
1.  Introduction
Phytoplankton and zooplankton comprise the lower trophic levels sustaining pelagic marine food webs, and 
play critical roles in global biogeochemical cycles, for example, by fixing carbon and facilitating its export from 
the ocean surface (Falkowski et al., 1998; Sarmiento & Gruber, 2006; Stock et al., 2017). Plankton (i.e., phyto-
plankton and zooplankton) populations interact with numerous environmental factors, including most notably 
temperature, light, turbulence, pH, and nutrient concentrations (Glibert, 2016; Kiorboe, 2008; Margalef, 1978; 
Reynolds, 2006). Grazing by zooplankton provides an important constraint on phytoplankton population growth 
(Banse, 2013; Ward et al., 2012), and zooplankton themselves are subject to predation by higher trophic levels 
(Daewel et al., 2014). Plankton populations and their interactions respond to changes in environmental condi-
tions, including both natural (M. Edwards et  al.,  2013; Planque & Taylor,  1998) and anthropogenic climate 
change (Barton et al., 2016; Bopp et al., 2013; Dutkiewicz et al., 2015). While such ecological changes can be 
gradual, there is substantial interest in cases where transitions to a new ecosystem state occur on a short time scale 
(here meaning closer to interannual than centennial timescales), because their downstream effects on carbon and 
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nutrient cycling, fisheries, and other ecosystem services are intrinsically more difficult to adjust to or manage 
(Conversi et al., 2015; deYoung et al., 2008; Rocha et al., 2015).

Rapid changes in marine plankton populations may occur when changes in environmental conditions generate a 
sudden forcing on the community (Ardyna et al., 2014; Muller-Karger et al., 2019), or when gradual changes in 
environmental conditions provoke a nonlinear response (Scheffer et al., 2001; Stock et al., 2014a). With or with-
out environmental forcing, rapid changes can also emerge from the internal dynamics of plankton communities 
(Barton et al., 2020; Di Lorenzo & Ohman, 2013; Huisman & Weissing, 1999). Because of the challenges of 
collecting long-term and broad-scale measurements of plankton populations (Benway et al., 2019), much remains 
unknown about how frequent abrupt changes are in the lower trophic levels of pelagic marine ecosystems, how 
abrupt changes differ with trophic status or organism size (Barton et al., 2020), how abrupt changes in plankton 
populations correspond to those in physical or chemical environmental conditions, or how their frequency and 
distribution will change (or already are changing) with climate change (Beaulieu et al., 2016).

Here, we address these questions in the context of a plankton community model integrated into a global Earth 
system model (ESM). The ESM includes a comprehensive ecosystem model, called Carbon, Ocean Biogeochem-
istry and Lower Trophics (COBALT), that captures regional and seasonal variations in integrated ecosystem 
properties (e.g., chlorophyll and primary production) as well as the emergent biogeographies of phytoplankton 
and zooplankton across contrasting body sizes, functional groupings, and predator-prey interactions (Stock & 
Dunne, 2010; Stock et  al.,  2014b). We investigate the occurrence of abrupt transitions in marine ecosystems 
through the analysis of changepoints, a general term defined as a time point where a change in a statistical prop-
erty of a time series can be identified, but here more specifically meaning interannual, decadal, or multidecadal 
changes in trends or mean values (Reeves et al., 2007). We focused on centennial pre-industrial, historical, and 
projected climate change simulations for surface ocean temperature, nitrate concentrations, and phytoplankton 
and zooplankton of different sizes. Our objective is to map where changepoints occur and how frequent they are, 
with respect to oceanographic features, trophic levels, and climatic forcing. Our focus is specifically on plankton 
changepoints, and while it is unwieldy to establish the mechanisms underlying all individual plankton change-
points, we identify some common environmental drivers.

