “round” to
describe seemingly similar shape changes for which a visual
representation of morphospace extremes (Figures 2B and 5)
would provide a better basis of comparison.

The discrepancy between study results also raises the
interesting question of whether a universal shape response to
changing water chemistry can be expected or if different species
will respond in different ways to OA. A crucial point when shell
shape responses to a variable carbonate system are to be
compared is the careful separation between kinetically,
thermodynamically, and stress-induced shape alterations, or in
other words, if the phenotypic response is adaptive or non-
adaptive. At the simplest level, changes in the seawater carbonate
system as brought about by OA result in a reduction of the bio-
calcification substrate accompanied by increases in [H+]
abundance that may constrain crystal formation at the site of
calcification through lowering WCaCO3

(Waldbusser et al., 2013;
Cyronak et al., 2015). This means that less material or substrate is
available to the individual for shell formation and that
calcification likely becomes metabolically more expensive as
the individual is required to spend more energy on [H+]
extrusion (Waldbusser et al., 2013; Tresguerres, 2016). While
the latitudinal shape trends observed in our study are purely
kinetically induced (in accordance with the kinetic–energetic
hypothesis) (Waldbusser et al., 2016) and are therefore a direct
indicator for variations in substrate and inhibitor abundance, we
hypothesise that shape variation in OA laboratory studies is
likely a mix of kinetic-, dissolution-, and stress-induced
phenotypic responses precluding any direct comparisons.

The literature provides a wealth of information about local
effects on N. lapillus shell shape. Shell aspect ratio variations in
relation to local wave exposure regimes were first reported by
(Cooke and Reed, 1895). The authors showed that N. lapillus on
exposed shores exhibited smaller, squatter shells with a larger
aspect ratio, whereas individuals from protected shores formed
narrower, more elongated shells. This trend was later explained
FIGURE 3 | Scatter plot of the first two shape-PCs from PCA analysis
performed on elliptic Fourier coefficients revealing the among-population variation
of outline and shape features between Nucella lapillus specimens. Confidence
intervals are shown for each origin group (ellipses with dashed linetype), and
corresponding morphospace extremes are represented as grey shapes.
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to be a response that improved fitness as smaller squatter shells
and a proportionally larger foot of exposed individuals (obvious
from relatively larger aperture sizes) conferred an advantage over
more elongated shell forms with smaller foot sizes in high wave
energy environments (Kitching and Ebling, 1967). However, the
exposed morph showed a marked disadvantage on sheltered
shores as animals of that shell form could barely retract into the
shell, making them more vulnerable to predators and desiccation
during low tide (Crothers, 1985b). Crothers (1973) found the
shell height to aperture height ratio to be a convenient proxy for
wave exposure trends for N. lapillus populations on
Pembrokeshire, UK shores and thereby quantified the
relationship between wave exposure and relative aperture size
(Crothers, 1973). However, unlike the reported wave exposure
induced shape changes, mean shape-PCs in this study showed no
relationships with aperture size (Figure 6). Likewise, we also did
not observe a change in apertural teeth expression across studied
Frontiers in Marine Science | www.frontiersin.org 8
populations which would indicate variations in wave exposure
(Crothers, 1971) or predatory pressure (Appleton and Palmer,
1988) constraints on shell deposition in the studied N. lapillus
populations. This suggests that shape variations, as explained by
shape-PC1 to shape-PC3 (over these large spatial scales),
were largely decoupled from local wave exposure and
predation gradients.

While shape variations are an excellent proxy to identify new
or changing environmental stressors in a population or species
(Marshall et al., 2015), predictions of the long term consequences
of plastic adaptions are not trivial - or to use the words of R. J.
Berry and J. H. Crothers: “Natural populations of animals rarely
behave like suspensions of inanimate matter in a frictionless fluid,
responding to and predictable by simple mathematical theory”
(Berry and Crothers, 1974). However, newly introduced stressors
and associated phenotypic adaptions always represent a trade-off
between different optima and can thus challenge an organism’s
A

B

C

FIGURE 4 | GAMM shape trend predictions of the best-supported model as expressed by (A) shape-PC1, (B) shape-PC2, and (C) shape-PC3 with selected
descriptors of sea surface temperature, AT, substrate inhibitor ratio (SIR) and normalised shell height. Significance is reported for each predictor (Significance levels:
n.s. p > 0.05, *p < 0.05, **p < 0.001, ***p < 0.0001). Colour gradients (red to blue) of significant predictor terms correspond to those in Figure 5.
TABLE 2 | GAMM summary statistics of the best supported model.

