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ABSTRACT: This study describes the intra- to interannual variability of the Atlantic meridional overturning circulation
(AMOC) and the relative dynamical contributions to the total variability in an eddy-resolving 1/128 resolution ocean
model. Based on a 53-yr-long hindcast and two 4-yr-long ensembles, we assess the total AMOC variability as well as the
variability arising from small differences in the ocean initial state that rapidly imprints on the mesoscale eddy fields and
subsequently on large-scale features. This initial-condition-dependent variability will henceforth be referred to as “chaotic”
variability. We find that intra-annual AMOC fluctuations are mainly driven by the atmospheric forcing, with the chaotic
variability fraction never exceeding 26% of the total variance in the whole meridional Atlantic domain. To understand the
nature of the chaotic variability we decompose the AMOC (into its Ekman, geostrophic, barotropic, and residual compo-
nents). The barotropic and geostrophic AMOC contributions exhibit strong, partly compensating fluctuations, which are
linked to chaotic spatial variations of currents over topography. In the North Atlantic, the largest chaotic divergence of
ensemble members is found around 248, 388, and 648N. At 26.58N, where the AMOC is monitored by the RAPID–

MOCHA array, the chaotic fraction of the AMOC variability is 10%. This fraction is slightly overestimated with the
reconstruction methodology as used in the observations (∼15%). This higher fraction of chaotic variability is due to
the barotropic contribution not being completely captured by the monitoring system. We look at the strong AMOC
decline observed in 2009/10 and find that the ensemble spread (our measure for chaotic variability) was not particu-
larly large during this event.

SIGNIFICANCE STATEMENT: The ocean is characterized by ubiquitous swirls (eddies) with diameters ranging
from more than 100 km (low latitudes) to a few tens of kilometers (high latitudes). There is limited predictability of the
timing and location of such eddies. They introduce unpredictable (“chaotic”) variability, which affects the ocean circu-
lation on a wide range of spatial and temporal scales. Any observations of ocean currents contain a fraction of chaotic
variability. However, it is, in general, not possible to quantify this chaotic variability from observations. Here we use a
set of simulations performed with a state-of-the-art ocean computer model to estimate the fraction of chaotic variability
in the amount of warm northward flowing near-surface seawater that delivers large amounts of heat to the North Atlan-
tic, known to scientists as the Atlantic meridional overturning circulation (AMOC). We find that about 10%–25% of
the AMOC variance is likely to be chaotic.
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1. Introduction

The Atlantic meridional overturning circulation (AMOC) is
an important feature of the large-scale ocean circulation [see
Buckley and Marshall (2016) for a review]. It redistributes
heat globally and influences the climate of the surrounding
regions (e.g., Knight et al. 2005; Latif et al. 2006; Gastineau
and Frankignoul 2012). According to modeling studies, it has
strong decadal to multidecadal variability although this has
not been observed yet due to the lack of sufficiently long
observed time series. Since April 2004 the RAPID–MOCHA
array with its continuous twice-daily measurements of the
AMOC revealed a large subannual variability of the AMOC
(Cunningham et al. 2007; Chidichimo et al. 2010; Kanzow et al.

2010; Duchez et al. 2014; Smeed et al. 2018), deeply changing
its perceived picture. There is also emerging evidence that
the AMOC may impact on the North Atlantic heat content
(Sonnewald et al. 2013; Bryden et al. 2014) and sea surface
temperature (Duchez et al. 2016a) at these time scales.
Although the impact of this subannual variability might be
sensitive to the period considered (Alexander-Turner et al.
2018), it could be important for the prediction of seasonal
climate events (e.g., Buchan et al. 2014; Duchez et al. 2016b;
Hallam et al. 2019).

For a dynamical system, chaotic behavior can be defined as
a strong sensitivity to initial conditions, i.e., slightly different
initial conditions can evolve into considerably different states
(Lorenz 1963). In the climate system, the atmosphere is very
well known to exhibit such behavior, thereby limiting the
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skillful prediction of weather patterns to a couple of weeks
(Lorenz 1982). Ocean mesoscale eddies are the equivalent of
weather systems in the atmosphere. As their atmospheric
counterparts the timing, location of the formation of ocean
eddies cannot be predicted and the prediction of their evolu-
tion is limited to week to perhaps months. Mesoscale eddies
are thought to have a major impact on the mean ocean circu-
lation (e.g., Rhines 1977; Salmon 1980; Hochet et al. 2020;
Sévellec et al. 2021). However, how and on what time scales
they can affect the variability of the large-scale ocean circula-
tion is far from fully understood.

Numerical ocean model simulations forced by a repeated
atmospheric annual cycle, have shown that ocean chaotic vari-
ability emerges spontaneously when mesoscale eddies are per-
mitted by the model resolution (Thomas and Zhai 2013;
Grégorio et al. 2015). At interannual-to-decadal time scales,
this chaotic variability has been found to account for one-
third to one-half of the total variance of the AMOC around
258N, while it accounts for only 5%–10% of the total variance
in the subpolar region. Using a different approach based on a
large ensemble of eddy-permitting ocean hindcasts sharing
the same atmospheric forcing but with slightly different initial
conditions, Leroux et al. (2018) found similar results, showing
that the amount, meridional distribution, and space–time
spectral characteristics of chaotic variability under realistic
atmospheric forcing are in good agreement with those of
Grégorio et al. (2015). These estimates, focusing mainly on
interannual to decadal time scales, might not reflect the frac-
tion of AMOC variability arising from oceanic processes at
shorter time scales. Using a pair of twin eddy permitting
experiments, Hirschi et al. (2013) estimated the chaotic contri-
bution of the total sub to interannual AMOC variance to be
approximately 9%, implying that the atmosphere plays a
dominant role in driving short-term AMOC variability. In
accordance with these findings, Roberts et al. (2013) found
that the atmosphere played a dominant role in the short-term
decline of the AMOC observed in 2009/10 (McCarthy et al.
2012; Bryden et al. 2014).

At 26.58N, the RAPID–MOCHA array measurements
(Cunningham et al. 2007; Smeed et al. 2018) could be sensitive
to this chaotic variability. Indeed, the RAPID AMOC time
series is based on the sum of three components: the Ekman,
the Florida Strait, and the upper midocean transport. The lat-
ter is retrieved through the thermal wind relation using obser-
vations taken by a set of moorings at the boundaries. The
western boundary is a region of significant eddy activity, and
the effect of eddies and waves propagating westward from the
basin interior on the geostrophic transport at subannual time
scale could be substantial (de Verdière and Tailleux 2005).
For example, random eddies were suspected to dominate the
AMOC fluctuations up to 16 Sv (1 Sv ≡ 106 m3 s21) at this
time scale (Wunsch 2008). However, taking into account their
energy decrease at the proximity of the boundary showed that
the variability attributable to eddies and waves would be of
the order 4 Sv (Kanzow et al. 2009), or even 2.6 Sv when tak-
ing into account the vertical structure of the eddies (Clément
et al. 2014).

In this analysis, we use an eddy-resolving 1/128 resolution
ocean model to characterize the full meridional structure of
the AMOC variability at sub- to interannual time scales and
the relative contributions of different dynamical processes to
this variability. Following the approach of Leroux et al.
(2018), the chaotic variability of the AMOC and its compo-
nents is assessed. Finally, implications for the monitoring of
the AMOC by the RAPID–MOCHA array at 26.58N are
discussed.

2. Data and methodology

In the following we describe the numerical ocean model
and simulations used in this study (section 2a) as well as the
RAPID observations from 26.58N (section 2b). We also intro-
duce three complementary approaches to compute the
AMOC in the model (section 2c). We note that the use of
three approaches may initially appear excessive, but the rea-
son will become clear later in the paper when we try to under-
stand the origin of the chaotic AMOC variability we find in
the model.

a. Model and simulations

We use the NEMO v3.6 ocean model (Madec et al. 2016) in
the ORCA12 configuration corresponding to a nominal reso-
lution of 1/128 (Marzocchi et al. 2015). At 26.58N the resolu-
tion is approximately 8.3 km. There are 75 vertical levels
ranging from 1 m at the surface to 250 m at the bottom. Bot-
tom topography is represented as partial steps and bathyme-
try is derived from ETOPO2 (NOAA 2006). The model
includes the sea ice model LIM2 (Louvain-la-Neuve Sea Ice
Model; Fichefet and Maqueda 1997; Timmermann et al.
2005).