2.  Materials and Methods
2.1.  Numerical Model

Our analyses use simulations conducted with ESM2M-COBALT (Stock et al., 2014a). ESM2M-COBALT was 
derived from GFDL's ESM2M ESM (Dunne et al., 2012, 2013) by replacing the ocean biogeochemical compo-
nent with the Carbon, Ocean Biogeochemistry and Lower Trophics (COBALT, Stock et al., 2014b) model, while 
preserving other Earth system components. The ocean component is GFDL's Modular Ocean Model version 4.1 
(MOM4p1; Griffies, 2009) with a horizontal resolution of 1° and 50 vertical layers. The comprehensive ocean 
biogeochemistry and ecosystem COBALT model (Stock & Dunne, 2010; Stock et al., 2014a, 2014b) includes 33 
prognostic tracers, including three phytoplankton groups, three zooplankton groups, and tracers representing the 
coupled elemental cycles of carbon, nitrogen, phosphorus, silicate, and iron, as well as alkalinity and lithogenic 
material. As described in Stock et al. (2014a), ESM2M-COBALT simulations follow the protocols of Phase 5 of 
the Coupled Model Intercomparison Project (CMIP5; Flato et al., 2014) enlisted herein, and include (a) a 1,500 
yr spin-up simulation with 1,860 radiative forcings and potential vegetation, the last 100 yr of which are used as a 
pre-industrial (hereafter PI) control simulation, (b) a historical simulation from 1860 to 2004 featuring observed 
greenhouse gas concentrations, solar insolation, volcanic eruptions, ozone, and land use changes, from which we 
take the years 1901–2000 for the historical 20th century simulation, and (c) a future projection from (b) out to 
2100 under the RCP8.5 scenario, the highest emission scenario among the set of Representative Concentration 
Pathway scenarios (Riahi et al., 2011), to which we append the years 2001–2004 from the historical simulation 
and hereafter refer to as the 21st century simulation (2001–2100). The ecological and biogeochemical prop-
erties from COBALT simulations compare well with global observations over the past few decades (Stock & 
Dunne, 2010; Stock et al., 2014a, 2014b, 2017).

Plankton traits and ecological interactions in the COBALT model are tied to body size (Stock et  al.,  2014a) 
and parametrized by allometric trait relationships gleaned from large compilations of laboratory measurements. 
For example, smaller model phytoplankton have higher nutrient affinity compared to the larger phytoplankton 
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(K. F. Edwards et al., 2012), but are grazed upon by smaller, more efficient 
zooplankton (Hansen et al., 1997). Similar allometric trait formulations and 
trait-tradeoffs underpin other size-based plankton community models (Baird 
& Suthers, 2007; Banas, 2011; Taniguchi et  al.,  2014; Ward et  al.,  2012), 
and allow the COBALT model to plausibly simulate biogeographical and 
phenological patterns for a range of phytoplankton and zooplankton sizes 
(Stock et  al.,  2014b). Phytoplankton growth in the model is an increas-
ing exponential function of temperature (Eppley,  1972), such that growth 
is higher at warmer temperatures and growth acclimates instantaneously 
to changes in temperature for each phytoplankton type. A similar Q10 was 
applied to zooplankton growth and grazing, although remineralization and 
particle aggregation and export were independent of temperature (Stock 
et  al.,  2014b). Plankton therefore do not have discrete temperature niches 
(Thomas et al., 2012)). In this study, we use an identical model formulation to 
Stock et al. (2014b). This type of size-structured plankton community model 
is ideal for studying how changepoints vary across body size and trophic level 
because it not only simulates these state variables but also because it encodes 
allometric gradients in physiological rates, generation times, and interaction 
strengths that are likely to influence the occurrence of model changepoints. 
For the purposes of our analyses, we exclude nitrogen-fixing phytoplankton 
(diazotrophs); while their presence in COBALT is essential for maintaining 
ocean surface nitrogen inventories, their traits and ecological interactions are 
not as well constrained as for other model phytoplankton (but see Monteiro 
et al., 2011) and their contribution to total productivity is modest. In our anal-
yses, we use depth-integrated (over the top 100 m) plankton biomass model 

output but temperature and nutrient data from the surface layer. We acknowledge that some changes could occur 
in depth distributions of plankton over the centuries of simulation that we do not resolve, but prefer instead to 
focus on horizontal and temporal patterns. The surface data for environmental properties are sufficient as we are 
interested in broad temporal and spatial gradients in these properties, rather than vertical profiles. Surface nutri-
ents are used in conjunction with 100 m integrated biomass because surface nutrient values are most reflective of 
nutrient limitation in the euphotic zone.

