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Land cover classification from remote sensing images based on multi-scale 
fully convolutional network
Rui Li a, Shunyi Zheng a, Chenxi Duan b,c, Libo Wang a and Ce Zhang d,e
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Mapping and Remote Sensing, Wuhan University, Wuhan, China; dLancaster Environment Centre, Lancaster University, Lancaster, UK; eUK 
Centre for Ecology & Hydrology, Lancaster, UK

ABSTRACT
Although the Convolutional Neural Network (CNN) has shown great potential for land cover 
classification, the frequently used single-scale convolution kernel limits the scope of informa-
tion extraction. Therefore, we propose a Multi-Scale Fully Convolutional Network (MSFCN) 
with a multi-scale convolutional kernel as well as a Channel Attention Block (CAB) and 
a Global Pooling Module (GPM) in this paper to exploit discriminative representations from 
two-dimensional (2D) satellite images. Meanwhile, to explore the ability of the proposed 
MSFCN for spatio-temporal images, we expand our MSFCN to three-dimension using three- 
dimensional (3D) CNN, capable of harnessing each land cover category’s time series interac-
tion from the reshaped spatio-temporal remote sensing images. To verify the effectiveness of 
the proposed MSFCN, we conduct experiments on two spatial datasets and two spatio- 
temporal datasets. The proposed MSFCN achieves 60.366% on the WHDLD dataset and 
75.127% on the GID dataset in terms of mIoU index while the figures for two spatio- 
temporal datasets are 87.753% and 77.156%. Extensive comparative experiments and abla-
tion studies demonstrate the effectiveness of the proposed MSFCN. Code will be available at 
https://github.com/lironui/MSFCN.
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1. Introduction

Land cover classification is a foundational technology 
for land resource management, cultivated area evalua-
tion, and economic assessment, which is significant for 
homeland security and national economic stability (Li 
et al. 2021a; Zhang, Feng, and Yao 2014; Ramli and 
Tahar 2020; Qi et al. 2020). Conventionally, large-scale 
field surveys are the primary method to obtain land use 
and land cover. Although the outcomes of surveys are 
normally of high quality, the investigative procedures 
are time-consuming and labor-intensive. Meanwhile, 
the information about the geographical distribution of 
land cover is often missing (Basso and Liu 2019; Zhang 
et al. 2019a).

As a powerful Earth observation technology, 
remote sensing can capture Earth’s surface images 
via sensors on aircraft or satellites without physical 
contact (Duan, Pan, and Li 2020; Zhong et al. 2018; 
Wang et al. 2021b). Optical remote sensing is 
a significant branch of remote sensing and has 
been applied in many fields, including super- 
resolution land cover mapping (Wang et al. 
2019b), drinking water protection (Wang et al. 
2019a), and object detection (Zhang et al. 2019b). 
Scholars have increasingly focused on automatic 
land cover classification using satellite images by 

profiting from the substantial remote sensing 
images (Prins and Van Niekerk 2020; Shao, Wu, 
and Li 2021; Li et al. 2021e).

Generally, remote sensing classification models 
consist of two procedures, namely feature engineering 
and classifier training. The former aims to transform 
spatial, spectral, or temporal information into discri-
minative feature vectors. The latter is designed to train 
a general-purpose classifier to classify the feature vec-
tors into the correct category. When it comes to land 
cover classification, vegetation indices are one genre of 
frequently used features extracted from multi-spectral 
/multi-temporal images to manifest the physical prop-
erties of land cover. The Normalized Difference 
Vegetation Index (NDVI) (Tucker 1979) and Soil- 
Adjusted Vegetation Index (SAVI) (Huete 1988) high-
light vegetation. The Normalized Difference Bareness 
Index (NDBaI) (Zhao and Chen 2005) and the 
Normalized Difference bare Land Index (NBLI) (Li 
et al. 2017) emphasize bare land. The Normalized 
Difference Water Index (NDWI) (Gao 1996) and 
Modified NDWI (MNDWI) (Xu 2006) indicate 
water. Besides, the object-based approach utilizing 
geographic objects as basic units for land cover classi-
fication is another thriving area that generally reduces 
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the within-class variation and removes salt-and- 
pepper effects (Georganos et al. 2018; Matikainen 
et al. 2017).

Meanwhile, the remote sensing community has tried 
to design various classifiers from diverse perspectives 
(Wu, Gui, and Yang 2020; Dela Torre, Gao, and 
Macinnis-Ng 2021; Yang et al. 2020), from orthodox 
methods such as logistic regression (Rutherford, 
Guisan, and Zimmermann 2007), distance measure 
(Du and Chein 2001), and clustering (Maulik and 
Saha 2010), to advanced techniques including Support 
Vector Machine (SVM) (Zafari, Zurita-Milla, and 
Izquierdo-Verdiguier 2020), Random Forest (RF) 
(Tatsumi et al. 2015), and Multi-Layer Perceptron 
(MLP) (Zhang et al. 2018). Since extraction of the 
geographical distribution of land cover requires pixel- 
based image classification, precisely refined pixel fea-
tures are pivotal for these classifiers. However, the high 
dependency on manual descriptors restricts the flexibil-
ity and adaptability of these methods.

The emergence of Deep Learning (DL), which is 
powerful to capture nonlinear and hierarchical fea-
tures automatically, tackles the above deficiency to 
a great extent (Li et al. 2021c). DL has influenced 
many domains, such as Computer Vision (CV), 
Natural Language Processing (NLP), as well as 
Automatic Speech Recognition (ASR). As a typical 
classification task (Zhong et al. 2018; Shao, Wu, and 
Li 2021), a great many DL methods have been intro-
duced to land cover classification (Wang et al. 2021a). 
Compared to vegetation indices that only consider 
finite bands, DL methods can harness various infor-
mation, including periods, spectrums, and the inter-
actions between different kinds of land cover.

Zhong, Hu, and Zhou (2019) exploited temporal 
features using a one-dimensional (1D) CNN to recog-
nize the intricate seasonal dynamics of economic 
crops and lessened the dependency on hand-crafted 
feature engineering. Pelletier, Webb, and Petitjean 
(2019) proposed a temporal CNN for satellite image 
time series. They proved the significance of harnessing 
the information both in spectral dimension and tem-
poral dimension when implementing the convolu-
tions. Based on fine-tuned CNN, Tong et al. (2020) 
combined hierarchical segmentation and patch-wise 
classification for land cover classification. Specifically, 
many cutting-edge technologies used in semantic seg-
mentation, whose task is assigning each pixel with 
a specific category (Chen et al. 2020), have also been 
generalized to land cover classification (Heipke and 
Rottensteiner 2020). Inspired by the progress in the 
encoder-decoder Fully Convolutional Network (FCN) 
framework, Li et al. (2021a) improved the U-Net with 
asymmetric convolution for fine-resolution remote 
images. Meanwhile, the attention mechanism has 
also been introduced for remote sensing images (Li 
et al. 2021b, 2021d).

Even though the encoder-decoder FCN framework 
(Badrinarayanan, Kendall, and Cipolla 2017; Chen 
et al. 2018; Ronneberger, Fischer, and Brox 2015) has 
been an essential structure for land cover classification 
(Liu et al. 2020; Mohammadimanesh et al. 2019; Sang 
et al. 2019), the single-scale convolution kernel limits 
the scope of information extraction. To remedy this 
drawback, we propose a Multi-Scale Fully 
Convolutional Network based on encoder-decoder 
FCN structure to exploit both local and global features 
from satellite images. We design two branches with 
convolutional layers in different kernel sizes in each 
layer of the encoder to capture multi-scale features. In 
addition, a channel attention block and a global pool-
ing module (Ji et al. 2020) enhance channel consis-
tency and global contextual consistency.

At the same time, spatio-temporal satellite images, 
bolstered by their increasing attainability, are at the 
forefront of a comprehensive effort towards auto-
matic Earth monitoring by international agencies 
(Sainte Fare Garnot et al. 2020). However, when 
utilizing the 2D CNN to extract features from spatio- 
temporal satellite images, the temporal dimensions of 
the extracted features generated by the convolution 
layer must be averaged and devastated to a scalar, 
which collapses the time-series information con-
tained in multi-temporal images. Many studies have 
been conducted motivated by NLP’s progress to cope 
with this defect. Rußwurm and Körner (2018) 
adapted sequence encoders to represent Sentinel 2 
images’ temporal sequence and alleviated the 
demand of humdrum and cumbersome cloud- 
filtering. Interdonato et al. (2019) designed a two- 
branch architecture with an RNN branch to extract 
temporal features and a CNN branch to extract spa-
tial features. By incorporating both CNN and RNN, 
Rustowicz et al. (2019) designed a 2D U-Net + 
CLSTM model for spatio-temporal satellite images. 
Meanwhile, for embedding time-sequences, 
Transformer architecture was introduced into land 
cover classification using spatio-temporal satellite 
images by Sainte Fare Garnot et al. (2020). All these 
attempts have made encouraging progress and broa-
dened the boundaries of this field.