Based on this model configuration we use a 53-yr-long
ocean hindcast already used for North Atlantic variability
studies (Moat et al. 2016) and henceforth referred to as N006.
It starts from rest with climatological initial conditions for
temperature and salinity from the Polar Science Center
Hydrographic Climatology PHC2.1 (Steele et al. 2001) at high
latitudes, MEDATLAS (Jourdan et al. 1998) in the Mediter-
ranean, and Levitus et al. (1998) elsewhere. It simulates the
1958–2012 period using the Drakkar Surface Forcing dataset
version 5.2 (Dussin et al. 2014; Brodeau et al. 2010), which
supplies surface air temperature, winds, humidity, surface
radiative heat fluxes, and precipitation. To prevent excessive
drifts in global salinity due to deficiencies in the freshwater
forcing, sea surface salinity is relaxed toward climatology with
a piston velocity of 233.33 mm day21 psu21. Model output is
stored as 5-day averages. We restrict our analysis to the
period 1960–2012 to allow the eddy field sufficient time to
develop.

Starting from this integration, two 3-member initial condi-
tion perturbation ensembles have been performed starting
from 1 January 2007 and 2009, respectively. The initial condi-
tion perturbations are generated by lagging the oceanic initial
conditions by 1–3 time steps from the N006 run and all mem-
bers are integrated for 4 years using the same model configu-
ration and surface forcing. We note that since we use a forced
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ocean model for our experiments we can only estimate the
chaotic AMOC variability in the situation where the ocean
cannot influence the atmospheric circulation. This of course is
not the case in a coupled system where the chaotic variability
of both ocean and atmosphere would project onto the AMOC
and lead to a larger divergence between ensemble members
than in the experiments we discuss here.

b. The AMOC observation dataset

We use the observation-derived transport estimates from
the RAPID array at 26.58N. In this estimate, the AMOC is
constructed as the sum of three components: an estimate of
the Florida Strait transport is obtained from the electrical
voltage induced in a submerged telephone cable that lies
between mainland Florida and the Bahamas (Meinen et al.
2010), the Ekman transport calculated from the ERA-Interim
wind field (Dee et al. 2011), and the upper midocean trans-
port assessed from a set of moorings across 26.58N from the
Bahamas to the African coast (Rayner et al. 2011). Since
April 2004 the array has provided twice daily transport esti-
mates based on these observations, revealing an unprece-
dented picture of the AMOC variability at subannual to
multiannual time scales at this latitude (Srokosz and Bryden
2015). For comparison with the model simulations, we pro-
duce 5-day averages from the RAPID–MOCHA observations
in accordance with the 5-day mean output of the model.

c. AMOC decompositions

A dynamical decomposition of the simulated AMOC helps
to highlight dominant mechanisms accounting for the AMOC
fluctuations. In this section, three different decompositions of
the AMOC are detailed. The first one corresponds to the
decomposition introduced by Lee and Marotzke (1998),
considering the AMOC as the sum of the transport arising
from surface wind forcing (Ekman), an external mode with
variable topography, the vertical shear due to thermal wind
balance, and a residual ageostrophic contribution. This
decomposition can be used at any latitude in the Atlantic
domain. The second decomposition corresponds more closely
to the component parts of the observing system used for the
RAPID–MOCHA array measurements, and therefore rely on
measurement feasibility at 26.58N. Finally, the third decompo-
sition is based on the RAPID–MOCHA array decomposition,
with a specific change in order to investigate the role of the
external mode partly captured in the upper midocean contri-
bution on the reconstructed AMOC variability at 26.58N. The
equations in section 2c(1) are applied for all latitudes in the
Atlantic, while the 26.58N specific treatment of Florida Straits
given in sections 2c(2) and 2c(3) are only computed at this
latitude.

1) FULL AMOC DECOMPOSITION: cfull

The AMOC, cfull, is defined as the zonal and vertical inte-
gral of the meridional velocity:

cfull z( ) �
�z

2Hmax

�xe

xw
y z′( )dxdz′, (1)

where y corresponds to the meridional velocity; Hmax corre-
sponds to the maximum depth of the basin at 268N; z is the
vertical coordinate; and xw and xe are the western and eastern
boundaries of the ocean basin, respectively.

We decompose the AMOC into one barotropic and three
baroclinic components as follows:

cfull � cBTR 1 cGEOSH 1 cEKM 1 cRES, (2)

where cBTR corresponds to the barotropic component, i.e.,
the zonal and vertical integral of the barotropic meridional
velocity y:

cBTR z( ) �
�z

2Hmax

�xe

xw
y x( )dxdz′ (3)

with

y x( ) � 1
H x( )

�0

2H x( )
y x, z′( )dz′: (4)

This component has been referred to as the external mode
(e.g., Lee and Marotzke 1998; Sime et al. 2006; Hirschi and
Marotzke 2007). Other definitions of the external mode have
been used in other studies [e.g., Buckley and Marshall (2016),
who rather use the section-wide section average velocity
rather than the velocity y according to Eq. (4)]. All definitions
have in common that the external mode only projects onto
the AMOC when flow occurs over sloping topography. The
definition of the external mode as in Eqs. (3) and (4) is also in
keeping with what we know from observations about the
nature of the flow along the western boundary (at least close
to 26.58N). Indeed Bryden et al. (2009) show that transport
fluctuations through the Florida Straits are compensated by
a barotropic flow just east of Bahamas. To represent this sit-
uation the external mode using our approach seems to be a
reasonable choice: the Florida current contains a large baro-
tropic contribution and due to the approximately step-wise
bathymetry at the western boundary this results in a vigor-
ous external mode of 25–30 Sv which is well captured by
Eqs. (3) and (4).

As there is currently no strategy to monitor the barotropic
velocity, this mode cannot be directly retrieved from the
RAPID–MOCHA array measurement.

The term cEKM is the Ekman component compensated by
a section mean return flow to ensure no net transport:

cEKM z( ) �
�z

2Hmax

�xe

xw
yEKM z( ) 2 yEKM
[ ]

dxdz′, (5)

where yEKM and yEKM are

yEKM � 1
r*fLDz
( )

�xe

xw
txdx, and (6)

yEKM �2
1

r*fA
( )

�xe

xw
txdx, (7)

where L = xe 2 xw is the basin width at the surface, r* a refer-
ence density, Dz the Ekman layer depth, and Hmax the maxi-
mum depth of the longitude–depth section.
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This component can be fully derived from the zonal wind
stress accessible through satellite and ship measurements. The
Ekman layer depth, Dz, which defines the base of the Ekman
layer in which the wind driven transport occurs, is chosen to
be 100 m. Under this layer, yEkm is assumed to be zero.

The term cGEOSH is the geostrophic shear component aris-
ing from the zonal density gradient across the Atlantic basin:

cGEOSH z( ) �
�z

2Hmax

�xe

xw
yGEO x, z′( ) 2 yGEO x( )[ ]

dx dz′, (8)

where the geostrophic velocity arises from the thermal wind
balance as

yGEO x, z( ) � 2g
r*f

�z

2H x( )
­r

­x
dz′, (9)

with g the gravitational acceleration, f the Coriolis parameter,
r the local density, and yGEO is the depth averaged geo-
strophic velocity:

yGEO x( ) � 1
H x( )

�0

2H x( )
yGEO x, z′( )dz′: (10)

Finally, cRES is the baroclinic ageostrophic residual obtained
by rearranging Eq. (2),

cRES � c 2 cBTR 1 cGEO 1 cEKM( ): (11)

Note that, unlike for other decompositions, the Gulf of Mex-
ico has been taken into account in this decomposition in order
to allow for a possible projection of the Gulf Stream (via the
Loop Current) on the AMOC. This also means that the flow
at 26.58N is not fully consistent with other decompositions.