The plankton community model in COBALT represents differences in body size and associated physiological 
traits and ecological interactions, as well as patterns of biogeography and phenology for model plankton types 
that are similar to observations (Stock et al., 2014b).

2.2.  Changepoint Analysis

We then identify changepoints for the time series at each model grid box and in each simulation for each model 
variable of interest. In essence, changepoint methods are designed to identify points in a time series where a 
statistical property of that time series changes, such as its mean or its trend; such methods have been widely 
adopted by the statistics community for their robustness and ability to handle for example, changes in time 
series with trends (Killick et al., 2020; Reeves et al., 2007). As we are analyzing the annually averaged output of 
centennial simulations, changepoints will necessarily be shifts between two multi-annual to multi-decadal aver-
age states, such as a switch between alternate stable states centered on different mean values, switches between 
increasing and decreasing trends, or the emergence of a multidecadal trend from a statistically steady baseline. 
We use the EnvCpt changepoint package in R (Killick et al., 2020), which relies on the Pruned Exact Linear Time 
algorithm (Killick et al., 2012) and selects among statistical models with changepoints relative to each other. We 
considered eight statistical models: (a) a constant mean, (b) a linear trend, (c) constant means with changepoints, 
(d) linear trends with changepoints, (e–h) AR(1) autoregressive versions of 1–4. We thus in essence fit each time 
series for each grid point, variable, and century simulation with a piecewise combination of constant values or 
linear trends, and formally define a changepoint as a point in a given time series where the best-fitting model 
switches between different segments of this piecewise fit. Qualitatively this corresponds to points in time where 
approximately interannual or (multi-)decadal shifts in the baseline value or baseline trend are identifiable. Figure 
S1 in Supporting Information S1 shows examples of each of these fit to COBALT time series, Figure 1 shows 

Figure 1.  Example model small phytoplankton (top) time series at a single 
grid cell over different century simulations, and large zooplankton (bottom) 
time series at 158°E (where no changepoints occurred in the PI or 20th) in the 
21st century (RCP8.5). At different centuries (top) or latitudes (bottom) either 
0, 1, 2, or 3 changepoints are identified.
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some example time series with different numbers of changepoints, and Table 
S1 in Supporting Information S1 shows a pedagogical example wherein the 
number of changepoints detected is robust to the superposition of a trend.

Both the presence and number of changepoints detected are robust across the 
models allowing abrupt changes (i.e., models 3, 4, 7, and 8 above detect the 
same number of changepoints for almost all grid cells for all three centuries). 
As we are interested in the quantitative characterization of the incidence 
and prevalence of changepoints, we group the statistical models into those 
with changepoints and those without, and hereafter focus on the absolute 
frequency of changepoints detected during each simulation, for each varia-
ble, and for each location. We also focus on this robust characteristic of the 
number of changepoints because the EnvCpt package does not require the 
piecewise linear models to be continuous; it also does not require changes 
to be of a certain amplitude for any statistical model. We discard all change-
points that occur in the first two or last 2 yr of any time series to avoid edge 
effects. Note that the changepoint method does not require ad hoc parameters 
to be chosen, such as minimum segment length or transition magnitude. To 
report global changepoint statistics, we weight each grid cell proportional 
to its area. Note that we analyze each simulation separately. While the sign 
and occurrence of changepoints is a robust feature of our analysis, the quan-
tification of the amplitude of a given changepoint depends on which of the 
eight aforementioned models is selected; because which model is selected 
as best-fitting is sensitive to the choice of fitting metric, we do not consider 
changepoint amplitude and instead focus on robust aspects of our analysis. 
In other words, all models 1–8 are fit to each variable, grid cell, and century 
time series to select the best-fitting model according to the Akaike Infor-
mation Criterion. Then we focused on the number of changepoints detected 
by  the selected model, which is a robust metric that is almost independent of 
model choice (i.e., using the Bayesian Information Criterion yields the same 
number of changepoints almost everywhere but in different models). The 

overall incidence of changepoints may be more important than their specific magnitude, as recent work suggests 
that even small-amplitude ecological and biogeochemical changes can have appreciable consequences (Barton 
et al., 2020; Stock et al., 2014a).

