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Abstract
Informed analysis of policies related to food security, global climate change, wetland ecology, environmental nutrient flux,

element cycling, groundwater weathering, continental denudation, human health, and others depends to a large extent on
quantitative estimates of solute mass fluxes into and out of all global element pools including the enigmatic global aquifer systems.
Herein for the first time, we proffer the mean global solute concentration of all major and selected minor and trace solutes in
the active groundwater that represents 99% of liquid fresh water on Earth. Concentrations in this significant element pool have
yielded to a geospatial machine learning kNN-nearest neighbors’ algorithm with numerous geospatial predictors utilizing a large
new lithology/climate/aquifer age/elevation based solute database. The predicted concentrations are consistent with traditional
solute ratios, concentrations, and thermodynamic saturation indices.

Introduction
Enigmatic fresh groundwater systems represent 99%

of liquid fresh water on Earth (Shiklomanov 1993) and
supplies approximately 70% of all human use (Wood and
Cherry 2021) thus, it is of crucial importance. Policies
related to global climate change, food security, envi-
ronmental nutrient flux, global element cycling, wetland
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ecology, and human health depend to a large extent on
quantitative estimates of mass fluxes into and out of all
global element pools. Estimates of mass flux into and out
of the terrestrial element pools require knowledge of both
water fluxes and solute concentrations. We have well-
established global values of freshwater fluxes including
global precipitation (Huffman et al. 2001, 2009; Adler
et al. 2003); global evapotranspiration (Wang and Dick-
inson 2012); global river flow (Dai and Trenberth 2002);
and global active aquifer volume (Gleeson et al. 2016).
Previous estimates of the global solute concentration
of freshwater have been limited to rivers (Clark 1924;
Livingston 1963 and Meybeck 2003). Herein we present
mean and median concentrations of all major and selected
minor and trace solutes from the global active aquifer
systems. We anticipate that these data will be utilized in
much the same as the global riverine values are used (Klee
and Graedel 2004; Sen and Peucker-Ehrenbrink 2012).

Groundwater solute chemistry is naturally highly
variable on a local, regional, and global scale. Solute con-
centrations vary over one to two orders of magnitude and
there are several different solute types (sodium chloride,
sodium bicarbonate, calcium bicarbonate, etc.) depending
on the lithology of surrounding rocks, atmospheric input,
discharge of underlying brines, and legacy solutes. Thus,
to obtain unbiased global mean and median values we
first created a globally representative solute database that
includes an extremely wide range of aquifer lithology,
age, topography, climatic, and hydrologic conditions that
were used in a geospatial machine learning (GML) algo-
rithm with geospatial predictors to calculate a mean and
median global value for each solute. Finally, we evaluated
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the predicted values by assessing their geochemical ratios
thermodynamic saturation, and other hydrogeochemical
indicators.

Active Aquifer Solute Database
Active freshwater aquifers systems are defined herein

as having received recharge within approximately the last
100 years that typically contains dissolved solids less than
500 mg/L, solute ratios typical of human consumption,
and in general have a well depth of less than 500 m.
Based on the typical length of flow lines, hydraulic
conductivity, and gradient, active freshwater aquifers
systems typically exhibit a mix of low flux old (thousands
of years); intermediate flux of medium age (hundreds
of years); and a large flux of young water (<100 years).
Active groundwater typically exhibits adjusted carbon-14
ages of hundreds to thousands of years and yet contain
recent chlorofluorocarbons, tritium, or other solutes
consistent with recent recharge, thus, a mix of water of
different age consistent with the well-known exponential
age distribution (Starn et al. 2021). The assertion that the
samples represent active aquifer systems is supported by
the observation that of the 3493 samples analyzed for tri-
tium in the U.S. Geological Survey’s NAWQA database,
2702 were positive (Lindsey et al. 2019). As most tritium
is generated by cosmic ray-induced spallation of nuclides;
residual activities from atmospheric nuclear weapons
testing; and ongoing nuclear fuel-cycle operations thus,
the presence of tritium in groundwater is consistent
with recent atmospheric contact. It is assumed that this
NAWQA database is representative of our other national
databases.