2) RAPID-LIKE RECONSTRUCTION: cR

The AMOC reconstruction of the RAPID array at 26.58N
is based on the decomposition introduced in the previous sec-
tion, but adapted in order to use quantities that can be mea-
sured in the real ocean as described in Hirschi and Marotzke
(2007). It aims at monitoring the AMOC between Florida and
the African coast and therefore excludes the Gulf of Mexico,
hereby considering a different domain from the decomposi-
tion of cfull at this latitude.

First, the transport through the Florida Straits is directly
computed as the integration of the meridional velocity in the
model:

cFS �
�0

2HFS

�xB

xF
y x, z′( )dz′dx (12)

where xF, xB denote the western (Florida) and eastern
(Bahamas) margins of the Florida Straits.

In the main basin, the difficulty arising from the previous
decomposition in the RAPID–MOCHA array is the inability
of current observational techniques to assess the barotropic
velocity y [Eq. (4)] preventing the direct measurement of the
external mode [Eq. (2)]. However, as shown in Hirschi and
Marotzke (2007), under the assumption of the bottom velocity

being zero, the geostrophic velocity yGEO contains both baro-
clinic and barotropic [referred as yGEO in Eq. (10)] compo-
nents, the latter containing valuable information to assess the
external mode. In this RAPID-like decomposition, we com-
pute the streamfunction arising from the density at the bound-
aries, following the assumption of zero bottom velocity. A
compensation velocity is introduced to fulfil the mass conser-
vation. This streamfunction therefore contains the geo-
strophic shear component as well as part of the barotropic
component and can be written as

cUMO z( ) �
�z

2Hmax

�xe

xw
yGEO x, z′( ) 2 ỹcomp
[ ]

dx dz′ (13)

with

ỹcomp � 1
A

�z

2Hmax

�xe

xB
yGEO x, z′( )[ ]

dxdz′ 1
cFS

A
, (14)

which corresponds to the transport imbalance across
a longitude–depth section divided by the section area

A �
�0

Hmax

dz
�xw

xe
dx. This contribution, cUMO, is referred to

as the upper midocean contribution (UMO) as is done in
the observations. We note here that using the compensa-
tion ỹcomp means that we neglect the meridional transport
(i.e., the Bering Strait) transport as its effect on the
inferred AMOC variability is negligible.

Finally, the Ekman component is assessed through the
main basin following Eq. (5), where the western boundary is
taken as xB. The total AMOC is then reconstructed by sum-
ming these three components as

cR z( ) � cFS 1 cUMO 1 cEKM: (15)

3) THE RAPID-LIKE GEOSHEAR RECONSTRUCTION:
cR−B

To isolate and test the impact of the barotropic component
included in cUMO, we use a third decomposition very similar
to the RAPID-like decomposition introduced in section 2c(2),
but remove the depth averaged geostrophic velocity as done
in Eq. (8). In this last decomposition, the term cUMO in
Eq. (15) is then replaced by

cUMO z( ) �
�z

2Hmax

�xe

xB
yGEO x, z′( ) 2 yGEO x( )[ ]

2
cFS

A
dxdz′,

(16)

similar to Eq. (8), but with xB taken as the western boundary.
Compared to cR, the barotropic part of the information
included in the UMO component is lost.

3. Characterization of the AMOC variability and of
its components

a. Total variability

The AMOC mean and variability in the ORCA12 configu-
ration are shown in Figs. 1a and 2a, respectively, over the
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1960–2012 period. The upper AMOC cell ranges from the sur-
face to roughly 3500 m depth, with a maximum transport of
about 19 Sv around 358N. Based on 5-day averages over a
52-yr-long period, the variability is strongly dependent on the
latitude. Its highest amplitude is found around the equator
where a standard deviation of 21 Sv is reached. Apart from
the equator, the largest variability is found around 358N
where it reaches about 5 Sv. This main structure does not

depend strongly on the model resolution, as it is very similar
to the variability found with 1/48 resolution (e.g., Blaker et al.
2012; Hirschi et al. 2013).

As explained in Jayne and Marotzke (2001), a strong vari-
ability around the equator is expected from the wind-driven
fluctuations of the Ekman transport, compensated by a depth-
independent return flow on the whole water column, which
explains the vertical extension of the variability maximum.

FIG. 1. Time mean of (a) AMOC, (b) Ekman, (c) barotropic, (d) geostrophic, and (e) residual
streamfunctions in the N006 simulation. The time average is done over the 1960–2012 period.
The solid black line corresponds to the depth of the AMOC index, i.e., the depth of the maxi-
mum value of the AMOC streamfunction within 500–2000 m. The vertical red line indicates
26.58N, i.e., the RAPID–MOCHA array position.
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However, model simulations yield variability that is much
higher than expected from Ekman variability alone. Although
it cannot be explained by the Ekman transport, it is the local
wind variability that drives the equatorial AMOC fluctuations
by excitating low-mode equatorially trapped planetary waves
which have natural periods around 4–10 days (Blaker et al.
2021; Bell et al. 2021). Baker et al. (2022) have shown that the
existence of these waves along the equator is supported by
observations from the TAO mooring array. Due to the short

time scale, this maximum cannot be captured by monthly out-
puts explaining why it is not retrieved in longer time scale anal-
ysis such as Karspeck et al. (2017). Interestingly, Karspeck
et al. (2017) showed that a similar maximum is found when
using reanalysis datasets, while it is absent in the correspond-
ing runs without data assimilation.

When decomposed into several components}Ekman, bar-
otropic, geostrophic shear, and residual}as introduced in
section 2c(1) [Eq. (2)]. We can see that the AMOC is

FIG. 2. Time standard deviation of (a) the AMOC, (b) Ekman, (c) barotropic, (d) geostrophic,
and (e) residual streamfunctions. Time standard deviation is computed from 5-day mean outputs
over the 1960–2012 period. The solid black line corresponds to the depth of the AMOC index,
i.e., the depth of the maximum value of the time-mean AMOC streamfunction within 500–2000 m.
The vertical red line indicates 26.58N, i.e., the RAPID–MOCHA array position.

J OURNAL OF PHY S I CAL OCEANOGRAPHY VOLUME 52934

Brought to you by UNIVERSITY OF SOUTHAMPTON HIGHFIELD | Unauthenticated | Downloaded 06/14/22 08:39 PM UTC



dominated by the geostrophic shear component in the South-
ern Hemisphere and northern high latitudes, while Ekman
and barotropic components play a major role in northern
tropical regions up to approximately 358N (Fig. 1). As
expected, the residual component is small everywhere. The
variability of the Ekman component is maximal between 58
and 158N reflecting the seasonal shift of the intertropical con-
vergence zone in that area (Fig. 2b). It does not vary strongly
with the latitude in the rest of the basin. In contrast, the baro-
tropic and geostrophic shear components exhibits large
changes of variability depending on the latitudes (Figs. 2c,d).
Their variability appears to be stronger in the northern than
in the Southern Hemisphere with collocated narrow maxima
such as those at 78N and 248N. The standard deviation pat-
terns of both components are strikingly similar. The latitudi-
nal variation of the residual component is much smoother,
with a first maximum near the equator and a relative maxi-
mum between 358 and 408N.