3.  Results and Discussion
The marine ecosystem model we employ exhibits a substantial increase in the prevalence (i.e., spatial extent) of 
changepoints during the 21st century under climate change conditions (RCP8.5), compared to historical 20th 
century and pre-industrial era simulations (Figure 2 and Figures S2–S10 in Supporting Information S1). We find 
fewer changepoints for smaller (phyto- and zoo-) plankton than larger plankton and fewer changepoints for phyto-
plankton than for zooplankton (Section 3.2), and that changepoints in plankton are more associated with iron 
and silicate than phosphate and nitrate, and more likely to occur where temporal shifts in latitudinal temperature 
gradients (a proxy for ocean fronts) are large (Section 3.3). However, the spatial extent of “hotspot” locations, 
which have more frequent changepoints, reduces from the pre-industrial to the historical simulation and again 
from the historical to the future simulation (Section 3.4). (As we use the kurtosis of the probability distribution 
of the number of changepoints to quantify this, it is not specific to e.g., ≥3 or ≥4 changepoints per century. Here 
by hotspots we mean locations with ≥3 or ≥4 changepoints per century; the number chosen as the minimum 
per century does not affect our conclusions, but locations with ≥5 changepoints per year are very rare for some 
variables in some simulations.)

3.1.  Spatiotemporal Changepoint Patterns

We first quantify and describe the spatial extent and distribution of changepoints in temperature, nutrient 
concentrations, and plankton populations across PI, 20th, and 21st century simulations (RCP8.5). In terms of 

Figure 2.  Maps of number of changepoints for each simulation for small 
phytoplankton. See Figures S2–S10 in Supporting Information S1 for other 
plankton, temperature, and nutrients.
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changepoint spatial extent, four main features are apparent. The fraction of 
the upper ocean with changepoints increases for all variables only slightly 
from the PI to 20th century, but increases dramatically from the 20th to 21st 
century (Figures  2,  3 and Figures S2–S10 in Supporting Information  S1). 
Temperature has a smaller increase in changepoint extent between the 20th 
and 21st centuries than the other variables (Figure 3; the same is true to a 
lesser extent for iron). Nutrients other than iron have a much higher fraction 
of ocean area with changepoints that become widespread in the 21st century 
(>60% of ocean area affected) compared to the other variables. Finally, 
within each simulation the plankton populations show similar fractions of 
ocean area with changepoints, and the ranks are relatively stable across 
centuries and consistent with the scaling of generation time with body size 
(e.g., Barton et al., 2020). For example, small phytoplankton have change-
points in the smallest fraction of ocean area while large zooplankton have the 
largest fraction of ocean area with changepoints in each simulation. A plot 
of changepoint area for the 21st century (Figure 4) shows that the temporal 
distribution of these changepoints is somewhat uniform, with a peak in the 
2060s (§3.5) and secondary peaks in the 2030s and 2010s.

In terms of spatial distributions, temperature changepoints are confined 
mostly to the high latitudes and Northeast Atlantic in the PI century, expand-
ing equatorward in the 20th and 21st centuries (Figure S6 in Supporting 
Information S1). All the plankton exhibit variations of this pattern (Figures 