In the meantime, the advent of 3D CNN solves 
the dilemma mentioned above from another facet. 
Unlike traditional 2D CNN which operates on 2D 
images, 3D CNN implements convolutional opera-
tion on three dimensions, which naturally fits fea-
ture extraction from data represented in 3D 
format. Thus, 3D CNN has been utilized for 
video understanding (Wu et al. 2019), point clouds 
representation (Hamraz et al. 2019), 3D object 
detection based on Light Detection and Ranging 
(LiDAR) data (Gong et al. 2020), hyperspectral 
images classification (Li et al. 2020), and multi- 
temporal images segmentation (Ji et al. 2018). As 

GEO-SPATIAL INFORMATION SCIENCE 279



remote sensing images normally comprise much 
temporal, dynamic, or spectral information, like 
the whole crop growth cycle in the temporal 
dimension, 3D CNN is a superexcellent method 
to extract these features.

Using multi-temporal images, Ji et al. (2018) 
designed a 3D-CNN-based segmentation model 
for crop classification. As the temporal dimension 
is reserved, the model’s performance surpassed the 
2D-CNN-based methods and other traditional clas-
sifiers. However, as 3D CNN is a computationally 
intensive operation, the pixel-by-pixel segmented 
procedure requires numerous computational 
resources (Ji et al. 2018). Thus, based on the idea 
of semantic segmentation, Ji et al. (2020) proposed 
a novel 3D encoder-decoder FCN framework with 
global pooling and attention mechanism (3D FGC), 
which was able to capture feature maps from the 
whole input and improves both the accuracy and 
the efficiency.

Based on the insight and progress mentioned 
above, we extend our Multi-Scale Fully 
Convolutional Network to three-dimension based on 
3D CNN for land cover classification using spatio- 
temporal satellite images. To verify the effectiveness, 
we compare the performance of 2D MSFCN with 
SegNet (Badrinarayanan, Kendall, and Cipolla 2017), 
FC-DenseNet (Jegou et al. 2017), U-Net 
(Ronneberger, Fischer, and Brox 2015), Attention 
U-Net (Oktay et al. 2018) and FGC (Ji et al. 2020), 
and the performance of 3D MSFCN with 1D U-Net, 
2D U-Net (Ronneberger, Fischer, and Brox 2015), 3D 
U-Net (Ronneberger, Fischer, and Brox 2015), 3D 
Attention U-Net (Oktay et al. 2018), Conv-LSTM 
(Rußwurm and Körner 2018) and 3D FGC (Ji et al. 
2020). The main contributions of this paper could be 
listed as follows:

● To expand the scope of information extraction in 
the spatial domain, we designed a Multi-Scale 
Convolutional Block (MSCB), which can capture 
the input’s local and global features, respectively.

● Based on MSCB, we proposed a Multi-Scale Fully 
Convolutional Network (MSFCN) with channel 
attention block and global pooling module, and 
extend MSFCN for 3D spatio-temporal satellite 
images.

● A series of quantitative experiments on two spa-
tial datasets and two spatio-temporal datasets 
show the effectiveness of the proposed MSFCN.

This paper’s remainder is arranged as follows: In 
Section 2, taking 3D MSFCN as an example, we 
illustrate the detailed structure of the proposed fra-
mework. The experimental results are provided and 
analyzed in Section 3. Finally, in Section 4, we con-
clude the entire paper.

2. Methodology

2.1. Feature extraction using 3D CNN

3D CNN is capable of capturing spatial and temporal 
features simultaneously, and Batch Normalization 
(BN) layer (Ioffe and Szegedy 2015) is often appended 
to improve numerical stability. Thus, we consider 3D 
CNN with a BN layer as an example to elaborate on 3D 
CNN’s mechanism. Supposing that the size of input 
3D feature maps is expressed as t � h� w; cð Þ, and the 
shape of the convolution kernel is kt � kh � kwð Þ, 
where t, h, w, and c denote the dimension of time 
series, height, width, and channels. The convolution 
operations are implemented based on the convolution 
kernel and sliding windows in the shape of 
kt � kh � kwð Þ. The obtained values constitute the out-

put 3D feature maps. Another important parameter, 
stride, determines the distance of width and height 
traversed per slide of the sliding windows. 
A diagrammatic sketch with one kernel can be seen 
in Figure 1. Concretely, the operation of 3D CNN can 
be formalized as: 

xt;h;w
i;j ¼

X

m

XTi � 1

p ¼ 0

XHi � 1

q ¼ 0

XWi � 1

r ¼ 0
Wp;q;r

i;j;mx
t þ pð Þ; h þ qð Þ; w þ rð Þ

i� 1;m þ bi;j (1) 

where xt;h;w
i;j denotes the j-th feature cube at posi-

tion t; h;wð Þ in the i th layer. m means the feature 
maps generated by the i � 1ð Þ-th layer. Wp;q;r

i;j;m 

represents the column weight of the m th feature 
cube at position p; q; rð Þ. bi;j is the j th feature cube 
in the i th layer’s bias items of the filter. Ti means 
the convolution kernel along the temporal dimen-
sion of input spatio-temporal satellite 
images, while Hi and Wi respectively express the 
height and width of the kernel in the spatial 
dimension.

Then, the generated 3D feature maps xi is fed into 
the BN layer and normalized as: 

bxi ¼
xi � E xið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var xið Þ þ �

p (2) 

yi ¼ σ γibxi þ βi
� �

(3) 

where yi is the output of the BN layer. Var �ð Þ and E �ð Þ
represent the variance function and expectation of the 
input, respectively. ε is a small constant to maintain 
numerical stability. γ and β are two trainable para-
meters, and the normalized result bxi can be scaled by γ 
and shifted by β. σ �ð Þ denotes the activation function, 
which is set as ReLU in our model.

As the quality of extracted features limits the 
performance of the model and the convolution 
kernel size determines the receptive field, how to 
design the size of the convolution kernel is the core 
of the network.
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2.2. Multi-Scale Convolutional Block

Generally, the larger convolution kernel size means the 
larger receptive field and the more global vision, which 
augments the scope of areas observed in the image. 
Conversely, the decrease in the convolution kernel size 
would shrink the receptive field and obtain the local 
vision. However, both the global visual patterns and the 
local the visual patterns contain visual features. Thus, 
a fully convolutional neural network’s evident imper-
fection is the same size convolutional kernels, leading to 
a constant receptive field. As shown in Figure 2(a), the 
conventional convolutional block used in FCN usually 
contains two stacked 3D CNN with the activation func-
tion. To expand the receptive field, in MSFCN, we 
design a Multi-Scale Convolutional Block (MSCB) to 
exploit the global and local features simultaneously.

The structure of the multi-scale fully convolutional 
layer can be seen in Figure 2(b). Similarly, supposing 
the input 3D feature maps is in the shape of 
t � h� w; cð Þ, where the t, h, w, and c represent the 

time series, height, width, and channels of the input, 
respectively. The top branch of the block contains two 
stacked 3� 3� 3ð Þ convolution layers, and the recep-
tive field of two stacked 3� 3� 3ð Þ convolution layers 
are equivalent to a 5� 5� 5ð Þ convolution layer. An 
illustration in 2D format can be seen in Figure 3. Thus, 

the top branch is capable of capturing more global 
visual patterns. Meanwhile, the block’s bottom branch 
harnesses a single 3� 3� 3ð Þ convolution layer that 
exploits local visual patterns.

Subsequently, the add operation is implemented 
between the outputs of the top branch and the bottom 
branch, and obtains the feature maps with the size of 
t � h� w; ckð Þ. Finally, the extracted feature maps are 

fed into a 1� 1� 1ð Þ convolution layer with the BN 
layer to further increase the nonlinear characteristics 
and characterization capabilities of the block.

2.3. Channel attention block and global pooling 
module

In the FCN framework, the convolution operator’s out-
put is a score map, which indicates the probability of 
each class at each pixel. And to attain the final score map, 
all channels of feature maps are simply summed as: 

yn ¼ F x; ωð Þ ¼
XD

i ¼ 1;j ¼ 1;k ¼ 1
ωi;j;kxi;j;k (4) 

where ω denotes the convolution kernel. x repre-
sents the feature maps generated by the network. 
D is the set of pixel positions. And 

Figure 1. 3D convolution indicates convolution operator is implemented in three directions (i.e. two spatial directions and 
a temporal direction) sequentially. Both the input feature maps and the output feature maps are 3D tensors.
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n 2 1; 2; . . . ;Nf g, where N indicates the number of 
channels. Then the prediction probability is calcu-
lated as: 

δi ynð Þ ¼
exp ynð Þ

PK
j ¼ 1 exp yj

� � (5) 

where y denotes the output of the network, and δ 
indicates the prediction probability. The category 
with the highest probability is the final predicted 
label, deduced by Equations (4) and (5). 
Nevertheless, Equation (4) impliedly demonstrates 
that all channels share equal weights. However, the 
features generated by different stages own different 
levels of discrimination, which causes different con-
sistency in prediction.

Supposing the prediction label is y0 and that the 
corresponding true label is y1, we can modify the 
highest probability value from y0 to y1 by introducing 
a parameter α: 

�y ¼ αy ¼
α1

..

.

αN

2

6
4

3

7
5 �

y1

..

.

yN

2

6
4

3

7
5 ¼

α1ω1

..

.