We define the AMOC index for both strength and variance
as the value located at the depth of the time-mean integrated
transport identified between 500- and 2000-m depth, to avoid
any local shallow maximum. This depth is indicated as a black
line in Figs. 1 and 2. The component time series are taken at
the same depth to ensure consistency with the relation given
in Eq. (2). The variability of these indices as a function of lati-
tude is shown in Fig. 3, summarizing the meridional structure
of the component variability observed in Fig. 2. Figure 3 high-
lights the striking similarity between variability of the baro-
tropic and geostrophic shear components, with collocated
spikes of greatly increased variability for certain latitudes.
These spikes can exceed 5 Sv within few degrees of latitude
such as around 248N. However, we find that the variability of
the sum of these two components (orange line in Fig. 3) is
much weaker and smoother (without any spikes), indicating a
large degree of compensation between the two components.
This is particularly clear for the latitudes that exhibit the
spikes in variability mentioned above. Accordingly, a strong
negative correlation is found between the two components
time series at these specific latitudes such as 248N where the
correlation coefficient reaches 20.98, which is significant at
the 99% confidence level. The compensation between these

two components is likely linked to spatial fluctuations of rela-
tively strong surface currents. For example, when such a cur-
rent is situated over shallow topography it mainly projects
onto the external mode as it will be associated with a high
velocity throughout the water column and accordingly a high
barotropic velocity. The opposite is true for geostrophic shear
transport as the vertical shear is relatively weak. When the
surface current shifts offshore where the ocean bottom is
much deeper the situation is reversed: The deep ocean means
that high velocities are mainly confined to the thickness of the
surface current and bottom velocities will typically be low. In
this case the surface current increases the vertical velocity
shear, hence mainly projecting onto the geostrophic shear
transport. For the external mode the opposite is true: the
great ocean depth means that even a strong surface current
does not result in a high barotropic velocity and hence there
is only a weak projection onto the external mode. Thus, the
large and strongly anticorrelated variabilities we find for the
barotropic and geostrophic components result from an artifact
of the decomposition of a much less variable flow (corre-
sponding to the sum of the two). Consistent with this hypothe-
sis, high BTR (GEOSH) anomalies at 288N are associated
with strong (weak) northward Gulf Stream and the associated
northward transport further offshore (∼788W) on the shelf
(Figs. 4c,d), and weak (high) northward surface Antilles Cur-
rent offshore (∼75.58W). The combined strong Gulf Stream
and weak surface Antilles Currents (Fig. 4c) tend to enhance
the barotropic structure of the currents and therefore
enhance (decrease) the BTR (GEOSH) transport. Similarly,
the large fluctuations found at 248N are linked with fluctua-
tions of the Loop Current within the Gulf of Mexico (not
shown). These compensated fluctuations drop to a local
minimum close to 26.58N (red lines in Figs. 3 and 4a), where
the AMOC is monitored by the RAPID–MOCHA array
and most of the northward flow is constrained by the Florida
Strait. We note here that the compensation is not strong
everywhere: between 58S and about 208S the variability in
the geostrophic component is clearly larger in GEOSH than
for BTR. Finally the residual component arising from ageo-
strophic flow appears to be the weakest contribution to the
AMOC variability, but still not negligible.

FIG. 3. Time standard deviation of the AMOC index and its components at the depth of the
maximum streamfunction. The vertical red line indicates the 26.58N RAPID array position. The
vertical black line indicates 288N, the latitude for which we show meridional velocity anomalies
in Fig. 4.
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b. Chaotic variability

Despite the common atmospheric forcing, and the very close
initial states, the oceanic chaotic variability leads the ensemble
members to diverge with time (Fig. 5). The ensemble variance
sm(t) of the transport c at the time t is calculated as

s2
m t( ) � 1

Nmb

∑Nmb

i�1

[
ci t( ) 2 c t( )〈 〉]2

, (17)

where Nmb is the ensemble size (i.e., 4),m denotes the ensem-
ble (2007 or 2009), and the angular brackets denote the
ensemble mean.

The variance s2
m is a measure for the ensemble spread and

increases with time until it saturates and fluctuates around a

constant value (Fig. 5c). The saturation value is taken as the
average of the ensemble variance for years 3 and 4 of the inte-
grations of both the ensembles starting in 2007 and 2009 (solid
black line in Fig. 5c) and is computed according to

s2
SAT � 1

2Nt

∑Nt

t�1
s2
2007 t( ) 1 s2

2009 t( )
[ ]

, (18)

where Nt is the number of 5-day means within two years of
integration, i.e., 73 3 2 and where s2

2007 t( ) and s2
2009 t( ) are

the ensemble mean variances for the ensembles starting in
2007 and 2009. Stationarity of the internal variance is the
underlying assumption for using s2

SAT. The variance s2
m

varies substantially during the integrations but the average
variance over years 3 and 4 (horizontal black line in Fig. 5c) is
1.8 Sv2 in both ensembles. The phases with higher and lower
variances (Fig. 5c) are a consequence of the small ensemble
size of 4. For larger ensemble sizes this variability markedly
reduces (see appendix). That we find the same value of
1.8 Sv2 for both ensembles suggests that stationarity of the
internal variance is a reasonable assumption.

The ensemble variance can be compared to the total vari-
ance of the full long N006 run AMOC time series, hence pro-
viding an estimate of the oceanic chaotic variability fraction.
This computation can be made for each component of the
AMOC to provide insight into the processes involved. We
emphasize here that the ensemble size is small in our setup.
Therefore we will likely underestimate the ensemble variance
linked to chaotic processes. However, we illustrate in appen-
dix that even with Nmb = 4 our estimate is likely to capture
about 3/4 of the variance one would get with a much larger
ensemble (Fig. A1).

The full meridional-depth pattern of the ensemble variance
saturation value reflects the variability pattern of the AMOC
(Fig. 6a). The equatorial region stands out as one of the
regions with the lowest fractions of chaotic variability (i.e.,
the ratio of the ensemble variance saturation value to the
N006 variance, Fig. 6b), highlighting the strongly wind-forced
characteristic of the variability maximum there. In the North
Atlantic, 58, 248, and 388N appear to be the regions with the
highest fraction of chaotic AMOC variability (Fig. 6c, red
line). In contrast, the subpolar region (i.e., between 458 and
658N) exhibits a relatively small fraction of chaotic variability,
except in the Greenland–Scotland ridge region around 648N.

Strikingly, the fraction of chaotic variability of the baro-
tropic and geostrophic shear components is much higher than
for the total AMOC index fraction, ranging from about 30%
to slightly more than 100% for some latitudes (e.g., around
318N). As with their total variability, this fraction varies
strongly with the latitude, and is strongly collocated. It high-
lights the chaotic nature of the spatial fluctuations of the cur-
rent pathways accountable for the geostrophic shear and
barotropic compensation. As with the total variability, the cha-
otic variability of the two components strongly compensates
one another as indicated by the smaller variance found for the
sum between the chaotic components of BTR and GEOSH
(Table 2). Additionally, the chaotic fraction of the sum of
BTR and GEOSH are much less latitude dependent. In

FIG. 4. (a) Surface velocity modulus averaged over the
1960–2012 period. (b) Meridional velocity at 288N averaged over
1960–2012 period. (c),(d) Meridional velocity anomalies at 288N
coinciding with times when the values of BTR and GEOSH exceed
the long-term mean at 288N by one standard deviation.
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contrast to the total variability, where the compensation
between barotropic and geostrophic is weak in the tropical lat-
itudes of the South Atlantic, there is strong compensation at
all latitudes for the chaotic variability. The residual component
is strongly chaotic, with the same latitude-dependent fluctua-
tion as barotropic and geostrophic shear, likely reflecting topo-
graphic changes with latitude as well. However, this chaotic
variability corresponds to a weak contribution to the total
AMOC transport and variability (Figs. 1e and 2e). As
expected, the chaotic fraction of the Ekman component vari-
ability is very weak (,0.1%) and is therefore not shown in the
figure. Note that all these estimations are computed from
5-day means. When repeating these using annual means (not
shown), it appears that the saturation of the ensemble spread
is not reached yet.

We note that is also true for 5-day means but the domi-
nance of the chaotic variability by short time scales (e.g.,
Hirschi et al. 2013) means that the saturation value we find

based on 5-day averages is close to the chaotic variability we
would find in longer simulations. The chaotic fraction of vari-
ability assessed here is mainly due to subannual variability.
Estimating the fraction of chaotic variability for interannual
and longer time scales would require longer integrations and
cannot be assessed with our experiments.

To summarize, the fraction of chaotic variability of the
AMOC varies between 3% and 26% depending on the lati-
tude. When considering the AMOC decomposition into baro-
tropic and baroclinic components, it appears that small
chaotic fluctuations in the position of currents account for a
strong compensation between the variability of the barotropic
and geostrophic shear components at subannual time scale.