S2–S5 in Supporting Information S1). Temperature changepoints in the PI and 20th centuries are primarily in 
Southern Ocean locations strongly influenced by interannual variability (Auger et al., 2020; Behrens et al., 2021). 
This region of the Southern Ocean has strong, approximately zonal fronts in sea surface height that create strong 
latitudinal gradients in temperature, nutrients, and ecosystems (Chapman et al., 2020). Observations from recent 
decades suggest that these fronts are moving poleward in response to climate change (Kim & Orsi, 2014; Sallée 
et al., 2008; Sokolov & Rintoul, 2009). The prevalence of changepoints in the Northeast Atlantic may be due 
to expansion and contraction of subtropical gyre extent (Bograd et al., 2004; Irwin & Oliver, 2009; Polovina 
et al., 2008) or variability in the wind-driven gyre circulation in this region, which is particularly variable through 
time (Häkkinen & Rhines, 2004; Hátún et al., 2005). Nitrate changepoints are, by contrast, concentrated in the 

subtropics in the PI and 20th centuries before becoming nearly global in 
the 21st century (RCP8.5; Figure S7 in Supporting Information S1). Nitrate 
changes primarily occur along the tropical fronts and in the subtropical 
gyres (associated with very different nutrient regimes; Polovina et al., 2017), 
suggesting these fronts' interannual movements promote changepoints in 
upper ocean nitrate concentrations. Strong zonal fronts in environmental and 
ecological conditions that move meridionally on decadal to centennial times-
cales appear to be linked to changepoints in the model.

3.2.  Trophic Changepoint Patterns

We also find an increase in the prevalence of changepoints from small to large 
phytoplankton, from small and medium to large zooplankton, and from phyto-
plankton to zooplankton, suggesting that changepoints are more widespread 
in larger organisms and higher trophic levels (Figure 5). Environmental varia-
tions are filtered through marine food webs, such that longer-lived organisms 
tend to exhibit more pronounced low-frequency variability than do smaller, 
shorter-lived organisms (Barton et al., 2020; Di Lorenzo & Ohman, 2013). In 
other words, the greater area of changepoints in larger organisms and higher 
trophic levels may be caused, in part, by intrinsic trophic amplification within 
food webs (Chust et al., 2014; Stock et al., 2014a), which exacerbates extrin-
sic environmental and climate forcing.

Figure 3.  Fraction of ocean area with changepoints for each variable and 
simulation (calculated by summing up the total ocean area with at least one 
changepoint and dividing by the total ocean area). Points are offset from each 
vertical line as a visual aide.

Figure 4.  Area exhibiting a changepoint in each variable for each year in 
the climate change simulation. The legend refers respectively to temperature, 
nitrate, iron, silicate, phosphate, small and large phytoplankton, small, 
medium, and large zooplankton, and the average of all 10 of these. Data have 
been smoothed with a 5 yr running mean for visual clarity. Changepoints in 
the first and last decade of each century have been excluded from this figure 
to be conservative as these are more liable to be due to edge effects (Killick 
et al., 2012).
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3.3.  Drivers of Plankton Changepoints

Plankton changepoints in the PI and 20th century can be understood as 
switches between alternate states associated with movements of frontal posi-
tions and co-located shifts with certain nutrients. These relationships break 
down in the 21st century as these sorts of changepoints and/or the relation-
ships between them are likely eclipsed by the emergence of climate-change-
driven trends that appear to emerge differently for different variables and 
suppress pre-existing patterns of variability (either entirely or to the point of 
statistical insignificance). In the PI and 20th century, we see that the correla-
tions of different plankton changepoints' locations with each other are fairly 
strong (Figure 6).

Spatial correlations in the frequency of changepoints here capture whether 
changepoints occur in each variable at the same frequency and in the same 
locations. In other words, the correlation ρij of variable i with variable j is 
calculated by defining a vector for both variables 𝐴𝐴 𝐴𝐴

𝑖𝑖

𝑘𝑘
 and 𝐴𝐴 𝐴𝐴

𝑗𝑗

𝑘𝑘
 of the number 

of changepoints that occur at each grid point k for that variable, and then 
computing the weighted Pearson correlation for those vectors, weighted by 
the area of each grid point k. This is preferred to a simple binary association 
such as a phi coefficient (Cramir, 1946) because variables can have multiple 
changepoints at a single location across a given time series.

