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A B S T R A C T   

The development of a system that monitors social media continuously for general landslide- 
related content using a landslide classification model to identify and retain the most relevant 
information is described and validated. The system harvests photographs in real-time from these 
data and tags each image as landslide or not-landslide. A training model was developed with 
input from computer scientists, geologists (landslide specialists) and social media specialists to 
establish a large image dataset that has then been applied to the live Twitter data stream. The 
preliminary model was developed by training a convolutional neural network on the dataset. 
Quantitative verification of the system’s performance during a real-world deployment shows that 
the system can detect landslide reports with Precision = 76%. The demonstrator model is 
currently running live https://landslide-aidr.qcri.org/service.php; the next stage of development 
will incorporate stakeholder and user feedback.   

1. Introduction 

When landslides occur, their impacts are usually not discovered beyond the attention of first responders or government agencies 
until the news media are able to attend the scene or, for example in remote areas, once satellites have been able to collect imagery and 
their responding communities have activated the Disaster Charter (https://disasterscharter.org) and processed the data. There is 
currently an estimated time lag, or data latency, ranging from several hours to several days from when a disaster happens and reliable 
spatial data becoming available to users, particularly with respect to satellite data [1–4]. Data latency is associated with the satellite 
return path and the route that it takes, image quality and processing time. Landslides can be associated with rainfall or volcanoes 
meaning satellite data acquisition can be delayed due to poor image quality caused by cloud cover or whether the satellite passes the 
area in the day or night [5,6]. Interpretation of these images also requires considerable effort by specialists although recent work aims 
to speed this process up using automatic image recognition [7–12]. This means that locating and assessing the disaster can take 
considerable time and most studies are based on post-event analysis. 

Social media data, while inherently imperfect, provide near-real-time information in large quantities and at spatial densities that 
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may exceed conventional sensor networks that can complement data from other sources [13]. These ‘social sensor’ data allow access to 
a rich source of human information such as text, videos, photographs, timestamps and coordinates [14,15] and can report disaster 
information quicker than the observatories [16]. In 2021, there were 3.78 billion social media users worldwide [17] and acquiring 
disaster data through these platforms has gathered pace, particularly over the last decade. While these data have great potential for 
near-real-time reporting of landslide events and their associated impacts, they are noisy and it is difficult for disaster managers to 
extract relevant and timely information [18,19]. 

2. Background 

The reporting of landslides and their impacts (damage and loss) varies widely across the globe reflecting a range of physical and 
socio-economic drivers and contexts and the attention of the mass media is not uniformly distributed across disaster-affected areas 
[20]. This means that any attempt to quantify global landslide hazards and the associated impacts is an underestimation [21]. Few 
studies exist at present that provide a globally consistent set of estimates for landslide hazard [22]. Landslides often occur in a 
multi-hazard cascading environment triggered by other more conspicuous, and therefore more widely reported, hazards such as 
earthquakes and tropical storms [23]. Consequently, impacts such as the number of fatalities caused by landslides themselves are 
underestimated because they can be incorrectly reported as being the result of the trigger event, e.g. earthquake [24]. Further, global 
studies have confirmed that fatalities attributed to non-seismically induced landslides were underestimated in the International 
Disaster Database (EM-DAT). Between 2004 and 2010 [25], estimates that the EM-DAT database under-reported the number of fa-
talities by 2000% whilst between 2007 and 2013 [26], found this under-representation to be by 1400%. These numbers are an order of 
magnitude greater than previous studies had indicated and highlight inaccurate quantification and thus appreciation of the true 
impacts of landslides, resulting in poor prioritisation of global-scale landslide research and mitigation [25]. 

National and regional landslide databases have been established in many countries to document and map hazard events and their 
associated damage and losses over time e.g., in Europe [27,28], India [29], China [30], Japan [31], Africa [32], Canada [33], the 
Caribbean [34], the United States of America [35], New Zealand [36], Australia [37], globally [21,38,39] and globally for 
non-specialists [40]. These databases have various applications including scientific research, the creation of landslide susceptibility 
maps (e.g. Refs. [41,42], Disaster Risk Reduction (e.g. Ref. [43], planning (e.g. Ref. [44], landslide forecasting models (e.g. Ref. [45], 
and the building of resilience to or documenting impacts of climate change (e.g., Refs. [46,47]. Databases vary depending on the states 
of wealth, politics and governance, education, insurance and the availability of institutions willing and able to maintain such data-
bases, as well as the landslide strategies adopted by the host nation or region [28]. Whereas the physical location and dimensions of 
landslides form the backbone to many landslide databases, the associated impacts (i.e., damage and loss) are much less catalogued 
despite this being a main component of Disaster Risk Reduction [28,48]. This is due to multiple factors and challenges associated with, 
and varying priorities for, capturing data as well as difficulties in using international standards at different scales [49,50]. 