αNωN

2

6
4

3

7
5�

x1

..

.

xN

2

6
4

3

7
5 (6) 

in which α ¼ Sigmoid x; wð Þ and �y is the new predic-
tion label of the network. As can be seen from 
Equation (6), the value of α refines the feature maps 
x and enhances the discriminative features as well as 
restrains the indiscriminative features. The channel 
attention block is designed based on the insight men-
tioned above (Yu et al. 2018) and is expanded to the 
3D version (Ji et al. 2020).

The CAB structure can be seen in Figure 4, whose 
input is the concatenated feature maps extracted by 
the encoder and decoder. First, a 3D global average 

Figure 2. Comparison of (a) conventional convolution block and (b) multi-scale convolution block.

Figure 3. The receptive field of two stacked (3 × 3) 
convolution layers is equivalent to a (5 × 5) convolution layer.
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pooling layer in CAB exploits the input’s global con-
text, and sequentially two 1� 1� 1ð Þ convolution 
layers with ReLU and sigmoid activation function 
adaptively realign the channel-wise dependencies. 
The weight vector generated by CAB manifests the 
relative significance between the channel-wise features 
and enhances the discriminability of features. 
Subsequently, the multiplication operation and addi-
tion operation are operated between the output vector 
and the input feature maps. Finally, the last 
1� 1� 1ð Þ convolution layer is designed to generate 

globally consistent spatio-temporal feature maps. 
Through re-modeling the channel-wise features, the 
3D Channel Attention Block (CAB) fuses the spatio- 
temporal features between the encoder and the 
decoder.

Meanwhile, context is utile information that can 
enhance segmentation and detection performance 
using deep learning (Liu, Rabinovich, and Berg 
2015). As for land cover classification, local semantic 
information contained per pixel is often equivocal. By 
taking contextual information into account, semantic 
information will be enhanced. Global average pooling 
is an effective method to capture the global contextual 
prior (Liu, Rabinovich, and Berg 2015). Based on the 
idea that a global average pooling layer can improve 
the spatio-temporal consistency on the highest level of 
the encoder (the top semantic layer), the Global 
Pooling Module (GPM) is elaborately designed (Ji 
et al. 2020), which can be seen in Figure 5. 
Meanwhile, with global spatio-temporal consistency, 
the GPM transforms the feature maps at the highest 
level of the encoder to the decoder’s corresponding 

feature maps. Like the CAB, GMP’s effect is reweight-
ing feature maps, which can also be seen as an atten-
tion mechanism.

The structure of the GMP can be seen in 
Figure 5. First, the input feature maps are fed 
into a 1� 1� 1ð Þ convolution layer. Then, a 3D 
global average pooling and a 1� 1� 1ð Þ convolu-
tion layer with a sigmoid activation function are 
attached. Finally, the multiplication operation and 
addition operation are implemented between the 
generated vector and the first convolution layer’s 
output. The final output is processed by the last 
1� 1� 1ð Þ convolution layer to acquire the deco-

der’s highest layer.

2.4. Network architecture

Based on the 3D CNN, the multi-scale convolutional 
block, the channel attention block, and the global 
pooling module, we construct the MSFCN for land 
cover classification from satellite images, as shown in 
Figure 6. For two spatio-temporal datasets, the input 
image is in t � 256� 256; c, where t ¼ 4 is the num-
ber of images along the temporal dimension and c ¼ 4 
is the number of channels. The encoder of the MSFCN 
comprises four multi-scale convolutional blocks with 
the output channels as 32, 64, 128, and 256, respec-
tively, and the number of layers and channels will be 
discussed in Section 3.6. After each multi-scale con-
volutional block, the max-pooling layer with 
1� 2� 2ð Þ kernel is applied, which reserves the tem-

poral information and condenses the spatial informa-
tion. At the highest layer of the encoder, the GPM is 
utilized to enhance the global spatio-temporal 

Figure 4. The structure of the Channel Attention Block (CAB).

Figure 5. The structure of the Global Pooling Module (GPM).
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consistency. Then, using CAB, the feature maps from 
the encoder and decoder are fused, and the output of 
each layer in the decoder is sequentially restored up to 
the input size via the transposed convolution layer 
with 1� 2� 2ð Þ kernel. After each transposed convo-
lution layer, a 3� 3� 3ð Þ convolution layer is 
attached to avoid the checkerboard pattern caused by 
the transposed convolution. In the end, the final 3D 
feature maps are fed into a t � 3� 3ð Þ convolution 
layer and a 1� 1� 1ð Þ convolution layer to coalesce 
time dimension and generate 2D segmentation maps.

Following the pioneering works (Ji et al. 2018, 
2020), we adopt the most commonly used cross- 
entropy loss function as the quantitative evaluation 
and backpropagation index to measure the disparity 
between the obtained 2D segmentation maps and 
ground truth, which is defined as: 

lossi;j ¼ �
X

k
qi;j;k log pi;j;k (7) 

loss ¼
1
N

X

i

X

j
lossi;j (8) 

where pi;j is the predicted category probability distri-
bution of pixel i; jð Þ, qi;j is the actual category prob-
ability distribution of pixel i; jð Þ, k represents the 
number of classes, and N denotes the number of 
pixels.

3. Experimental results

This section first introduces the datasets and experi-
mental settings to verify the effectiveness of MSFCN 
and then compares the performance between different 
frameworks.

3.1. Dataset

The effectiveness of 2D MSFCN is verified using 
Wuhan Dense Labeling Dataset (WHDLD) (Shao 
et al. 2020) and Gaofen Image Dataset (GID), which 
can be seen in Figures 7 and 8. The effectiveness of 3D 
MSFCN is verified using two Gaofen 2 (GF2) spatio- 
temporal satellite images (Tong et al. 2020), which can 
be seen in Figure 9.

WHDLD contains 4940 RGB images in 256 × 256 
captured by Gaofen 1 Satellite and ZY-3 Satellite over 
Wuhan urban area. By image fusion and resampling, 
the resolution of the images reaches 2 m/pixel. The 
images contained in WHDLD are labeled with six 
classes, bare soil, building, pavement, vegetation, 
road, and water.

GID contains 150 RGB images in 7200 × 6800 cap-
tured by Gaofen 2 Satellite over 60 cities in China. 
Each image covers a geographic region of 506 km2. 
The GID images are labeled with six classes, build-up 
forest, farmland, meadow, water, and others. 
However, as we do not have enough computing 
resources to cope with such extremely enormous 

Figure 6. The structure of the proposed MSFCN network.
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pixels, we just select 15 images contained in GID. The 
principle of selection is to cover the whole six classes. 
And the serial number of the chosen images will be 
released with our open-source code.

The two spatio-temporal satellite datasets that own 
four bands (red, green, blue, and near-infrared) in 4 m 
ground resolution were gathered in 2015 and 2017, 
respectively. For the 2015 dataset, there are four 

Figure 7. Examples of WHDLD images and their corresponding ground truth.

Figure 8. Examples of GID images and their corresponding ground truth.
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images collected in June, July, August, and September 
in the year 2015, and 2652 × 1417 pixels of each image. 
The 2017 dataset comprises seven images with 
2102 × 1163 pixels captured in June, July, August, 
September, October, November, and December in 
2017. Two GF2 datasets are preprocessed with quick 
atmospheric correction and geometrical rectification.

3.2. Experimental setting

To evaluate the effectiveness of 2D MSFCN, SegNet 
(Badrinarayanan, Kendall, and Cipolla 2017), FC- 
DenseNet57 (Tiramisu) (Jegou et al. 2017), U-Net 
(Ronneberger, Fischer, and Brox 2015), Attention 
U-Net (U-NetAtt) (Oktay et al. 2018) and FGC (Ji 
et al. 2020) are taken into comparison. And the per-
formance of 3D MSFCN are compared with 1D 
U-Net, 2D U-Net (Ronneberger, Fischer, and Brox 
2015), 3D U-Net (Ronneberger, Fischer, and Brox 
2015), 3D Attention U-Net (Oktay et al. 2018), Conv- 
LSTM (Rußwurm and Körner 2018) and 3D FGC (Ji 
et al. 2020).

All of the models are implemented with PyTorch, 
and the optimizer is set as Adam with a 0.0001 learn-
ing rate. The batch size is set as 16 for WHDLD and 
GID, and 4 for GF2 spatio-temporal satellite images. 
All the experiments are implemented on the platform 
with an NVIDIA GeForce RTX 2080ti GPU, an Intel i9 
9900KF CPU, and 32 GB RAM.

For WHDLD, we randomly select 60% images as 
the training set, 20% images as the validation set, and 
the rest 20% images as the test set. For GID, we 
separately partition each image into non-overlap 
patch sets with the size of 256 × 256 and just discard 
the pixels on the edges, which cannot be divisible by 

256. Thus, 10, 920 patches are obtained. We randomly 
selected 60% patches as the training set, 20% patches 
as the validation set, and the rest 20% patches as the 
test set. And the training sets of WHDLD and GID are 
augmented by horizontal axis flipping, vertical axis 
flipping, color enhancement, Gaussian blur, and ran-
dom noise. When training the network, if the accuracy 
in the validation set is no longer increasing for 10 
epochs, we would terminate the training process 
early to restrain overfitting. The number of training, 
validation, and test pixels per class for WHDLD and 
GID is provided in Table 1.