To represent the elemental pool of active aquifer
systems we assembled a large, globally representative
solute database from approximately 24,000 wells with
nearly 267,000 individual analytical values from the
Australian Global Explorer (n = 15,016); the Geological
Survey of Brazil (n = 3255; de Informações de Águas
Subterrâneas); the Geological Survey of Chile (n = 74;
Banco Nacional de Aguas); and the U.S. Geological
Survey (n = 5471; DeSimone et al. 2014; Arnold
et al. 2016, 2017, 2018, 2020). Samples in this database
represent an extremely wide range of aquifer ages
from Precambrian to Holocene, all globally significant
lithologic/depositional environments, most redox and pH
conditions, and a full range of climates from hyper-arid
to tropical. The locations exhibited an extensive range
of land-use practices presumed by the owners and
operators to be generally free of known point sources of
anthropogenic contaminants, Analyses with cation/anion
imbalance greater than 5% (Hem 1985) were rejected
as were samples with chloride values >19,000 mg/L
and aquifers with temperature >40 ◦C. We also exclude
known brines and geothermal sources from our discussion
as in general they have solute concentrations greater than
most human needs and are not significantly involved
with surface or near-surface environmental processes
(Appendix S3). Note that it was beyond the scope of

this study to distinguish between solutes in surficial,
unconfined, or confined active aquifer systems.

Owing to the wide range of environments and
lithologic types we believe our current database provides
an adequate input to the geospatial machine language
algorithm; we did, however, attempt to expand our data
search to other continents. The search for additional
national solute databases resulted in many that were
not publicly available; some required purchase; some
were poorly curated with many improbable values; some
nations ignored our requests; some comingled a mix of
private confidential and government data and could not be
released; some were collected largely for contamination
studies; some did not distinguish between uses and
comingled groundwater analyses including oil filed brines
and waste injection and fracking wells, and some covered
only a limited range of climate/hydrology.

Trace elements (less than 0.1% of total dissolved
solids) such as As, Cd, Cr, Mo, Pb, Rd, U, and others
are extremely important in evaluating impacts on human
health; however, their concentrations are dependent on
local mineralogy and pH/Eh conditions that are highly
variable both within and between aquifers, are highly
dependent on analytical methods and the number of analy-
ses available in each major lithology/climate/age environ-
ment is small thus, are not included in our global database.
The trace elements Fe and Sr were included because both
are ubiquitous and there existed a large database that
included all major lithology/climate/age/elevation envi-
ronments. Maps showing the distribution of samples and
tables of a statistical summary of the database are provided
in Appendix S1. The cumulative frequency distribution of
major ions from this solute database illustrates the sig-
nificantly different concentrations between the individual
solutes and the lack of normal distributions, except for
HCO3 (Figure 1a and 1b).

To assess if our solute database was representative of
global elemental pools, we compared the mean bicarbon-
ate concentration in our solute database (257 mg/L ± 5%
[244–270 mg/L] (Table 1-SI; Appendix S1) to the mean of
242 ± 5% (230–254 mg/L) of 7395 independent analyses
from areas not in our solute database (Algeria, Canada,
China, Costa Rico, Egypt, India, Mexico, South Africa,
and the UK) (Table 3-SI; Appendix S1). Bicarbonate ion
was chosen to test the data set as it typically consti-
tutes more than half of the total solute mass in active
aquifer systems and is approximately normally distributed
(Figure 1b) thus, the mean and median are nearly the
same. Owing to the lack of published individual values
we could not conduct a formal “Student t test”; however,
it is clear that the mean values overlap at the ±5% uncer-
tainty level. Thus, we conclude that our solute database
is likely representative of the global active aquifer solutes
and was suitable for input to the kNN algorithm.