4. The AMOC at 26.58N

The full AMOC decomposition [Eq. (2)] analyzed in the
previous section is not exactly the one used in the RAPID
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FIG. 5. (a),(b) Full AMOC index time series for the N006 simulation (black line) and the 2007
and 2009 ensemble mean (red and blue lines, respectively). Ensemble spread (one standard devi-
ation) is shown in red and blue shading, respectively. (c) Ensemble variance of the full AMOC
as a function of lead time from the starting date for the 2007 (thin red line) and 2009 (thin blue
line) ensemble. Thick lines correspond to the running average over a 3-month (seasonal) win-
dow. The solid black line indicates the saturation value of the ensemble variance. For both
ensembles E2007 and E2009 we average the variances over the last two years and find the same
value of 1.8 Sv2.
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array as it assumes perfect knowledge of the external (baro-
tropic) mode. A key finding of the previous section is that (by
construction) for both the geostrophic and barotropic compo-
nents the chaotic variability can be much larger than for the
AMOC. This raises the question whether not being able to
“perfectly” observe the external mode may result in an artifi-
cial AMOC variability arising from a reduced compensation
between the geostrophic and barotropic variability. As shown
in section 3, perfect knowledge of the external mode means
that the variability in both components largely cancels out. In
this section we therefore want to establish to what extent this
is still true when using assumptions underlying the RAPID
observations at 26.58N. To answer this question, we investi-
gate the influence of the chaotic variability on the recon-
structed AMOC cR as assessed following the RAPID array
methodology [Eq. (16) in section 2c(2)].

a. Total variability

To evaluate the ability of the ORCA12 N006 simulation to
reproduce the characteristics of the observed AMOC variabil-
ity at 26.58N we compare the components of the RAPID-like
reconstruction [cR in section 2c(2)] and its components}

Ekman, Florida Strait (FS), and UMO}with the correspond-
ing time series in the RAPID–MOCHA array observations
(Fig. 7). The model slightly underestimates the AMOC
strength (by 1 Sv) and variability (by 0.4 Sv) but there is rea-
sonable agreement between the simulated and observation-
derived time series. There is a high level of correlation
between the two time series (0.69), and this is almost
unchanged after a linear detrend (see Table 1). The presence
of chaotic variability (in both the model and the real world)
means that one cannot expect the model to exactly reproduce
the observed variability. Even with a “perfect” model and
exactly known surface forcing the correlation with observa-
tions would never be unity as this would require the spatio-
temporal distribution of all dynamical processes in the ocean,
including mesoscale and submesoscale eddies, and the phases
of internal waves, to exactly match those of the real ocean.

As expected, the agreement for the Ekman component is
very high, reflecting the highly forced nature of this component,
with almost no impact of the oceanic variability. In contrast, the
correlation between the simulated and observed FS and UMO
are low (see Table 1). This likely reflects a combination of the
model’s limitation in simulating the observed transports as well

FIG. 6. (a) Ensemble variance saturation value (see Fig. 5 for details) and (b) chaotic variability
fraction, for the zonal mean streamfunction. (c) Chaotic variability fraction for the AMOC index
and its components at the same depth level [black horizontal curve in (a) and (b)]. The red verti-
cal line highlights the RAPID–MOCHA array position at 26.58N.
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as a more important role of internal variability for these
components.

b. Chaotic variability

Chaotic variability estimation of the RAPID-like recon-
structed AMOC cR and its components (FS and UMO) are
shown in Table 2. The cR chaotic fraction is found to be
slightly higher (15%) than for the full AMOC (10%, when
excluding the Gulf of Mexico, Table 3). The main contribu-
tion of the chaotic variability arises from the FS transport
(35%), which is partly compensated by the UMO chaotic vari-
ability. As detailed in section 2c, in this decomposition, part

of the barotropic component is included in the FS transport,
another part arising from the density differences at bound-
aries is included in the UMO component, but the part arising
from local barotropic velocity across the main basin is lost.
The part of the barotropic transport included in the UMO
component plays an important role in the estimation of the
chaotic variability. Indeed, when considering the third decom-
position (cR2B) where the barotropic component is removed
from the UMO component in the main basin, the chaotic
variability fraction of the AMOC variability rises to 22%,
which corresponds to an overestimation by a factor 2 (see
Table 2). Hence, the fraction of the barotropic component
assessed from the FS transport is not sufficient to retrieve
the compensation of chaotic variability between the baro-
tropic and geostrophic shear components. Despite this lack
of compensation, the RAPID–MOCHA array gives a rea-
sonably good estimation thanks to the fraction of the baro-
tropic transport included in UMO as a consequence of the
assumption of a level of no motion at 4820 dbar (McCarthy
et al. 2015), which is essentially equivalent to assuming a

FIG. 7. AMOC, RAPID-like reconstructed AMOC time series and its components for the
N006 simulation. (top) AMOC (black solid), reconstructed AMOC (red solid) and RAPID–

MOCHA array (red dashed line) over the period 2004–12. (bottom) Blue, black, and magenta
lines correspond to the Florida Strait (blue), Ekman (black), and the upper midocean (magenta)
transports, respectively. Dashed lines are the components from the RAPID–MOCHA array. All
time series are smoothed by a one-month running average.

TABLE 1. Correlation coefficients between observed and
simulated time series over the common period 2004–12 for time
series smoothed with a 1-month running average (Fig. 7).

AMOC UMO FS Ekman

Raw 0.69 0.43 0.43 0.97
Detrended 0.70 0.43 0.42 0.97
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level of no motion at the bottom as we do for our AMOC
reconstructions in the model.

To summarize, the strong compensation of the chaotic vari-
ability between the barotropic and geostrophic shear compo-
nents highlighted in the previous section still applies for the
corresponding RAPID array components (i.e., FS and
UMO). However, part of the barotropic component arising
from local barotropic velocity in the main basin is lost, imply-
ing that part of the chaotic variability of the geostrophic shear
component is not compensated anymore. As a result, the
AMOC chaotic fraction is slightly overestimated by the
RAPID array reconstruction.

c. The 2009/10 event

Until now we have assessed the chaotic AMOC variability
as an average over a period of several years. In a next step we
will assess whether the most extreme AMOC event recorded
so far by the RAPID observing system in 2009/10 was particu-
lar in terms of chaotic contribution.

In 2009/10, the AMOC underwent a transient decline of
roughly 30% (Bryden et al. 2014; Srokosz and Bryden 2015).
This decline is believed to be partly responsible for the
cooling of the subtropical North Atlantic throughout 2010
(Cunningham et al. 2013) with potential impact on the weather
over the North Atlantic and European region. Both Roberts
et al. (2013) and Blaker et al. (2015) showed that the main fea-
tures of this event are captured in an ensemble of forced ocean
simulations, suggesting that the atmospheric forcing played a
dominant role in this event.

The 2009/10 slowdown event and the following event in
early 2011 are well reproduced in the simulation, both in
terms of timing and amplitude (Fig. 7). It is even more strik-
ing in the cumulative transports of each component (Fig. 8).
The cumulative transport is computed as the cumulative sum
of the time series anomalies from April 2004 to the end of the
time series. The anomalies are computed from the average for
the period from April 2004 to December 2008, which repre-
sents the “normal” AMOC following the method described in
Bryden et al. (2014). Even though the events seem underesti-
mated in ORCA12 compared to the observations when
using the raw data (Figs. 8a,b), this underestimation disap-
pears completely when considering linear detrended data
(Figs. 8c,d). This highlights the strong sensitivity of this diag-
nostic to long-term trends in the time series. A disagreement
in the linear trend between two time series, even very small,
could end up in a very different behavior of the cumulative
transport. Therefore, when analyzing a short-term event such
as the AMOC decline in 2009/10 in this way, the long-term
trend should be removed for proper comparison. For the
results shown in Figs. 8c and 8d, we therefore remove the
transport trend for the 2004–12 period in the N006 hindcast.
In this case, the agreement is remarkably good for all compo-
nents. While we expect good model–observation agreement
for the Ekman component, this is more surprising for the FS
and UMO components. Our results imply that the 2009/10
event can be mostly reconstructed from the forcing alone for
the AMOC as well as for its components in accordance with
the findings of Roberts et al. (2013).