For two spatio-temporal satellite images, the sam-
ples in each category are severely imbalanced. Thus, 
we selected a portion of the images that contain sam-
ples of all the classes to train the network, indicated in 
red rectangles in Figure 9. Since pixels in these two 
datasets are not abundant, we enlarge the images in 
the 2015 dataset to the size of 2816 × 1536 and the 
images in the 2017 dataset to the size of 2304 × 1280 by 
zero-padding and then segment each image into non- 
overlap patch sets in the size of 256 × 256 to evaluate 

Figure 9. GF2 datasets gathered in (a) 2015, and (b) 2017. Each dataset owns four crop species labeled in different colors, and 
black pixels represent label information is absent. Patches indicated in red rectangles were utilized to train the network and the 
remainder to prediction.

Table 1. The samples in WHDLD and GID datasets for each 
category for training, validation, and test.

Dataset Category Train Val Test

WHDLD bare 7, 746, 403 2, 475, 482 2, 854, 410
building 21, 848, 819 7, 135, 568 6, 917, 771
pavement 22, 842, 445 7, 671, 979 6, 782, 834
road 8, 225, 161 2, 850, 179 2, 869, 957
vegetable 87, 444, 443 28, 505, 640 28, 859, 223
water 46, 141, 433 16, 110, 720 16, 465, 373

GID others 125, 858, 447 40, 426, 710 40, 061, 365
built-up 49, 528, 719 16, 603, 346 17, 203, 079
farmland 125, 542, 298 41, 351, 598 40, 884, 984
forest 37, 555, 494 12, 302, 122 13, 716, 761
meadow 25, 657, 841 9, 335, 581 8, 437, 873
water 65, 249, 073 23, 111, 267 22, 826, 562
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prediction accuracy. The selected portion for training 
is also set as zero to avoid data leakage. The number of 
training and test pixels per class is provided in Table 2. 
Each model has trained 100 epochs on the training set 
and then verified on the test set.

For each dataset, the Overall Accuracy (OA), 
Average Accuracy (AA), Kappa coefficient (K), mean 
Intersection over Union (mIoU), Frequency Weighted 
Intersection over Union (FWIoU), and F1-score (F1) 
are adopted as the evaluation indexes. Given the pre-
dicted segmentation maps and ground truth, the IoU 
indicates their intersection size divided by their union 
size. The mIoU averages the IoU of every category, 
and the FWIoU weights the IoU of each category by 
frequency. We select mIoU as the primary indicator, 
as it reflects both the overall accuracy and the consis-
tency degree and is becoming a frequently-used indi-
cator for land cover segmentation (Li et al. 2021b, 
2021d).

3.3. Results on WHDLD and GID

The experimental results of different methods on 
WHDLD and GID are demonstrated in Table 3. The 
performance of the proposed MSFCN transcends 
other algorithms in all quantitative evaluation indexes. 

For WHDLD, the proposed MSFCN brings near 3% 
improvements both on mIoU and F1-score compared 
with FGC. And for the GID dataset, the gains are more 
than 3% in mIoU and more than 2% in F1-score, 
respectively.

Table 4 summarizes the per class F1-score perfor-
mance of the different methods for WHDLD and GID. 
The proposed MSFCN obtains the best performance 
in most classes on WHDLD and whole classes on GID. 
Meanwhile, we investigate the confusion between each 
pair of categories, and we report the confusion matrix 
by heat maps for each competing method in Figure 10. 
The more visible diagonal structure (the dark blue 
blocks concentrated on the diagonal) indicates the 
more powerful capacity of distinguishing between 
classes. And the diagonal structure of MSFCN is 
more distinct than others, which proves our frame-
work’s superiority. Some visual results generated by 
our method and comparisons are provided in 
Figure 11.

The number of parameters and the calculations’ 
consumptions are also significant to assess 
a framework’s merit. The comparison of parameters 
and computational complexity between different algo-
rithms are reported in Table 5, where “M” is the 
abbreviation of million, the unit of parameter number, 

Table 2. The samples in 2015 and 2017 datasets for each category for training and test.
Dataset Category Train Test Dataset Vategory Train Test

2015 rice 253, 286 1, 069, 586 2017 rice 93, 931 356, 085
corn 198, 585 1, 064, 487 corn 320, 895 1, 206, 244
sorghum 102, 649 193, 686 grass 15, 140 63, 117
tree 17, 410 57, 677 tree 3941 7787

Table 3. The experimental results on WHDLD and GID.
Dataset Method OA AA K mIoU FWIoU F1

WHDLD SegNet 80.229 63.787 71.403 52.940 68.876 66.529
Tiramisu 82.188 70.712 74.903 58.167 72.243 71.276
U-Net 81.830 67.724 74.422 55.706 72.450 68.567
U-NetAtt 82.602 69.738 75.484 56.918 73.474 69.622
FGC 82.975 68.855 75.927 57.368 73.540 70.274
MSFCN 84.168 72.081 77.558 60.366 74.892 73.031

GID SegNet 80.035 82.396 74.612 70.962 67.420 82.290
Tiramisu 79.467 84.008 74.377 69.032 65.627 80.716
U-Net 78.992 81.115 73.295 69.417 65.936 81.326
U-NetAtt 80.919 83.838 75.878 70.930 68.539 82.511
FGC 81.180 84.716 76.270 72.067 68.859 83.240
MSFCN 83.718 85.544 79.353 75.127 72.688 85.378

Table 4. Per class F1-score performance on WHDLD and GID.
Dataset Method bare building pavement road vegetable water

WHDLD SegNet 47.682 63.253 51.466 54.649 86.473 95.649
Tiramisu 50.313 68.918 53.576 70.047 88.206 96.598
U-Net 43.097 70.752 52.609 58.668 89.185 97.089
U-NetAtt 47.974 72.736 48.942 60.576 89.994 97.511
FGC 50.282 72.642 53.842 57.931 89.651 97.294
MSFCN 52.178 74.499 55.177 68.797 90.024 97.511

GID SegNet 63.451 79.085 83.510 89.241 84.962 93.493
Tiramisu 57.062 79.007 85.436 87.068 83.274 92.449
U-Net 63.351 80.585 81.564 87.768 82.996 91.692
U-NetAtt 67.123 81.523 84.569 86.955 82.513 92.381
FGC 66.810 81.957 84.101 89.570 84.840 92.165
MSFCN 71.536 83.442 86.907 90.332 85.752 94.303
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and “G” is the abbreviation of Gillion 
(thousand million), the unit of floating point opera-
tions. And the comparison demonstrates that the 
design of MSFCN does not bring in redundant para-
meters or lead to high computational complexity.

3.4. Results on 2015 and 2017 datasets

To train the network, the inputs of the 1D U-Net are 
reshaped into ct � 65; 536ð Þ tensors, and the inputs of 
the 2D U-Net are reshaped into ct � 256� 256ð Þ, 
while the inputs of the Conv-LSTM, 3D U-Net, 3D 
FGC, 3D U-NetAtt and 3D MSFCN are 
c� t � 256� 256ð Þ tensors, where c and t denote the 

number of spectral channels and time series, 
respectively.

The experimental results with the different meth-
ods for two datasets are demonstrated in Table 6. Since 
1D CNN’s operation destroys both the spatial and 

temporal dimensions, 1D U-Net’s performance is 
worst. As 2D CNN’s process ruins the temporal 
dimension when extracting spatio-temporal features, 
the models based on 3D CNN dramatically outper-
form the models based on 2D CNN, which promi-
nently demonstrates the superiority of 3D CNN. The 
performance of Conv-LSTM transcends 2D-based 
models, as the information contained in the temporal 
dimension is taken into consideration. Benefitting 
from the utilization of attention mechanisms, the 3D 
U-NetAtt performs better than 3D U-Net.

Similarly, FGC’s performance exceeds U-Net due to 
the consistency enhanced by CAB and GPM. Our 
proposed MSFCN obtains the state-of-the-art mIoU 
on two datasets, as the well-designed multi-scale con-
volutional blocks capture both the global and local 
features. Table 7 reports the per class F1-score perfor-
mance of the different methods for the 2015 dataset 
and 2017 dataset. The proposed MSFCN obtains the 
best performance in whole classes on the 2015 dataset 

Figure 10. Heat maps of different methods on (a) WHDLD and (b) GID.
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and most classes on the 2017 dataset. The confusion 
matrix reported by heat maps for each competing 
method is provided in Figure 12. And Figure 13 
demonstrates the segmentation maps on two datasets. 
The first three rows are from the 2015 dataset, and the 

remainder is from the 2017 dataset. Taking the fourth 
column as an example, the proposed MSFCN differ-
entiates corn (green) and grass (yellow) better than 

Figure 11. Land cover classification results of the method proposed and comparisons on (a) WHDLD and (b) GID.

Table 5. The comparison of parameters and computational 
complexity for 2D datasets, where “M” is the abbreviation 
of million, the unit of parameter number, and “G” is the 
abbreviation of Gillion (thousand million), the unit of floating 
point operations.