Geospatial Machine Learning
Our database includes all major environments and

lithologic types but is unevenly distributed over the
Earth’s land area; therefore, the GML kNN (k nearest
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Figure 1. (a) Solute database cumulative frequency within
the 5–95 percentile range of major cations, in mg/L. –(b)
Cumulative frequency within the 5–95 percentile range
of major anions, in mg/L. Note the different vertical
concentration scales between the two figures.

neighbor) technique of Fix and Hodges (1951) was
used to predict each global solute concentration. For
our single global average concentration of each solute,
we integrate over each predicted solute grid weighted
by the area of each cell. This weighted integration of
the prediction mitigates bias in both the geographic and
geologic distribution of the sparse samples. The solute
input to an analysis by the GML algorithm utilized the
“less than 95%” and greater than 5% range of data of each
parameter. That is, we assumed the highest and lowest 5%
values of the database were not representative of the active
aquifer flow zone.

The kNN method used here is described in Lee
et al. (2019) to predict seafloor organic carbon concentra-
tion and is modified for the application to aquifer solute
concentrations (Appendix S3). A variety of machine learn-
ing algorithms are available in our code, which uses
the Python scikit-learn library. Most algorithms typically
yield similar results for any given application, but the kNN

requires the least amount of interpretive input parame-
ters, making it the most data-driven technique. Fundamen-
tally, each method searches for, and identifies correlations
between features and data, then uses those correlations to
make predictions. Because our emphasis in this analysis
was to mitigate bias in our data and prevent it from propa-
gating to our global estimate, we chose kNN. Its relatively
small number of input variables reduces the possibility
of bias from interpretive tuning of the input variable.
Based on a comparison of algorithms conducted by Graw
et al. (2021) on a global, albeit different dataset, we expect
the performance of kNN to be similar to other ML algo-
rithms. kNN finds correlations between sparsely sampled
observed values and aspects or features of the environ-
ment we know (or can accurately estimate) elsewhere.
The features are gridded values of quantities that represent
what we know about the environment that are potential
explanatory variables—topography, sediment type, rock
type, average climate, and so on. kNN then uses these
correlations to make predictions of values where no val-
ues were directly observed. The overarching assumption
is that one or more features of the environment corre-
late with a given observed global quantity, such as solute
concentration.

The kNN process includes the following steps:
observation gridding, feature generation, feature selection,
validation, and prediction. In our implementation of kNN,
the observations and features must both exist and be
registered to the same grid. In general, the kNN is agnostic
to grid orientation or cell size, but for this analysis, we
chose a cell (pixel) centered grid of 5 × 5 arc-minutes in
latitude and longitude (about 10 × 10 km at the equator).
After gridding, cells containing three or more observed
values are represented by the median of those values, cells
containing exactly two observed values are represented
by the mean of those two values, and cells with a single
observed value are represented by that value. Cells with
no observed values are the cells for which predicted values
are generated.

Features of the environment must have values at
all cells where a prediction is to be made, we analyzed
terrestrial not oceanic cells. The features in the analysis
come from several publicly available sources. Elevation
data were obtained from SRTM15+ (Tozer et al. 2019).
The topographic value at each cell was taken to be the
median of the 20 × 20, 15-arc-second cells in each 5-arc-
minute cell. Climate data were obtained from the World
Climate Database (2021) and included annual averages,
minima, maxima, and standard deviations of temperature,
precipitation, solar radiation, wind speed, and water vapor
pressure, all at 5 × 5 arc-minutes. Another set of features
was generated from a digital geological map produced
by Hartmann and Moosdorf (2012). The provinces in
this map were descriptive (e.g., metamorphic). To be
useful for our analysis, each of the thirteen rock types
was converted to a fraction of dominant element types
(silica, calcium, iron, and potassium) following Turekian
and Wedepohl (1961). The resolution of the Hartman and
Moosdorf map was 30 × 30 arc-minutes, so each resulting
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Figure 2. Map of calculated global bicarbonate concentration distribution in active aquifer systems. Vertical scale degrees
latitude, horizonal scale degrees longitude, and concentrations in mg/L are given in color. Maps of the other parameters are
given in Appendix S2.