To characterize the behavior of the chaotic variability of the
AMOC during 2009/10, we look at the E2007 ensemble variance
during the event (Fig. 9). Note that the assessment of the aver-
age chaotic variability (Figs. 5 and 6) takes into account the
period covering the 2009/10 event for the E2007 ensemble.
However, even though we cannot obtain a robust conclusion
from our experiment, the comparison of the ensemble variance
fluctuations and the AMOC fluctuations gives a first insight into
the contribution of chaotic variability to this extreme event. The
E2009 ensemble is also included in Fig. 9b and even though the
start date is so close to the onset of the 2009/10 slowdown
the spread is similar in both ensembles during the event.

The chaotic variability of the AMOC during the event is very
close to the average, with no remarkable behavior of the
ensemble variance, either for the AMOC nor its components.
The same is true during the following drop in early 2011. Inter-
estingly, the ensemble variance of the full AMOC cfull, the
RAPID-like reconstruction cR and the UMO and FS compo-
nents are significantly (at the 95% confident level) above the

TABLE 2. Total, chaotic, and chaotic fraction of the
reconstructed AMOC variance (Sv2) and its components at
26.58N. AMOCR corresponds to the reconstructed AMOC
following the description of section 2c(2), i.e., using the main
basin geostrophic compensated component (UMOR), while
AMOCR2B corresponds to the reconstructed AMOC detailed in
section 2c(3), i.e., using the main basin geostrophic shear
(UMOR2B) component. The Florida Strait transport (FS) is
similar for both decompositions.

Chaotic
variance

Total
variance

Chaotic
fraction

FSR 2.4 6.9 35%
UMOR 3.4 10.9 31%
UMOR2B 5.0 10.9 45%
(FS 1 UMO)R 2.2 8.8 25%
(FS 1 UMO)R2B 3.9 9.4 42%
AMOCR 2.3 15.4 15%
AMOCR2B 3.6 16.5 22%

TABLE 3. Total, chaotic, and chaotic fraction of the full AMOC variance (Sv2) at 26.58N and its barotropic (BTR) and geostrophic
shear (GEOSH) components. The transports are computed in the main basin, as done in the RAPID–MOCHA array (i.e., excluding
the Gulf of Mexico).

BTR GEOSH BTR 1 GEOSH RES AMOC

Chaotic variance (Sv2) 3.9 4.6 1.8 0.1 1.8
Total variance (Sv2) 9.8 10.1 9.8 0.4 17.7
Chaotic fraction 40% 45% 19% 32% 10%
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average in late 2011. This remarkable increase in the chaotic
variability is reproduced in the E2009 ensemble (not shown) for
the full AMOC cfull and the UMO component, but weaker and
delayed by 3 months, and is not retrieved for the FS component
and the reconstructed AMOC cR. It does not correspond to
any remarkable event in the AMOC or its components fluctua-
tions and therefore is not straightforward to understand.

In summary, the 2009/10 event is very well reproduced in
ORCA12, suggesting a dominant role of the atmospheric forc-
ing. This event does not stand out in terms of chaotic variabil-
ity with a value which remains close to the average of the
2008–12 period. The idealized model used in the appendix

(Figs. A1, A2) suggests, that for an ensemble size of 4, events
such as in 2011 (Fig. 9b) are not uncommon but that these
no longer stand out when the ensemble size is increased
(Fig. A2).

5. Discussion and conclusions

The chaotic variability of the full AMOC exhibits local
maxima around 248, 388, and 648N. The first two peaks,
around 248 and 388N, respectively, have already been
observed for interannual to decadal chaotic variability of the
AMOC by Leroux et al. (2018, their Fig. 4b), showing that
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FIG. 8. Cumulative transport anomalies over the RAPID–MOCHA period (a),(c) in the observations and (b),(d) in
the model simulations for (top) raw time series and (bottom) linearly detrended time series. The transport anomalies
are computed with respect to normal conditions, which are defined to be the average over the 2004–08 period follow-
ing the approach of Bryden et al. (2014). Then, the anomalous transport is accumulated over time. Line colors:
AMOC (black), Florida Straits (blue), Ekman (green), and upper midocean (magenta). Thick and thin lines in (b) and
(c) show the AMOC and its components for the control simulation N006 and for the additional 3 ensemble members,
respectively.
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these latitudes stand out as relatively chaotic on a large range
of time scales. However, the processes responsible for these
local maxima remain unclear, as they do not correspond to
specific maxima in the chaotic variability of the AMOC com-
ponents. Note that the Loop Current in the Gulf of Mexico
might be a good candidate to explain the peak around 248N.
Indeed, it has been found to account for a particularly strong
compensated variability of both the barotropic and geo-
strophic shear contributions at this latitude (not shown). In
addition to this compensated variability, part of the Loop
Current fluctuations is likely to impact the AMOC transport
at this latitude, thereby increasing its chaotic behavior
(Hirschi et al. 2020). The peak at 388N is likely related to the
eddy activity around the separation of the Gulf Stream and its
extension into the North Atlantic drift.

A striking feature in our findings is the large, often compen-
sating variability in the barotropic and geostrophic shear
contributions. Since any temporally variable or constant
transport (or any time series) can in principle be decomposed
into two large, compensating transports, this variability is
somewhat artificial. However, in our case the decomposition
into the barotropic and geostrophic shear components pro-
vides insight into the nature of the chaotic AMOC transport
variability. The high fraction of chaotic variability for BTR
and GEOSH (Fig. 6) indicates that there is a higher degree of
decorrelation between ensemble members than for the other
AMOC components. For example, assuming a case where the
correlation is zero one can expect to find a chaotic variability

fraction of 1. While eddies cannot explain the total variability
seen for BTR and GEOSH (Table 2) they are characterized
by strong barotropic and geostrophic velocities which are
decorrelated between ensemble members. Hence one can
expect the differences between ensemble members to some-
times be large. Additionally, the small number of ensemble
members (4) can lead to an overestimate of the variability (in
the same way as one can overestimate the variance of, e.g., a
long time series when estimating the variance of the full time
series from one small subsample). This can be seen in Fig. A1,
which illustrates that even though the average variance is
underestimated with an ensemble size of 4, there are instances
where variance is markedly overestimated. The spikes in cha-
otic fraction for BTR and GEOSH that exceed 1 seen at some
latitudes in Fig. 6 have to be considered in this context.

At 648N, a maximum of the of the barotropic and geo-
strophic shear chaotic variability is observed, suggesting that
these two components explain most of the relatively high level
of chaotic behavior of the AMOC in this region. This peak of
chaotic variability has been seen in a 1/48 resolution model
simulation by Hirschi et al. (2013) on subannual time scales,
but not on interannual time scales, suggesting that this high
chaotic variability at subpolar latitudes is restricted to suban-
nual time scales. Consistently, this high chaotic variability is
not retrieved in Leroux et al. (2018), who focus on interannual
variability. This chaotic behavior at 658N raises questions
about the attribution of recently observed AMOC signal
within the OSNAP framework (Holliday et al. 2018; Lozier

FIG. 9. (a) RAPID-like reconstructed AMOC time series as simulated in N006 from 5-day
means (red line) and one-month running mean (black line). (b) E2007 and E2009 ensemble stan-
dard deviations for the AMOC and its components normalized by their respective standard devi-
ations. Solid black: saturation value of the AMOC. Black dashed: AMOC-R. Solid magenta:
upper midocean. Solid blue: Florida Strait component. The respective color dots (E2007) and
squares (E2009) highlight values, which are significantly different from one according to a Fisher
test at the 95% confidence level. The time series are smoothed by a seasonal (3 month) running
mean. The gray shading highlights the 2009/10 minimum event and the associated second mini-
mum in 2010/11 (Blaker et al. 2015).
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et al. 2019). More generally, most of the AMOC chaotic vari-
ability arises from the sum of these components, as the
Ekman component is strongly forced by the atmosphere.
However, the residual component, even though it is a weak
contribution to the total AMOC transport exhibits strongly
chaotic fluctuations that might have an impact on the chaotic
fraction of the AMOC variability.