Method input shape Parameters (M) Complexity (G)

SegNet 3 × 256 × 256 1.93 9.27
Tiramisu 29.45 40.29
U-Net 1.38 11.92
U-NetAtt 2.17 12.75
FGC 2.19 8.4
MSFCN 2.67 9.66

Table 6. The experimental results using different methods on 2015 dataset and 2017 dataset.
Dataset Method OA AA K mIoU FWIoU F1

2015 1D U-Net 92.302 75.017 87.339 66.745 86.581 76.114
2D U-Net 91.883 85.710 86.788 74.131 86.174 84.117
3D U-Net 96.620 85.819 94.391 82.151 93.517 88.112
3D U-NetAtt 96.272 90.662 93.876 83.441 93.143 88.947
Conv-LSTM 96.682 90.314 94.523 84.618 93.770 91.123
3D FGC 96.272 90.662 93.876 83.441 93.143 90.380
3D MSFCN 97.784 93.275 96.339 87.753 95.848 92.971

2017 1D U-Net 95.709 74.331 89.365 66.091 92.065 75.924
2D U-Net 96.369 78.015 90.933 71.873 93.491 81.449
3D U-Net 96.662 81.836 91.851 74.375 94.252 83.497
3D U-NetAtt 97.102 82.320 93.020 75.505 94.904 84.380
Conv-LSTM 96.414 81.379 91.117 75.026 93.456 84.156
3D FGC 97.083 82.052 92.841 75.387 94.767 84.311
3D MSFCN 97.132 85.088 93.039 77.156 94.880 86.018

Table 7. Per class F1-score performance on 2015 dataset and 
2017 dataset.

Dataset Method rice corn sorghum tree

2015 1D U-Net 97.743 92.968 75.965 37.781
2D U-Net 97.301 92.321 72.225 74.623
3D U-Net 98.476 95.780 82.997 75.194
3D U-NetAtt 98.369 97.055 92.721 67.642
Conv-LSTM 98.733 97.154 89.791 78.813
3D FGC 98.670 96.839 87.997 78.013
3D MSFCN 99.184 98.203 94.317 80.180

2017 1D U-Net 96.582 97.671 58.544 50.899
2D U-Net 97.226 97.864 65.230 65.476
3D U-Net 97.868 98.115 67.790 70.215
3D U-NetAtt 97.752 98.413 74.264 67.091
Conv-LSTM 96.643 97.940 65.798 76.244
3D FGC 97.861 98.335 72.562 68.485
3D MSFCN 98.236 98.586 77.660 69.589
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Figure 12. Heat maps of different methods on (a) 2015 and (b) 2017 datasets.

Figure 13. Land cover classification results of the method proposed and comparisons on the 2015 dataset and 2017 dataset, 
where the first three rows are from the 2015 dataset, and the remainder is from the 2017 dataset.
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other models. Table 8 provides the number of 
parameters and the consumption of calculation, 
which illustrates the complexity of the proposed 
MSFCN is not unacceptable.

3.5. Effectiveness of the Multi-Scale 
Convolutional Block and attention mechanisms

We verified the effectiveness of the multi-scale con-
volutional block and attention mechanisms in this 
section. Concretely, we analyzed the proposed 
MSFCN without Multi-Scale Convolutional Block 
(MSFB), Channel Attention Block (CAB), and Global 
Pooling Module (GPM) both on WHDLD and GID. 
The results are shown in Table 9.

The 3D U-Net obtains mIoU of 55.706% and 69.417% 
on WHDLD and GID, respectively. By utilizing multi- 
scale convolutional blocks, the mIoUs reach 57.098%, 
and 71.992%. And the introduction of channel attention 
block and global pooling module brings 1.473%/1.510% 
for WHDLD and 1.680%/1.679% for GID improvements 
on mIoU, respectively. The mIoUs are further improved 
to 60.366% and 75.127% when all blocks are introduced.

3.6. Investigation about the number of layers and 
channels

The number of layers and channels are two vital para-
meters that impact the model’s performance and deter-
mine the computational complexity. Thus, it is 
worthwhile to investigate the influence of the number 
of layers and channels.

Therefore, we implemented experiments to inquire 
about the effect caused by the number of layers. 
Concretely, we design an MSFCN with 3 layers 
(MSFCN3) and an MSFCN with 5 layers (MSFCN5) 
and compare their performance with the MSFCN with 
the proposed 4 layers MSFCN (MSFCN4). As finite 
layers limit the capacity of representations, the perfor-
mance of MSFCN3 is significantly weaker than 
MSFCN4. Specifically, without enormous increases in 
the parameters and computational complexity, 
MSFCN4 surpasses MSFCN3 more than 5% on mIoU, 
seen in Table 10. However, notwithstanding the certain 
improvements boosted by MSFCN5, the number of para-
meters of MSFCN5 is four times more than MSFCN4’s 
(Table 11), which is not an efficient option.

Besides, we designed experiments to research the 
impact caused by the number of channels. Specifically, 
we designed a narrow MSFCN (MSFCNN) with [16, 32, 
64, 128] channels, and a wide MSFCN (MSFCNW) with 
[64, 128, 256, 512] channels, and compare their perfor-
mance with the proposed MSFCN with [32, 64, 128, 256] 
channels. The results in Table 10 show that the perfor-
mance of MSFCN surpasses MSFCNN near 5% on 
mIoU. Meanwhile, with five times on parameters and 
computational complexity, MSFCNW just brings nearly 
a 1% improvement. Based on the above experiments, we 
can conclude that the proposed MSFCN delicately bal-
ances the performance and complexity.

4. Conclusions

In this paper, to implement land cover classification 
using satellite images, we propose a Multi-Scale Fully 
Convolutional Network (MSFCN). Firstly, multi-scale 
convolutional blocks are elaborately designed to expand 
the scope of information extraction in the spatial 
domain, capturing both the satellite images’ local and 

Table 8. The comparison of parameters and computational 
complexity for 3D datasets, where “M” is the abbreviation 
of million, the unit of parameter number, and “G” is the 
abbreviation of Gillion (thousand million), the unit of floating 
point operations.

Method input shape Parameters (M) Complexity (G)

1D U-Net 16 × 65, 536 3.74 24.16
2D U-Net 16 × 256 × 256 10.86 14.18
3D U-Net 4 × 4 × 256 × 256 4.87 74.69
3D U-NetAtt 5.67 121.74
Conv-LSTM 0.30 77.31
3D FGC 5.32 78.51
3D MSFCN 6.58 91.46

Table 9. The effectiveness of the Multi-Scale Convolutional 
Block and attention mechanisms on WHDLD and GID.

Dataset Method OA AA K mIoU FWIoU F1

WHDLD U-Net 81.830 67.724 74.422 55.706 72.450 68.567
MSFB 82.708 68.301 75.459 57.098 73.119 69.941
MSFB 

+CAB
83.084 70.411 76.038 58.571 73.547 71.299

MSFB 
+GPM

83.433 70.214 76.608 58.608 74.347 71.003

MSFCN 84.168 72.081 77.558 60.366 74.892 73.031
GID U-Net 78.992 81.115 73.295 69.417 65.936 81.326

MSFB 81.579 83.429 76.620 71.992 69.715 83.276
MSFB 

+CAB
82.675 84.693 78.111 73.672 70.987 84.321

MSFB 
+GPM

82.891 84.136 78.302 73.671 71.575 84.453

MSFCN 83.718 85.544 79.353 75.127 72.688 85.378

Table 10. The comparison between the number of layers and 
the number of channels on the GID dataset.

Factor Method OA AA K mIoU FWIoU F1

Layers MSFCN3 79.513 80.862 74.178 69.858 67.243 81.723
MSFCN4 83.718 85.544 79.353 75.127 72.688 85.378
MSFCN5 84.449 86.554 80.300 76.042 73.843 86.010

Channels MSFCNN 80.218 83.652 70.530 70.530 67.529 82.104
MSFCN 83.718 85.544 79.353 75.127 72.688 85.378
MSFCNW 84.352 86.966 80.230 75.669 73.365 85.733

Table 11. The comparison of parameters and computational 
complexity for variants of MSFCN, where “M” is the abbrevia-
tion of million, the unit of parameter number, and “G” is the 
abbreviation of Gillion (thousand million), the unit of floating 
point operations.

Method input shape Parameters (M) Complexity (G)

MSFCN3 3 × 256 × 256 2.52 6.77
MSFCN4 2.67 9.66
MSFCN5 10.73 12.55
MSFCNN 3 × 256 × 256 0.67 2.46
MSFCN 2.67 9.66
MSFCNW 10.65 38.24
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global information. Secondly, a channel attention block 
and a global pooling module enhance channel consis-
tency and global contextual consistency. Thirdly, we 
extend MSFCN to 3D for spatio-temporal satellite 
images based on 3D CNN to replace 2D FCN, which 
adequately utilizes each land cover class’s time series 
interaction on the temporal dimension. Extensive experi-
ments demonstrate that the proposed MSFCN, with the 
performance and complexity well balanced, is not only 
comparative with the baseline on spatial images but also 
effective on spatio-temporal images. And experiment 
results also show that the 3D CNN is significantly super-
ior to 2D CNN on land cover classification for spatio- 
temporal images.