Shape-PCs Temperature Alkalinity SIR Shell height Site

edf F p edf F p edf F p edf F p edf F p

PC1 1.978 23.012 < 0.001 1.887 4.214 0.014 1.959 23.712 < 0.001 1.897 199.049 < 0.001 13.521 15.731 < 0.001
PC2 1.813 2.877 0.11 1.000 14.893 < 0.001 1.813 14.488 < 0.001 1.799 3.399 0.023 13.521 15.731 < 0.001
PC3 1.592 3.070 0.138 1.970 17.961 < 0.001 1.001 4.116 0.042 1.001 72.436 < 0.001 13.521 15.731 < 0.001
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position in an ecosystem (Ghalambor et al., 2007). Our findings
suggest that a trend towards narrower, more elongated shells can
be expected under increasing OA conditions with, perhaps,
significant implications for the predator-prey relationship on
North Atlantic rocky shores. Although shape-PCs were largely
Frontiers in Marine Science | www.frontiersin.org 9
decoupled from local wave exposure gradients, a continuing
trend towards the formation of narrower and more elongated
shells could have conceivable consequences for populations on
(extremely) exposed coasts. In particular, since global climate
change is associated with increasingly severe storm events IPCC
2014, the larger surface of elongated shells could lead to more
frequent dislodgement and, as a consequence, could make N.
lapillus populations more susceptible to predatory attacks. The
herein observed shell shape response to OA could lead to a
disintegration of the delicate balance between shape responses to
wave exposure or predatory pressure extremes with the potential
consequence of a realignment of rocky-shore community
structures. However, our results and predictions of
morphological responses to end century OA conditions should
be viewed with caution for three reasons: First, the site-specific
intra-population variability is many times larger than the average
shift in shape observed in this study (Figure 2), suggesting that
there is a fair amount of tolerance involved in the shape response
to environmental constraints. Second, a sensitivity analysis of
shell morphology to different stressors is missing, which would
be required to make robust predictions. Third, temporal and
spatial constraints of environmental data used in this study
limited fine-scale observations. While our models suggest a
remarkable sensitivity of shell shape to variations in the
carbonate system on a large geographic scale, it is not
clear if shell morphology will be more sensitive to water
chemistry or site-specific physical constraints under increasing
OA conditions.

Irrespective of the direct consequences, our results show that
changes in the carbonate system are likely to directly affect N.
lapillus shell morphology. Although calcification conditions
were, in classical terms, favourable at every sampling site, shell
formation and resulting morphology were sensitive to changes in
the SIR. Our findings uncovered a, so far unrecognised, large
scale pattern in shell morphology of the intertidal N. lapillus,
which highlights the coupling of phenotypic adaptions to
variations in the carbonate system. However, although our
findings suggest an adaptive trend in shell morphology under
increasing OA conditions, further research is required to
A

B

C

FIGURE 5 | (A) shape-PC1, (B) shape-PC2, and (C) shape-PC3 and the
best-supported model’s mean effect size plots, including sea surface
temperature, AT, substrate inhibitor ratio (SIR) and shell height. Error bars
represent the 95% CI, and the significance of either predictor is determined if
the CI does not cross the zero line (p < 0.05). Asterisks mark significant
predictors. Colour gradients (red to blue) correspond to the morphospace
extremes visualised to the left of each effect size plot.
FIGURE 6 | Correlation plot of mean aperture size vs mean shape-PCs grouped by sampling site. Error bars denote the standard deviation. The orange dashed line
represents the 1:1 correlation line.
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understand the phenotypic sensitivity to local and global
constraints, which could present an exciting new research
opportunity to understand shell formation constraints in a
changing world.
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