At 26.58N the compensated variability of FS and UMO
highlighted in our study has been identified in the observa-
tions after 2008 (Frajka-Williams et al. 2016), but not during
2004–08 (Kanzow et al. 2010) and is dominated by annual to
subannual time scales in accordance with our findings. Note
that the chaotic fraction of the AMOC variability might vary
with time. The short integration time of our ensemble experi-
ments prevents any investigation of this behavior. However,
lack of fluctuation in the ensemble spread over the strong
decline observed in 2009–10 suggests that this event does not
stand out as remarkable regarding the chaotic variability of
the AMOC. Mid-2011 is the only time when our experiments
suggest a chaotic variability that markedly differs from the
average chaotic variability (Fig. 9b). This indicates that the
chaotic AMOC variability may vary in time (i.e., for some
periods the AMOC is more “chaotic” than for others). How-
ever, the size of our ensemble is too small for us to make a
firm statement. With four members the ensemble variance is
characterized by spikes (Fig. 5c, Fig. A1) with values much
higher than the average variance. The conceptual model used
in appendix to illustrate the impact of the ensemble size sug-
gests that at least 10 (but ideally more) ensemble members
are needed to determine whether high values such as those
seen in mid-2011 in Fig. 9b reflect an increased chaotic vari-
ability during that period rather than an artifact of the limited
ensemble size (Fig. A2).

In summary, our study has provided a full description of
the intra to interannual variability of the AMOC and of its
barotropic, geostrophic shear, and Ekman contributions using
an eddy-resolving ocean hindcast over the 1960–2012 period.
The part of the AMOC variability emerging from chaotic pro-
cesses such as eddies and waves has been assessed from two
ensemble experiments starting in 2007 and 2009, respectively.
The main findings of our study are as follows:

• Apart from a very high variability around the equator
related to surface wind, the full AMOC variability exhibits
its maximum around 358N, where the standard deviation
reaches roughly 5 Sv.

• The barotropic and geostrophic components each exhibit a
large variability (typically 5–8 Sv, with peaks of more than
10 Sv) with a strong compensation between both compo-
nents. The standard deviation of their sum is roughly 3–4
Sv in the midlatitude North Atlantic, which is similar to the
variability due to the Ekman component.

• The compensation between the barotropic and geostrophic
components arises from chaotic spatial fluctuations of spe-
cific currents over topography, resulting in the flow mainly
projecting on one component or the other.

• The chaotic fraction of the AMOC variability ranges from
3% to 26% of the total variance, depending on the latitude,

showing that on intra-annual time scales the AMOC fluctu-
ations in a forced eddy-rich ocean model mainly reflect the
prescribed atmospheric variability.

• At 26.58N, 10% of the total AMOC variance is chaotic.
This fraction is slightly overestimated (∼15% of the total
AMOC variability) by the RAPID methodology owing to
the loss of information from the local barotropic velocity in
the main basin, which cannot be assessed from the meas-
urements. As a result, part of the geostrophic shear compo-
nent chaotic variability is not compensated anymore,
thereby increasing the estimate of the relative importance
of chaotic variability of the AMOC.

• At 26.58N, where the AMOC has been monitored daily by
the RAPID–MOCHA array since April 2004, the compen-
sated variability of the barotropic and geostrophic shear
components is strong (albeit weaker than at most other
mid- to high latitudes). This compensated variability is par-
tially retrieved between the RAPID–MOCHA observed
contributions, i.e., FS and UMO components.

• Despite being common to all members the 2009/10 slow-
down of the AMOC is not reflected in the ensemble spread
compared to values from the 2007–12 period.
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APPENDIX

Ensemble Size

Our results are based on an ensemble size of only 4
members. The consistency of results seen in earlier studies
of the chaotic-AMOC variability using very small, i.e., 2
(Hirschi et al. 2013), or much larger numbers of ensemble
members (e.g., 50 in Leroux et al. 2018) provides some con-
fidence that the results we presented in the previous sec-
tions are robust. Nevertheless, it is clear that an ensemble
size of 4 is not sufficient to accurately capture the full range
of chaotic variability. However, even with current HPC
resources the generation of a large ensemble with a model
such as ORCA12 is prohibitively expensive. In the follow-
ing we therefore introduce a conceptual model to illustrate
how much the small ensemble size used in our study is
likely to affect the ensemble variance as well as the time
needed for the ensemble spread to reach saturation
(Fig. A1). Starting from the AMOC time series (A) in one
of the ORCA12 ensemble E2007 we construct ensembles of

G ERME E T A L . 943MAY 2022

Brought to you by UNIVERSITY OF SOUTHAMPTON HIGHFIELD | Unauthenticated | Downloaded 06/14/22 08:39 PM UTC

http://www.archer.ac.uk


FIG. A1. Impact of ensemble size on estimates of the ensemble variance and of the
time needed for the divergence between ensemble members to reach saturation. (a)
Envelope from 1000 synthetic ensemble members (gray shading: 2.5, 25, 75, 97.5 percen-
tiles) and AMOC from one of the E2007 ORCA12 ensemble members (blue line). (b)
Growth and saturation of ensemble variance during ensemble divergence. Mean ensem-
ble variance for ensemble sizes 4 (white line) and 50 (blue line) calculated following Eq.
(A6). Light (dark) gray shading indicates the 2.5 (25) and 97.5 (75) percentiles for
ensemble size 4. Light (dark) blue shading: as above but for ensemble size 50. (c) Distri-
bution of saturation time as a function of ensemble size. The yellow circle indicates the
actual saturation time. (d) Boxplot of distribution of mean ensemble variance calculated
according to Eqs. (A4) (blue) and (A7) (red). Ensemble variances obtained using either
Eq. (A4) or (A7) are shown for sizes 2, 3, and 4 (stars and diamonds, respectively).
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size nk = [2, 3, 4, 5, 10, 20, 50, 100, 1000] from artificial time
series ck,l(ti):

ck,l ti( ) � A′ ti( ) 1 «k,l ti( )f ti( )���������������������
1 1

s «k,l( )
s A( ) f ti( )

√ 1 A, k � 1,…,nk[ ], l � 1,…, nl[ ] ·

(A1)

The time series A is separated into its time-fluctuating
and time-mean components A ti( ) �A′ ti( )1A. A(t) provides
a baseline variability common to all ensemble members and
in our case it is also common across all ensembles. To gen-
erate ensembles we add multiple realizations of the chaotic
variability, «k,l(ti), which can also be described as colored
noise, which has similar statistical properties (amplitude
and autocorrelation) as in our ORCA12 simulations. To
obtain «k,l(ti) we use block bootstrapping (Künsch 1989). In
a first step we compute differences between ORCA12
ensemble members p, q = [1, 2, 3, 4] from E2007:

Dcm,E 2007 ti( ) � cE 2007,p ti( ) 2 cE2007,q ti( ): (A2)

This provides a set of 6 time series Dcm to inform the
statistical properties required for the time series «k,l(ti)
By randomly sampling (with replacement) the time series
Dcm,E2007, in blocks of sufficient length one gets the new
time series ck,l(ti) needed for the bootstrapping. We tested
block lengths between 30 and 180 days (i.e., blocks of 6 and
36 time steps) and found a good agreement between the
autocorrelations of the synthetic time series and those
found for Dcm,E2007 for a block length of 155 days (31 time
steps). We note here that the following results about
ensemble spread and saturation do not depend strongly on
the choice of the block length but remain qualitatively the
same for any given window length [and indeed when using
different approaches to generate the noise «k,l(ti)].