In terms of nutrients, we find that plankton changepoints are most strongly correlated with changepoints in iron, 
then silicate, then phosphate, then least of all nitrate (Figure  6). Correlations with temperature changepoints 
are moderate (Figure 6). These correlations between for example, iron and plankton changepoint locations in 
the PI and 20th centuries suggest that an appreciable fraction of these plankton changepoints reflect change-
points in these environmental variables, or alternatively similar phenomena specific to these locations are driving 
changepoints in correlated variables. These correlations also suggest that nitrate's changepoint dynamics are quite 
different than those for the other variables, because the locations of nitrate changepoints are only very weakly 
correlated with those of other variables across all simulations. This may in part be due to the greater complexity 
of the nitrogen cycle than that of other nutrients.

We also find that changepoints in the PI and 20th century tend to be associated with switches between alternate 
states; Figure 7 shows that in these centuries, most consecutive changepoints at a given location disagree in sign, 
that is, if one changepoint is associated with an increase in a baseline concentration or trend, the subsequent 
changepoint is usually associated with a decrease in that baseline concentration or trend. This may be because 
changepoints in the PI and 20th centuries are strongly associated with shifts in the position of ocean fronts, 

Figure 5.  Barplot of area where changepoints occur for each plankton variable 
over all three simulations. Bars are split (by color) by contribution from grid 
cells with different total number of changepoints across the simulations. Error 
bars correspond to decadal variability (standard deviation of decadal averages) 
in the mean changepoint area per year.

Figure 6.  Correlations between the locations of changepoints of each variable in the PI and 20th century simulations (left) 
and the 21st century simulation. Circle size and color both correspond to correlation magnitude (see text for definition). 
Changes between PI and 20th century simulations (left) and the 21st century simulation for all correlations (except nitrate-
phosphate, nitrate-small zooplankton, and small zooplankton-medium zooplankton) are significant (p < 0.01).
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which meander on interannual to multidecadal timescales. Figure 8 shows 
the frequency of changepoints, for a given century and variable, as a function 
of the temporal change in the latitudinal temperature gradient, ∂|∂T/∂y|/∂t. 
Large latitudinal temperature gradients |∂T/∂y| are commonly a proxy for the 
positions of ocean fronts; temporal changes in these are then indicative of 
changes in frontal positions over time. (We evaluated this for decadally aver-
aged temperature values because the model's latitudinal temperature gradi-
ents are noisy on annual timescales.) For a given variable and century, a 
relative probability of changepoint occurrence of, for example, 2 for a given 
value of ∂|∂T/∂y|/∂t, for example, 0.05°C/°N/decade, means that changepoints 
are twice as likely to occur, relative to the global average, at places where 
and times when ∂|∂T/∂y|/∂t = 0.05°C/°N/decade. The strong increase in this 
relative probability with ∂|∂T/∂y|/∂t in the PI and 20th century for all plankton 
variables, temperature, silicate, and iron indicates that changepoints in these 
centuries and variables are associated with shifts in frontal positions.

In the 21st century, however, the correlations between plankton changepoints' 
locations and those of the environmental variables all decrease to near zero 
(Figure 6), the association between temporal changes in frontal positions all 
but disappear (Figure 8), and the sign-disagreement of consecutive change-
points is reversed such that consecutive changepoints tend to be reinforcing 

in most cases (Figure 7). Altogether this underscores that changepoints in the 21st century are of a qualitatively 
different nature than those of the PI and 20th century, neither due to changes in frontal positions nor switching 
between alternate states. This indicates that climate-change-driven changepoints disrupt pre-existing interannu-
al-variability-driven changepoint patterns of plankton ecosystems, raising the question of how best to describe 
plankton changepoint patterns in the future if patterns of variability are distinct from the past. Furthermore, the 
lack of co-location in our model of plankton and nutrient changepoints draws into question the extent that nutri-
ents may be indicators of multidecadal changes in plankton ecosystems.

Figure 7.  Fraction of consecutive changepoints at the same location that have 
the same sign, for each variable and century. Colors and numbers in squares 
indicate fraction.