Figure 3. Map of calculated global calcium concentration distribution in active aquifer systems. Vertical scale degrees latitude,
horizonal scale degrees longitude, and concentrations in mg/L are given in color. Maps of the other parameters are given in
Appendix S2.

global grid of mineral type was resampled using bilinear
interpolation to 5 × 5 arc minutes, to match the other
feature and observation grids. Additional information
on the process is included in Appendices S1 and S2.
Maps of the bicarbonate and calcium concentration of the
GML output illustrate the typical global concentration
distribution (Figures 2 and 3, Table 1; maps of other
parameters are given in the Appendix S2).

Discussion
The statistical data in Table 1 indicate the range

of uncertainty by standard deviation about the mean
and percentiles surrounding the median. The rather large
standard deviation around the mean of some of the

parameters is not unusual when it is recognized that over
2.1 million data cells are averaged. That is, the variation
is largely the result of the full range of concentration
differences over the entire global land surfaces and not
analytical uncertainty.

The mean GML concentration of Cl− (24 mg/L)
and SO4

2− (31 mg/L) (Table 1) appear slightly greater
than one might expect for relatively conservative solutes
based on global rivers concentrations of 7.8 mg/L Cl−
and 11 mg/L SO4

2− (Meybeck 2003). That is, one
might anticipate the global active aquifer values to be
approximately twice the global river values based on the
observation that approximately half the water in rivers is
sourced from active aquifers (Reitz et al. 2017) and the
other half from precipitation runoff; however, the Cl/SO4

NGWA.org W.W. Wood et al. Groundwater 60, no. 6: 714–720 717
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Table 1
Predicted GML Global Mean and Median Concentration for Major, Selected Minor, and Trace Solutes, Plus

Several Water Parameters for Active Aquifer Systems

Parameter Ca Mg Na K Sr (μg/L) Fe (μg/L) HCO3 Cl SO4

Mean 42 14 45 3.5 298 80 214 24 31
Stand. Dev 31 14 40 2.7 275 159 98 62 60
95% 200 194 802 25 2257 3322 522 2416 848
90% 190 184 760 23 2139 3147 494 2289 803
Median 106 103 423 13 1191 1749 276 1272 447
10% 22 21 85 2.8 244 350 57 255 90
5% 11 11 43 1.5 126 175 30 128 46

Parameter NO3 as N F Br Si Dissolved oxygen pH Specific conductance μS/cm Temperature (◦C)

Mean 0.34 0.23 0.09 17 1.8 7.21 551 20.0
Stand. Dev 0.36 0.18 0.11 9 1.6 0.34 301 7.0
95% 9.0 1.6 1.1 46 7.8 8.28 1910 28.7
90% 8.5 1.5 1.1 43 7.4 8.09 1811 27.4
Median 4.8 0.84 0.60 24 4.2 6.57 1020 16.9
10% 0.96 0.18 0.13 5.4 0.9 5.04 229 6.4
5% 0.49 0.10 0.07 3.0 0.5 4.85 130 5.1

Note: Values are in mg/L except Fe and Sr (μg/L), pH (standard units), specific conductance (μS/cm), and temperature (◦C).

ratios are similar in both the GML and global river water
(0.7). The mean GML value of Na+ is significantly higher
(45 mg/L) than might be expected based on global river
water (5.2 mg/L; Meybeck 2003). Rapid flow from shal-
low flow paths in active aquifers will represent a larger
proportion of river flow, and because solute concentrations
generally increase with age (Appelo and Postma 2005),
thus, the base flow has a bias toward younger groundwa-
ter. Additionally, as in the case with chloride and sulfate
global riverine systems may not be representative of
active aquifer systems in the 30% of the continents that
are semi-arid or arid that lack river systems and where the
solutes in the active aquifer have higher concentrations.