Our future directions include two major aspects: the 
first one is to construct a more complex scenario with 
easily-confused land covers to further verify the effec-
tiveness of the proposed MSFCN; the second one is to 
explore the more elaborate structure such as 3D-ResNet 
for land cover classification of spatio-temporal images to 
enhance the representation capacity of the network, 
thereby better distinguishing the easily confusing targets.

Disclosure statement

No potential conflict of interest was reported by the 
author(s).

Funding

This work is supported by the National Natural Science 
Foundation of China [grant number 41671452].

Notes on contributors

Rui Li is currently pursuing a master’s degree at Wuhan 
University. His research interests include semantic segmen-
tation, hyperspectral image classification, and deep learning.

Shunyi Zheng received the Post-Doctorate from Wuhan 
University in 2002 and is currently a Professor there. His 
research interests include remote sensing data processing, 
digital photogrammetry, and three-dimensional reconstruc-
tion. Prof. Zheng received the First Prize for Scientific and 
Technological Progress in Surveying and Mapping, China, 
in 2012 and 2019.

Chenxi Duan is currently pursuing a Ph.D. degree in the 
Faculty of Geo-Information Science and Earth Observation 
(ITC) at the University of Twente. Her research interests 
include remote sensing image processing, cloud removal, 
and numerical optimization.

Libo Wang is currently pursuing a Ph.D. degree at Wuhan 
University. His research interests include computer vision 
and remote sensing image analysis.

Ce Zhang received a Ph.D. Degree in Geography from 
Lancaster Environment Centre, Lancaster University, U. 
K. in 2018. He was the recipient of a prestigious European 
Union (EU) Erasmus Mundus Scholarship for a European 
Joint MSc programme between the University of Twente 

(The Netherlands) and the University of Southampton (U. 
K.). Dr. Zhang is currently a Lecturer in Geospatial Data 
Science at the Centre of Excellence in Environmental Data 
Science (CEEDS), jointly venture between Lancaster 
University and UK Centre for Ecology & Hydrology 
(UKCEH). His major research interests include geospatial 
artificial intelligence, machine learning, deep learning, and 
remotely sensed image analysis.

ORCID

Rui Li http://orcid.org/0000-0001-7858-3160
Shunyi Zheng http://orcid.org/0000-0001-5594-3493
Chenxi Duan http://orcid.org/0000-0003-0056-3295
Libo Wang http://orcid.org/0000-0001-8096-6531
Ce Zhang http://orcid.org/0000-0001-5100-3584

Data availability statement

The data used to support the findings of this study are 
included within the article.
WHDLD:https://sites.google.com/view/zhouwx/dataset? 
authuser=0#h.p_ebsAS1Bikmkd
GID:https://x-ytong.github.io/project/GID.html
2015&2017:http://gpcv.whu.edu.cn/data/3DFGC_pages.html

References

Badrinarayanan, V., A. Kendall, and R. Cipolla. 2017. 
“SegNet: A Deep Convolutional Encoder-Decoder 
Architecture for Image Segmentation.” IEEE Transactions 
on Pattern Analysis and Machine Intelligence 39 (12): 
2481–2495. doi:10.1109/TPAMI.2016.2644615.

Basso, B., and L. Liu. 2019. “Seasonal Crop Yield Forecast: 
Methods, Applications, and Accuracies.” In Advances in 
Agronomy, 201–255. Cambridge, MA: Elsevier.

Chen, L.-C., Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. 
2018. “Encoder-Decoder with Atrous Separable 
Convolution for Semantic Image Segmentation.” 15th 
European Conference on Computer Vision (ECCV), 
Munich, Germany, September 8–14.

Chen, L., J. Liu, H. Li, W. Zhan, B. Zhou, and Q. Li. 2020. 
“Dual Context Prior and Refined Prediction for Semantic 
Segmentation.” Geo-Spatial Information Science 1–13. 
doi:10.1080/10095020.2020.1785957.

Dela Torre, D.M.G., J. Gao, and C. Macinnis-Ng. 2021. 
“Remote Sensing-based Estimation of Rice Yields 
Using Various Models: A Critical Review.” Geo- 
spatial Information Science 1–24. doi:10.1080/ 
10095020.2021.1936656.

Du, Q., and I.C. Chein. 2001. “A Linear Constrained 
Distance-based Discriminant Analysis for Hyperspectral 
Image Classification.” Pattern Recognition 34 (2): 
361–373. doi:10.1016/S0031-3203(99)00215-0.

Duan, C., J. Pan, and R. Li. 2020. “Thick Cloud Removal of 
Remote Sensing Images Using Temporal Smoothness and 
Sparsity Regularized Tensor Optimization.” Remote 
Sensing 12 (20): 3446(3426). doi:10.3390/rs12203446.

Gao, B.-C. 1996. “NDWI—A Normalized Difference Water 
Index for Remote Sensing of Vegetation Liquid Water 
from Space.” Remote Sensing of Environment 58 (3): 
257–266. doi:10.1016/S0034-4257(96)00067-3.

Georganos, S., T. Grippa, S. Vanhuysse, M. Lennert, 
M. Shimoni, and E. Wolff. 2018. “Very High Resolution 
Object-Based Land Use-Land Cover Urban Classification 

292 R. LI ET AL.

https://sites.google.com/view/zhouwx/dataset?authuser=0#h.p_ebsAS1Bikmkd
https://sites.google.com/view/zhouwx/dataset?authuser=0#h.p_ebsAS1Bikmkd
https://x-ytong.github.io/project/GID.html
http://gpcv.whu.edu.cn/data/3DFGC_pages.html
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1080/10095020.2020.1785957
https://doi.org/10.1080/10095020.2021.1936656
https://doi.org/10.1080/10095020.2021.1936656
https://doi.org/10.1016/S0031-3203(99)00215-0
https://doi.org/10.3390/rs12203446
https://doi.org/10.1016/S0034-4257(96)00067-3


Using Extreme Gradient Boosting.” IEEE Geoscience and 
Remote Sensing Letters 15 (4): 607–611. doi:10.1109/ 
LGRS.2018.2803259.

Gong, Z., H. Lin, D. Zhang, Z. Luo, J. Zelek, Y. Chen, 
A. Nurunnabi, C. Wang, and J. Li. 2020. “A 
Frustum-based Probabilistic Framework for 3D Object 
Detection by Fusion of LiDAR and Camera Data.” 
ISPRS Journal of Photogrammetry and Remote Sensing 
159: 90–100. doi:10.1016/j.isprsjprs.2019.10.015.

Hamraz, H., N.B. Jacobs, M.A. Contreras, and C.H. Clark. 
2019. “Deep Learning for Conifer/deciduous 
Classification of Airborne LiDAR 3D Point Clouds 
Representing Individual Trees.” ISPRS Journal of 
Photogrammetry and Remote Sensing 158: 219–230. 
doi:10.1016/j.isprsjprs.2019.10.011.

Heipke, C., and F. Rottensteiner. 2020. “Deep Learning for 
Geometric and Semantic Tasks in Photogrammetry and 
Remote Sensing.” Geo-spatial Information Science 23 (1): 
10–19. doi:10.1080/10095020.2020.1718003.

Huete, A. 1988. “A Soil-adjusted Vegetation Index (SAVI). 
Remote Sensing of Environment.” Remote Sensing of 
Environment 25: 295–309. doi:10.1016/0034-4257(88) 
90106-X.

Interdonato, R., D. Ienco, R. Gaetano, and K. Ose. 2019. 
“DuPLO: A DUal View Point Deep Learning 
Architecture for Time Series classificatiOn.” ISPRS 
Journal of Photogrammetry and Remote Sensing 149: 
91–104. doi:10.1016/j.isprsjprs.2019.01.011.

Ioffe, S., and C. Szegedy. 2015. “Batch Normalization: 
Accelerating Deep Network Training by Reducing 
Internal Covariate Shift.” arXiv Preprint arXi 
v:1502.03167.

Jegou, S., M. Drozdzal, D. Vazquez, A. Romero, and 
Y. Bengio. 2017. “The One Hundred Layers Tiramisu: 
Fully Convolutional DenseNets for Semantic 
Segmentation.” 2017 IEEE Conference on Computer 
Vision and Pattern Recognition: Workshops (CVPRW), 
Loa Alamitos, CA, July 21–26.

Ji, S., C. Zhang, A. Xu, Y. Shi, and Y. Duan. 2018. “3D 
Convolutional Neural Networks for Crop Classification 
with Multi-temporal Remote Sensing Images.” Remote 
Sensing 10 (1): 75. doi:10.3390/rs10010075.

Ji, S., Z. Zhang, C. Zhang, S. Wei, M. Lu, and Y. Duan. 2020. 
“Learning Discriminative Spatiotemporal Features for 
Precise Crop Classification from Multi-temporal Satellite 
Images.” International Journal of Remote Sensing 41 (8): 
3162–3174. doi:10.1080/01431161.2019.1699973.

Li, H., C. Wang, C. Zhong, A. Su, C. Xiong, J. Wang, and 
J. Liu. 2017. “Mapping Urban Bare Land Automatically 
from Landsat Imagery with a Simple Index.” Remote 
Sensing 9 (3): 249. doi:10.3390/rs9030249.