Figure 8.  The relative frequency of changepoints occurring in places and times with different values of shifts in latitudinal temperature gradients, for each variable and 
century simulation.
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3.4.  Changepoint Hotspots

In addition to quantifying which locations experience and do not experience 
ecological changepoints in which variables, we also consider how frequent 
changepoints are in locations that have them. While the average numbers 
of plankton changepoints per century (in locations where there are change-
points) remains fairly stable (Figure S11 in Supporting Information  S1),  
more surprisingly we found that plankton (and temperature) changepoint 
“hotspots” (locations with ≥3 or ≥4 changepoints per century) tend to disap-
pear over time. In other words, in places where changepoints are frequent, the 
rate at which changepoints occur slows down. This is most simply quantified 
by the excess kurtosis (κ  =  μ4/σ 4  −  5.99, where 𝐴𝐴 𝐴𝐴4(𝑋𝑋) = 𝐸𝐸

[

(𝑋𝑋 − 𝜇𝜇)
4
]

) is 
the fourth central moment and σ is the standard deviation) of the change-
point distribution, where 5.99 is used instead of the usual value of 3 because 
the number of changepoints is non-negative; 5.99 is the kurtosis of an inte-
ger-rounded half-normal distribution (Figure S12 in Supporting Informa-
tion S1). The kurtosis is a standard measure of a distribution's heavy-tailed-
ness; a positive κ indicates that the distribution has a heavier tail than an 
integer-rounded half-normal, and the larger the κ, the heavier the tail. In 
this context, a heavy tail means that changepoints tend to be concentrated in 
“hotspot” locations where changepoints occur frequently (Figures S12 and 
S13 in Supporting Information S1). Note that the kurtosis κ is only a measure 
of the probability distribution of the number of changepoints and is there-
fore not affected by the total ocean area experiencing changepoints or the 
total number of changepoints. Figure S13 in Supporting Information S1 also 
shows the changepoint probability distribution for small phytoplankton for 
each century to illustrate what a smaller excess kurtosis means in terms of the 
disappearance of changepoint hotspots.

Figure 9 shows the excess kurtosis κ for each variable and simulation. While all variables besides nitrate are 
somewhat heavy-tailed in the PI century, the most heavy-tailed being small and large zooplankton, we find a 
decline in excess kurtoses across the plankton types (and for temperature) in the 20th and 21st centuries (RCP8.5). 
This demonstrates the disappearance of changepoint hotspots for all plankton (and for temperature), even after 
accounting for the increase in ocean area experiencing changepoints (Figure 3 and Figure S14 in Supporting 
Information S1). Changepoint hotspots for large and medium zooplankton, and large phytoplankton mostly disap-
pear in the 20th century, whereas small phytoplankton and zooplankton and temperature show declines between 
both the PI and 20th centuries and between the 20th and 21st centuries. Note that this is not driven by an increase 
in the area with a low number of changepoints, that is, locations switching from having no changepoints to having 
low numbers of changepoints over time, because (a) the means of these distributions do not change substan-
tially or consistently over time (Figure S11 in Supporting Information S1), (b) the total area of locations with 
4+ changepoints also decreases with time for all plankton (from between 0.88% and 2.4% in the PI century to 
between 0.08% and 0.87% in the 21st century; Figure 2 and Figures S2–S10 in Supporting Information S1), and 
(c) this decrease in excess kurtosis also holds when restricting only to locations that have changepoints in the PI 
or 20th century (Figure S14 in Supporting Information S1).