The true mean global values of the major solute con-
centrations can never be known; however, the breadth
of climatic, aquifer lithology, aquifer age, and other fac-
tors suggest that the GML concentrations summarized in
Table 1 are representative of the true global values. To
evaluate this assumption, we looked at several indepen-
dent geochemical indicators. The chloride/bromide ratio
is a potential check on the reasonableness of the mean
GML values. That is, it is known that most of the chloride
and bromide in the active aquifers are from ocean-sourced
precipitation (Davis et al. 1998). As the mean GML value
of each solute is based on different predictors one can
compare the known values with the predicted values. The
GML chloride to bromide ratio is 240 (Table 1) and the
ocean ratio is approximately 285 (Davis et al. 1998). Thus,
we conclude that the GML values are consistent with
the true values. An additional check on the representa-
tiveness of our GML values is shown by thermodynamic
equilibrium calculation. Most individual analyses of water
from active aquifer systems are close to equilibrium with
the mineral calcite thus, if the calculated GML values of
Ca2+, HCO3

−, pH, and temperature are representative, the

GML values should yield an equilibrium calculation close
to equilibrium. Using the geochemical code PHREEQC
(Parkhurst and Appelo 2013) and the global values from
Table 1 documents that the solute concentration from
the global active aquifers is slightly undersaturated with
respect to calcite, thus consistent with general observa-
tions (Appendix S1). Finally, the cation/anion balance
error of major ions (Table 1) is less than 5% (+3.4),
even though each solute was generated by different pre-
dictors. These evaluations are consistent with the mean
predicted values being reasonable representations of true
solute concentration and ionic composition of water from
active freshwater aquifers.

In our analyses we have assumed steady-state solute
conditions; however, it is clear that the solute composition
and concentration of active groundwater systems are
changing with time in response to both global climate
change and anthropogenic activity. Thus, the values
presented represent a snapshot in time. Further, nearly all
the solute samples were analyzed within the last 20 years
and thus, do not represent geogenic conditions. This
condition is no different from the global surface water
composition that is changing with time for the same
reasons. We suspect that most anthropogenic changes
will certainly affect local aquifers; however, it is more
likely atmospheric introduction of contaminates like
bomb tritium or chlorofluorocarbons (CFC) will impact
the active groundwater system on a global scale. The
actual changes in solute concentration and composition
that occur will depend largely on the source of the solutes
in the aquifers (precipitation, transport from adjacent
aquifers, legacy/connate, or rock-water interaction).

We suspect that the model could be further improved
with additional predictor datasets. Ideally, global estimates
of discharged weighted values of concentration for every
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aquifer and “aquifer reactivity” (essentially the number of
aquifer pore-volumes discharged since flow in the aquifer
became active) would improve solute characterization.
However, neither predictor database currently exists and
the data input requirements for them were beyond the
scope of our project.

Conclusions
Our GML prediction of groundwater solute concen-

tration (Table 1) provides a composition and concentration
of global groundwater. It is hoped that these values will
help inform future continental-scale mass-flux calculations
of critical elements such as carbon for climate change;
nutrients such as nitrogen for eutrophication and legacy
management; contribution of groundwater to continental
denudation; and understanding of groundwater weathering
and geochemical cycling of the elements. The uncertainty
of the values is given both by standard deviation of the
mean and percentiles surrounding the median. In addition
to global solute fluxes and element cycling, the concen-
trations might be used to compare with data from local
aquifers to gain some insight into the local reactions con-
trolling the solute in an aquifer. It might also be used
when plotting on geochemical graphical displays (Stiff,
Pie, Piper, Scholler, Durov, probability distribution. etc.)
to illustrate the deviation of a local aquifer from that of
the global value.
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