Li, R., C. Duan, S. Zheng, C. Zhang, and P.M. Atkinson. 2021a. 
“MACU-Net for Semantic Segmentation of Fine-Resolution 
Remotely Sensed Images.” IEEE Geoscience and Remote 
Sensing Letters. doi:10.1109/LGRS.2021.3052886.

Li, R., S. Zheng, C. Duan, J. Su, and C. Zhang. 2021b. 
“Multistage Attention ResU-Net for Semantic 
Segmentation of Fine-Resolution Remote Sensing 
Images.” IEEE Geoscience and Remote Sensing Letters. 
doi:10.1109/LGRS.2021.3063381.

Li, R., S. Zheng, C. Duan, Y. Yang, and X. Wang. 2020. 
“Classification of Hyperspectral Image Based on 
Double-Branch Dual-Attention Mechanism Network.” 
Remote Sensing 12 (3): 582. doi:10.3390/rs12030582.

Li, R., S. Zheng, C. Zhang, C. Duan, J. Su, L. Wang, 
and P.M. Atkinson. 2021d. “Multiattention Network 
for Semantic Segmentation of Fine-Resolution 

Remote Sensing Images.” IEEE Transactions on 
Geoscience and Remote Sensing. doi:10.1109/ 
TGRS.2021.3093977.

Li, R., S. Zheng, C. Zhang, C. Duan, L. Wang, and 
P.M. Atkinson. 2021c. “ABCNet: Attentive Bilateral 
Contextual Network for Efficient Semantic 
Segmentation of Fine-Resolution Remotely Sensed 
Imagery.” ISPRS Journal of Photogrammetry and Remote 
Sensing 181: 84–98. doi:10.1016/j.isprsjprs.2021.09.005.

Li, Z., L. Jiao, B. Zhang, G. Xu, and J. Liu. 2021e. 
“Understanding the Pattern and Mechanism of Spatial 
Concentration of Urban Land Use, Population and 
Economic Activities: A Case Study in Wuhan, China.” 
Geo-spatial Information Science 1–17. doi:10.1080/ 
10095020.2021.1978276.

Liu, Q., M. Kampffmeyer, R. Jenssen, and A.-B. Salberg. 
2020. “Dense Dilated Convolutions’ Merging Network 
for Land Cover Classification.” IEEE Transactions on 
Geoscience and Remote Sensing 58 (9): 6309–6320. 
doi:10.1109/TGRS.2020.2976658.

Liu, W., A. Rabinovich, and A.C. Berg. 2015. “Parsenet: 
Looking Wider to See Better.” arXiv Preprint 
arXiv:1506.04579.

Matikainen, L., K. Karila, J. Hyyppa, P. Litkey, E. Puttonen, 
and E. Ahokas. 2017. “Object-based Analysis of 
Multispectral Airborne Laser Scanner Data for Land 
Cover Classification and Map Updating.” ISPRS Journal 
of Photogrammetry and Remote Sensing 128: 298–313. 
doi:10.1016/j.isprsjprs.2017.04.005.

Maulik, U., and I. Saha. 2010. “Automatic Fuzzy Clustering 
Using Modified Differential Evolution for Image 
Classification.” IEEE Transactions on Geoscience and 
Remote Sensing 48 (9): 3503–3510. doi:10.1109/ 
TGRS.2010.2047020.

Mohammadimanesh, F., B. Salehi, M. Mahdianpari, E. Gill, 
and M. Molinier. 2019. “A New Fully Convolutional Neural 
Network for Semantic Segmentation of Polarimetric SAR 
Imagery in Complex Land Cover Ecosystem.” ISPRS Journal 
of Photogrammetry and Remote Sensing 151: 223–236. 
doi:10.1016/j.isprsjprs.2019.03.015.

Oktay, O., J. Schlemper, L.L. Folgoc, M. Lee, M. Heinrich, 
K. Misawa, K. Mori, S. McDonagh, N.Y. Hammerla, and 
B. Kainz. 2018. “Attention U-net: Learning Where to 
Look for the Pancreas.” arXiv Preprint arXiv:1804.03999.

Pelletier, C., G.I. Webb, and F. Petitjean. 2019. “Temporal 
Convolutional Neural Network for the Classification of 
Satellite Image Time Series.” Remote Sensing 11 (5): 523. 
doi:10.3390/rs11050523.

Prins, A.J., and A. Van Niekerk. 2020. “Crop Type Mapping 
Using LiDAR, Sentinel-2 and Aerial Imagery with 
Machine Learning Algorithms.” Geo-Spatial Information 
Science 1–13. doi:10.1080/10095020.2020.1782776.

Qi, Y., S. Chodron Drolma, X. Zhang, J. Liang, H. Jiang, 
J. Xu, and T. Ni. 2020. “An Investigation of the Visual 
Features of Urban Street Vitality Using a Convolutional 
Neural Network.” Geo-spatial Information Science 23 (4): 
341–351. doi:10.1080/10095020.2020.1847002.

Ramli, M.F., and K.N. Tahar. 2020. “Homogeneous Tree 
Height Derivation from Tree Crown Delineation Using 
Seeded Region Growing (SRG) Segmentation.” Geo- 
spatial Information Science 23 (3): 195–208. doi:10.1080/ 
10095020.2020.1805366.

Ronneberger, O., P. Fischer, and T. Brox. 2015. “U-Net: 
Convolutional Networks for Biomedical Image 
Segmentation.” Medical Image Computing and Computer- 
Assisted Intervention - MICCAI 2015. 18th International 
Conference, Munich, Germany, October 5–9.

GEO-SPATIAL INFORMATION SCIENCE 293

https://doi.org/10.1109/LGRS.2018.2803259
https://doi.org/10.1109/LGRS.2018.2803259
https://doi.org/10.1016/j.isprsjprs.2019.10.015
https://doi.org/10.1016/j.isprsjprs.2019.10.011
https://doi.org/10.1080/10095020.2020.1718003
https://doi.org/10.1016/0034-4257(88)90106-X
https://doi.org/10.1016/0034-4257(88)90106-X
https://doi.org/10.1016/j.isprsjprs.2019.01.011
https://doi.org/10.3390/rs10010075
https://doi.org/10.1080/01431161.2019.1699973
https://doi.org/10.3390/rs9030249
https://doi.org/10.1109/LGRS.2021.3052886
https://doi.org/10.1109/LGRS.2021.3063381
https://doi.org/10.3390/rs12030582
https://doi.org/10.1109/TGRS.2021.3093977
https://doi.org/10.1109/TGRS.2021.3093977
https://doi.org/10.1016/j.isprsjprs.2021.09.005
https://doi.org/10.1080/10095020.2021.1978276
https://doi.org/10.1080/10095020.2021.1978276
https://doi.org/10.1109/TGRS.2020.2976658
https://doi.org/10.1016/j.isprsjprs.2017.04.005
https://doi.org/10.1109/TGRS.2010.2047020
https://doi.org/10.1109/TGRS.2010.2047020
https://doi.org/10.1016/j.isprsjprs.2019.03.015
https://doi.org/10.3390/rs11050523
https://doi.org/10.1080/10095020.2020.1782776
https://doi.org/10.1080/10095020.2020.1847002
https://doi.org/10.1080/10095020.2020.1805366
https://doi.org/10.1080/10095020.2020.1805366


Rußwurm, M., and M. Körner. 2018. “Multi-temporal Land 
Cover Classification with Sequential Recurrent 
Encoders.” ISPRS International Journal of Geo- 
Information 7 (4): 129. doi:10.3390/ijgi7040129.

Rustowicz, R., R. Cheong, L. Wang, S. Ermon, M. Burke, 
and D. Lobell. 2019. “Semantic Segmentation of Crop 
Type in Africa: A Novel Dataset and Analysis of Deep 
Learning Methods.” 32nd IEEE/CVF Conference on 
Computer Vision and Pattern Recognition Workshops, 
CVPRW 2019, Long Beach, CA, June 16–20.

Rutherford, G., A. Guisan, and N. Zimmermann. 2007. 
“Evaluating Sampling Strategies and Logistic Regression 
Methods for Modelling Complex Land Cover Changes.” 
Journal of Applied Ecology 44 (2): 414–424. doi:10.1111/ 
j.1365-2664.2007.01281.x.

Sainte Fare Garnot, V., L. Landrieu, S. Giordano, and 
N. Chehata. 2020. “Satellite Image Time Series 
Classification with Pixel-Set Encoders and Temporal 
Self-Attention.” 2020 IEEE/CVF Conference on 
Computer Vision and Pattern Recognition (CVPR), Los 
Alamitos, CA, June 13–19.

Sang, Q., Y. Zhuang, S. Dong, G. Wang, and H. Chen. 2019. 
“FRF-Net: Land Cover Classification from Large-scale 
VHR Optical Remote Sensing Images.” IEEE Geoscience 
and Remote Sensing Letters 17 (6): 1057–1061. 
doi:10.1109/LGRS.2019.2938555.

Shao, Z., W. Wu, and D. Li. 2021. “Spatio-temporal-spectral 
Observation Model for Urban Remote Sensing.” Geo- 
spatial Information Science 1–15. doi:10.1080/10095 
020.2020.1864232.