For plankton and temperature, these hotspots all occur in the polar oceans and in the northeast Atlantic (though 
different variables' hotspots are not always perfectly co-located). Hotspots likely disappear with climate forcing 
because plankton communities that were previously switching frequently between alternative states no longer do 
so in the novel environmental conditions into which they are pushed. Temperature changepoint hotspots, concen-
trated in the high latitudes in the PI and 20th centuries, likely vanish with the poleward recession of seasonal 
sea ice in the 21st century out of latitudes where temperature has sufficient interannual variability. Nutrients are 
the exception in Figure 9, with κ values near zero or negative in the PI and 20th centuries, indicating a compar-
ative absence of hotspots. Changes across centuries in nutrients' κ values are smaller, increasing slightly overall 
from PI to the 21st century. The lack of systematic or substantial change in nutrients' κ values likely reflects 
that these hotspots' shifts are not eclipsed by climate-change-driven trends. Plankton populations draw nutrient 

Figure 9.  Excess kurtosis of the distribution of the number of changepoints 
per unit area per century for each variable. High values of excess kurtosis 
indicate spatial clustering of changepoints into “hotspots”. Figure S12 in 
Supporting Information S1 shows how a reduction in kurtosis corresponds to 
a reduction in a distribution's tail; Figure S13 in Supporting Information S1 
shows an example of a changepoint distribution's change across simulations; 
Figure S14 in Supporting Information S1 shows that the decrease in kurtosis 
seen here holds when only considering locations with changepoints in the PI 
and/or 20th century simulations for each variable.
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concentrations down to subsistence concentrations, and therefore nutrient concentrations should have a thresh-
old-like behavior (Tilman, 1982). Food web adjustments that stabilize changes in nutrients may be too small to 
be identified as changepoints, such that nutrients retain their changepoint hotspots despite climate-change-driven 
shifts but plankton do not.

4.  Conclusion
We explored the spatial distribution and frequency of changepoints in a plankton community model within an 
ESM over three centennial simulations representing the pre-industrial period (the final 100  yr of a 1,500  yr 
control simulation), 20th century (1901–2000), and climate warming conditions in the 21st century (RCP8.5, 
2001–2100). Anthropogenic forcing in the 21st century results in a substantial increase of ocean area where 
plankton abundances have changepoints, relative to the preindustrial era and 20th century. However, changepoint 
hotspots in the Southern Ocean and Northeast Atlantic Ocean, where plankton concentrations or temperature 
frequently undergo changepoints, largely disappear from the preindustrial period to the 21st century, as plankton 
communities that were previously switching frequently between alternative states no longer do so in the novel 
environmental conditions into which they are pushed. In agreement with the hypothesis of trophic amplification, 
larger plankton have more changepoints than smaller plankton, and zooplankton have more changepoints than 
phytoplankton; changepoints also often propagate through pelagic food webs rather than being restricted to indi-
vidual plankton types. Plankton changepoints in the preindustrial and 20th centuries are associated with changes 
in frontal positions, certain nutrients (especially iron and least of all nitrate), and switches between alternate 
states. None of this is the case in the 21st century, when instead climate-change-driven changepoints disrupt 
pre-existing interannual-variability-driven changepoint patterns of plankton ecosystems. These results suggest 
that globally, plankton populations are susceptible to abrupt changes as a result of anthropogenic climate change, 
and that population dynamics are important for such changes, with larger organisms and higher trophic levels 
being more susceptible.

We note though that while latitudinal temperature gradients and nutrient concentrations are critical drivers of 
plankton communities, they are only some of many environmental factors that influence them; rapid plankton 
community responses associated with gradual warming may still reflect rapid changes in other environmental 
factors. We also emphasize that we have only considered one ESM here, and our results are specific to this model 
and likely differ in particular patterns if not mechanisms for other models. It would be instructive to test whether 
similar results and mechanisms underlying changepoints hold for other ecosystem models, and even more so 
whether complex ecosystem models that are able to predict properties such as phytoplankton diversity show simi-
lar results, and how these ecosystem properties are projected to change in the future. As the propensity for rapid 
ecological changes may either increase or decrease with system complexity (McCann, 2000), investigating the 
susceptibility of model populations to rapid changes across a range of ecosystem complexities will be essential 
to assessing the implications of model results for marine ecosystems (Cael et al., 2021). The approach we use 
here may also be suitable for terrestrial systems as well, particularly when considering differences in changepoint 
extent and frequency across organism size and trophic level at regional and larger spatial scales.

Data Availability Statement
The model outputs used here are available at DOI 10.5281/zenodo.6516343.
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