To represent a gradual divergence between the ensem-
ble members, cl,k(ti), a sigmoid function scales the ampli-
tude of «k,l(ti) which is added to the AMOC from ≈ 0 at t1
to ≈1 at tn:

f ti( ) � 1
1 1 e2x , x � a ti

tn

( )
2 b, ti�1,…,n � 0, 5, 10,…, 1825[ ], a � 35, b � 3, (A3)

with time steps Dt = ti11 2 ti = 5 days. The denominator��������������������������������
11 s2 «k,l( )=s2 A( )

[ ]
f ti( )

√
in Eq. (A1) ensures that when add-

ing the noise «k,l(ti) the variance of the time series cl,k(ti) does
not increase (which it otherwise would) and s 2 «k,l( )=s 2 A( ) is
the ratio between the standard deviations of «k,l(ti) and A. Each
ensemble of size nk is repeated nl =1000 times.

As illustrated in Fig. A1a the statistical model introduced
above can be used to simulate a situation where ensemble
members diverge while all having a large fraction of total vari-
ability in common (similar to what is shown in Figs. 5a,b).

Following Eq. (18) the ensemble variance can then be
calculated according to

s2
l,k ti( ) � 1

nk

∑nk
i�1

cl,k ti( ) 2 cl,k

[ ]2
,

nk � [2, 3, 4, 5, 10, 20, 50, 100, 1000]: (A4)

Since for each ensemble size nk the process is repeated
1000 times we obtain a distribution of values for the ensem-
ble spread (Figs. A1b,d). The saturation time ts (Fig. A1c)
is defined as the time when the ensemble divergence first

exceeds c s2
l,k ti( ) where c = 0.9, and where the overbar

denotes the mean over the second half of the time series when
saturation has been reached (i.e., ti between 1000 and 1825
days). Figure A1c illustrates that for small ensemble sizes the
saturation time ts systematically underestimates the true value
t*s which in this idealized model can readily be determined
from the sigmoid function in Eq. (A3). Since we look at the
saturation time for the ensemble variance, t*s is reached when

1
1 1 e2x

( )2
� c

Solving for x then allows us to determine t*s :

2e2x 1 e22x � 1 2 c
c

, u � e2x,

u2 1 2u 2
1 2 c
c

� 0, u �
2 2 1 2

��
1
c

√

2
,

x �2ln u( ) � at*s
tn

( )
2 b,

t*s �
tn 2ln u( ) 1 b
[ ]

a
,

which yields t*s ≈ 309 days (or 0.85 years). Figure A1c illus-
trates that despite ts underestimating the saturation time
the values obtained for small ensemble sizes are quite close
to the actual saturation time t*s suggesting that the satura-
tion time found in the ORCA12 ensemble is likely to be a
reasonable estimate.

Equation (A4) describes the approach used to estimate
the ensemble spread in our ORCA12 ensembles which is
the same as in Leroux et al. (2018). As shown in Hirschi
et al. (2013), for variability with periods that are short com-
pared to the length of the simulation, the ensemble vari-
ance can also be estimated from the difference between
pairs of ensemble members:
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c ′
lij ,k

� cli ,k 2 clj ,k

( )/ ��
2

√
(A5)

s 2′
lij,k � 1

tn 2 ts

∑tn

ti�ts
clij ,k ti( ) 2 clij ,k

[ ]2
, (A6)

where the overbar denotes the average of clij ,k ti( ) between
the saturation time ts and the last time step tn. With this
approach the temporal information about the ensemble var-
iance as shown in Fig. A1b or Fig. 5 is lost. Equation (A6)
cannot be used to estimate how large the ensemble spread
is for a particular event. However, it has the advantage that
an estimate of the mean ensemble spread can be obtained
from only two ensemble members. For each ensemble of
size nk the ensemble variance according to Eq. (A6) is cal-
culated (nk 2 1)nl times to get a distribution of values. It is
instructive to illustrate the differences between calculating
the mean ensemble variance according to Eq. (A6) and the
mean variance s2

l,k :

s2
l,k � 1

tn 2 ts

∑tn

ti�ts
s2
l,k ti( ): (A7)

Figure A1d illustrates how the mean ensemble divergence
according to Eqs. (A4) and (A7) compare for different
ensemble sizes. For small ensemble sizes (A4) underestimates
the variance of the ensemble spread but the values obtained
with both approaches converge to the same value for increas-
ing ensemble sizes (Fig. A1d). There is little dependence of
mean ensemble variance on the ensemble size when using
(A7). For small ensemble sizes there is a larger spread of val-
ues for the mean variance but the median (and mean) of the
distributions is similar for ensemble sizes from 2 to 1000.

With an ensemble size of n = 4 (as in our ORCA12
ensemble) our simple model suggests that one is likely to
capture about 3/4 of the mean ensemble variance when
using Eq. (A4) (Fig. A1d). Figure A1d shows that applying
Eqs. (A4) and (A7) for ensemble sizes of 2, 3, and 4 on the
ORCA12 data leads to values that fall well within those

from the statistical model calculated. However, as illus-
trated in Fig. A1b when looking at the ensemble variance
for any given point in time the uncertainty is much larger
as shown by the spikes in the variance values shown in
Fig. 5 and by the high values of the 97.5 percentile in
Fig. A1b.

Figure A2 illustrates how the standard deviation of the
ensemble standard deviation normalized by its saturation
value varies in time for different ensemble sizes. This is
equivalent to what is shown for ensemble E2007 in Fig. 9b
for the AMOC and its components. Figure A2 suggests that
the high values seen in the first half of year 2011 in E2007
are statistically significant as the value of about 1.7 seen for
the AMOC in Fig. 9b clearly exceeds the 97.5 percentile of
the values obtained for an ensemble size of 4. This could be
interpreted as a time varying amplitude of the chaotic vari-
ability. However, it is expected that at times the statistical
significance levels will be reached by chance. This is illus-
trated for two 4-member ensembles (Fig. A2, black and red
lines) where in one case the 97.5 percentile level is similarly
exceeded after about 1.2 and 2.3 years as for the AMOC in
E2007 (Fig. 9b). For such a peak to be indicative of a statis-
tically significant temporal change in the amplitude of the
ensemble spread one would expect the level of the 97.5th
percentile to increase. This, however, is not the case in our
statistical model and the peaks at 1.2 and 2.3 years do not
mean there is a statistically significant shift in the amplitude
of chaotic-intrinsic variability. Whether this would be the
case in E2007 cannot be answered}only a larger ensemble
size (or a more detailed analysis of e.g., the temporal vari-
ability of the mesoscale eddy field in E2007) would tell.
Increasing the ensemble size to 10 (blue lines) and
50 (cyan) markedly decreases the amplitude of the excur-
sions for the standard deviation as one expects for ran-
domly distributed ensemble members with no systematic
variability in timing of the occurrence of peaks and troughs.
In summary, our statistical model illustrates that with an
ensemble size of 4 one has to be careful when making state-
ments about the temporal variability of the ensemble
spread. However, our statistical model also suggests that

FIG. A2. Normalized ensemble standard deviation (following Fig. 9b) for ensemble sizes of 4
(red and black lines), 10 (blue), and 50 (cyan). Time series are smoothed with a 3-month running
mean. Gray shading is the range between the 2.5 and 97.5 percentiles for ensemble size of 4.
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with an ensemble size of 4 one is likely to capture about
3/4 of the average ensemble spread.
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Künsch, H. R., 1989: The jackknife and the bootstrap for general
stationary observations. Ann. Stat., 17, 1217–1241, https://doi.
org/10.1214/aos/1176347265.

Latif, M., M. Collins, H. Pohlmann, and N. Keenlyside, 2006: A
review of predictability studies of Atlantic sector climate on
decadal time scales. J. Climate, 19, 5971–5987, https://doi.org/
10.1175/JCLI3945.1.

Lee, T., and J. Marotzke, 1998: Seasonal cycles of meridional
overturning and heat transport of the Indian Ocean.
J. Phys. Oceanogr., 28, 923–943, https://doi.org/10.1175/
1520-0485(1998)028,0923:SCOMOA.2.0.CO;2.

Leroux, S., T. Penduff, L. Bessières, J.-M. Molines, J.-M. Bran-
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