Shao, Z., W. Zhou, X. Deng, M. Zhang, and Q. Cheng. 2020. 
“Multilabel Remote Sensing Image Retrieval Based on 
Fully Convolutional Network.” IEEE Journal of Selected 
Topics in Applied Earth Observations and Remote Sensing 
13: 318–328. doi:10.1109/JSTARS.2019.2961634.

Tatsumi, K., Y. Yamashiki, M.A.C. Torres, and C.L.R. Taipe. 
2015. “Crop Classification of Upland Fields Using 
Random Forest of Time-series Landsat 7 ETM+ Data.” 
Computers and Electronics in Agriculture 115: 171–179. 
doi:10.1016/j.compag.2015.05.001.

Tong, X.-Y., G.-S. Xia, Q. Lu, H. Shen, S. Li, S. You, and 
L. Zhang. 2020. “Land-cover Classification with 
High-resolution Remote Sensing Images Using 
Transferable Deep Models.” Remote Sensing of 
Environment 237: 111322. doi:10.1016/j.rse.2019.111322.

Tucker, C.J. 1979. “Red and Photographic Infrared Linear 
Combinations for Monitoring Vegetation.” Remote 
Sensing of Environment 8 (2): 127–150. doi:10.1016/ 
0034-4257(79)90013-0.

Wang, G., J. Li, W. Sun, B. Xue, A. Yinglan, and T. Liu. 
2019a. “Non-point Source Pollution Risks in a Drinking 
Water Protection Zone Based on Remote Sensing Data 
Embedded within a Nutrient Budget Model.” Water 
Research 157: 238–246. doi:10.1016/j.watres.2019.03.070.

Wang, L., R. Li, C. Duan, C. Zhang, X. Meng, and S. Fang. 
2021a. “A Novel Transformer Based Semantic 
Segmentation Scheme for Fine-Resolution Remote 
Sensing Images.” arXiv Preprint arXiv:2104.12137.

Wang, L., R. Li, D. Wang, C. Duan, T. Wang, and X. Meng. 
2021b. “Transformer Meets Convolution: A Bilateral 
Awareness Network for Semantic Segmentation of Very 
Fine Resolution Urban Scene Images.” Remote Sensing 
13 (16). doi:10.3390/rs13163065.

Wang, P., L. Zhang, G. Zhang, H. Bi, M. Dalla Mura, and 
J. Chanussot. 2019b. “Superresolution Land Cover 
Mapping Based on Pixel-, Subpixel-, and Superpixel-scale 
Spatial Dependence with Pansharpening Technique.” IEEE 

Journal of Selected Topics in Applied Earth Observations 
and Remote Sensing 12 (10): 4082–4098. doi:10.1109/ 
JSTARS.2019.2939670.

Wu, C.-Y., C. Feichtenhofer, H. Fan, K. He, P. Krahenbuhl, 
and R. Girshick. 2019. “Long-Term Feature Banks for 
Detailed Video Understanding.” 2019 IEEE/CVF 
Conference on Computer Vision and Pattern 
Recognition (CVPR), Los Alamitos, CA, June 15–20.

Wu, H., Z. Gui, and Z. Yang. 2020. “Geospatial Big Data for 
Urban Planning and Urban Management.” Geo-Spatial 
Information Science 23 (4): 273–274. doi:10.1080/ 
10095020.2020.1854981.

Xu, H. 2006. “Modification of Normalised Difference Water 
Index (NDWI) to Enhance Open Water Features in 
Remotely Sensed Imagery.” International Journal of 
Remote Sensing 27 (14): 3025–3033. doi:10.1080/ 
01431160600589179.

Yang, C., Q. Zhan, S. Gao, and H. Liu. 2020. “Characterizing 
the Spatial and Temporal Variation of the Land Surface 
Temperature Hotspots in Wuhan from a Local Scale.” 
Geo-spatial Information Science 23 (4): 327–340. 
doi:10.1080/10095020.2020.1834882.

Yu, C., J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang. 2018. 
“BiSeNet: Bilateral Segmentation Network for Real-Time 
Semantic Segmentation.” Computer Vision. 15th 
European Conference (ECCV 2018), Munich, Germany, 
September 8–14.

Zafari, A., R. Zurita-Milla, and E. Izquierdo-Verdiguier. 
2020. “Land Cover Classification Using Extremely 
Randomized Trees: A Kernel Perspective.” IEEE 
Geoscience and Remote Sensing Letters 17 (10): 
1702–1706. doi:10.1109/LGRS.2019.2953778.

Zhang, C., X. Pan, H. Li, A. Gardiner, I. Sargent, J. Hare, and 
P.M. Atkinson. 2018. “A Hybrid MLP-CNN Classifier for 
Very Fine Resolution Remotely Sensed Image 
Classification.” ISPRS Journal of Photogrammetry and 
Remote Sensing 140: 133–144. doi:10.1016/j. 
isprsjprs.2017.07.014.

Zhang, C., Y. Han, F. Li, S. Gao, D. Song, H. Zhao, K. Fan, 
and Y.N. Zhang. 2019a. “A New CNN-Bayesian Model 
for Extracting Improved Winter Wheat Spatial 
Distribution from GF-2 Imagery.” Remote Sensing 
11 (6): 619. doi:10.3390/rs11060619.

Zhang, J., L. Feng, and F. Yao. 2014. “Improved Maize 
Cultivated Area Estimation over a Large Scale 
Combining MODIS–EVI Time Series Data and Crop 
Phenological Information.” ISPRS Journal of 
Photogrammetry and Remote Sensing 94: 102–113. 
doi:10.1016/j.isprsjprs.2014.04.023.

Zhang, Z., Y. Liu, T. Liu, Z. Lin, and S. Wang. 2019b. 
“DAGN: A Real-time UAV Remote Sensing Image 
Vehicle Detection Framework.” IEEE Geoscience and 
Remote Sensing Letters 17 (11): 1884–1888. doi:10.1109/ 
LGRS.2019.2956513.

Zhao, H., and X. Chen. 2005. “Use of Normalized Difference 
Bareness Index in Quickly Mapping Bare Areas from 
TM/ETM+.” 2005 IEEE International Geoscience and 
Remote Sensing Symposium, IGARSS 2005, Seoul, 
Korea, July 25–29.

Zhong, L., L. Hu, and H. Zhou. 2019. “Deep Learning 
Based Multi-temporal Crop Classification.” Remote 
Sensing of Environment 221: 430–443. doi:10.1016/j. 
rse.2018.11.032.

Zhong, Y., A. Ma, Y. Soon Ong, Z. Zhu, and L. Zhang. 2018. 
“Computational Intelligence in Optical Remote Sensing 
Image Processing.” Applied Soft Computing 64: 75–93. 
doi:10.1016/j.asoc.2017.11.045.

294 R. LI ET AL.

https://doi.org/10.3390/ijgi7040129
https://doi.org/10.1111/j.1365-2664.2007.01281.x
https://doi.org/10.1111/j.1365-2664.2007.01281.x
https://doi.org/10.1109/LGRS.2019.2938555
https://doi.org/10.1080/10095020.2020.1864232
https://doi.org/10.1080/10095020.2020.1864232
https://doi.org/10.1109/JSTARS.2019.2961634
https://doi.org/10.1016/j.compag.2015.05.001
https://doi.org/10.1016/j.rse.2019.111322
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.1016/j.watres.2019.03.070
https://doi.org/10.3390/rs13163065
https://doi.org/10.1109/JSTARS.2019.2939670
https://doi.org/10.1109/JSTARS.2019.2939670
https://doi.org/10.1080/10095020.2020.1854981
https://doi.org/10.1080/10095020.2020.1854981
https://doi.org/10.1080/01431160600589179
https://doi.org/10.1080/01431160600589179
https://doi.org/10.1080/10095020.2020.1834882
https://doi.org/10.1109/LGRS.2019.2953778
https://doi.org/10.1016/j.isprsjprs.2017.07.014
https://doi.org/10.1016/j.isprsjprs.2017.07.014
https://doi.org/10.3390/rs11060619
https://doi.org/10.1016/j.isprsjprs.2014.04.023
https://doi.org/10.1109/LGRS.2019.2956513
https://doi.org/10.1109/LGRS.2019.2956513
https://doi.org/10.1016/j.rse.2018.11.032
https://doi.org/10.1016/j.rse.2018.11.032
https://doi.org/10.1016/j.asoc.2017.11.045

	Abstract
	1. Introduction
	2. Methodology
	2.1. Feature extraction using 3D CNN
	2.2. Multi-Scale Convolutional Block
	2.3. Channel attention block and global pooling module
	2.4. Network architecture

	3. Experimental results
	3.1. Dataset
	3.2. Experimental setting
	3.3. Results on WHDLD and GID
	3.4. Results on 2015 and 2017 datasets
	3.5. <italic>Eff</italic>ectiveness of the Multi-Scale Convolutional Block and attention mechanisms
	3.6. Investigation about the number of layers and channels

	4. Conclusions
	Disclosure statement
	Funding
	Notes on contributors
	ORCID
	Data availability statement
	References