Historically, national and regional landslide databases have required substantial investment to enable the manual trawling of maps, 
aerial photographs, scientific papers, reports and the printed news media for data population (e.g., Refs. [51,52]. The British 
Geological Survey (BGS) estimates that an average year may require 180 staff hours spent manually trawling the news and social media 
for data on UK landslides. This work feeds into the UK National Landslide Database [41], which underpins much of the landslides 
research carried out by this national geological survey such as the Daily Landslide Hazard Assessments for the Natural Hazard Part-
nership (http://naturalhazardspartnership.org). This time-consuming work has been addressed to an extent by using automated 
procedures to harvest landslide-related news media [26,53–56] although this still requires manual interpretation to extract details 
such as location or impacts [57]. have taken this a step further by developing an automated system that analyses the content of news 
media, assigning the information to different classes according to ‘news relevance’ and creating a landslide inventory. 

Landslide data-gathering processes have changed considerably over the last two decades as digital technology, data availability, 
earth observation techniques, database standards and software interoperability have improved (e.g., Ref. [58]. The use of smartphones 
has increased the incidence, detail and speed of data reported [59] where, in general, information (including photographs) of land-
slides are published on social media inherently because they have had an impact for humans of some kind [60]. Indeed, dedicated 
citizen science smartphone applications have been developed specifically for hazard data capture by non-specialists, the benefits and 
challenges of which are discussed in Refs. [61–63]. LastQuake (https://www.emsc-csem.org [64,65]; is a successful example for 
earthquakes where eyewitnesses can share their felt experiences as well as pictures and videos, data which aim to improve rapid 
situational awareness [66]. myHaz-VCT (https://oda.bgs.ac.uk) is focused geographically on St Vincent and the Grenadines and 
collects photographs, videos and free-text descriptions on a range of natural hazards including flooding, storms, landslides, earth-
quakes, volcanoes, tsunamis and other environmental phenomena such as drought, ground subsidence and changes in water levels 
[67]. 

At the time of writing, there are two known smartphone applications for the specific acquisition of landslide data, both of which 
require active participation by the user: Landslide Monitoring App (LaMA) in Turkey [68] and the Landslide Information System (LIS) 
in Hong Kong [69]. Collecting data on landslides through such applications is challenging in terms of user engagement and retention; it 
is far less common to witness a landslide than an earthquake or a flood, for example, due to them being highly localised. 

Elsewhere, the use of citizen science has mostly extended to inviting the public to contact the researchers through online portals, 
web forms or via email. Examples include ‘Report a Landslide’ by the BGS [70]; as well as their engagement via social media, and the 
‘Report a landslide’ and ‘Did You See It?’ public engagement [71] carried out by the United States Geological Survey, now superseded 
by the NASA Landslide Reporter [38]. An example of a regional study is [72] where non-specialists are invited to ‘Report an event’ for 
the Bond Fire Debris Flows in California. 
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Perceptions of what constitutes reliable information are evolving to include unstructured data, such as that published on social 
media. This is now becoming more valued as a tool to record hazard and hazard impact information, particularly as it can include eye- 
witness accounts and facilitate the reconstruction of events [68,73]. To add weight to this, it has become increasingly recognised that 
news media sources have reporting biases, such as factual accuracy or not reporting at all due to prioritisation of other news [74–76]. 
Despite this however, the bulk of data collection and interpretation still involves time consuming work by specialists searching the 
Internet for news and social media reports, directly engaging in communications with those submitting information and then inter-
preting the data received [38,54,60,68]. 

Under-representation in landslide databases can feed through to emergency planning and preparedness for landslide response 
when natural disasters occur, particularly in areas for which regional landslide susceptibility mapping has not been completed. In such 
regions, especially if they are remote with poor access to communication technologies, international responses to natural disasters are 
supported by attempts to better understand the distribution of triggered landslides, e.g. Nepal where over 4,000 landslides were 
mapped using satellite imagery after the Gorkha earthquake in 2015 [77]. It is important to understand both where landslides may 
have impacted communities with potential damage or loss of life, and where they may affect transport routes and impede emergency 
response activities. For the latter, even small landslide events can block major transport routes so these are particularly important to 
identify. In multi-hazard scenarios timely understanding of impacts such as damming of rivers may be important in terms of protecting 
communities from consequential flooding for example. 

3. Aims 

With an aim to tackle the aforementioned issues, this paper explores a well-known microblogging platform, Twitter, to identify 
landslide-related posts, specifically those with images containing landslides. Twitter allows users to read and post short messages 
called ‘Tweets’. Tweets are limited to 280 characters and photos or short videos can be included. Tweets are posted to a publicly 
available profile or can be sent as direct messages to other users. In 2019, Twitter had 330 million monthly active users and 145 million 
daily active users; a total of 500 million Tweets were sent by Twitter users every day, equivalent to 5,787 Tweets per second [18]. 

In this paper, a new methodology is presented that harvests landslide photographs from Tweets automatically and in real-time. To 
do this, different types of noise and irrelevant content that can be associated with landslide-related social media imagery data are 
identified. Moreover, a further aim is the annotation and release of a dataset for the community to develop image filtering and 
landslide detection tools. Since the focus of this study is to establish a methodology for the landslide dataset creation, a technical paper, 
conducted in conjunction with this study, describes the underpinning theory and presents a detailed experimental approach to the 
model development step [78]. The specific objectives of this paper are:  

1. Novel qualitative analysis of a non-traditional data source (Twitter) for capturing landslide reports  
2. Image labelling methodology for landslide classification  
3. Expert-labelled dataset consisting of 11,737 images 

Fig. 1. Graphical representation showing the workflow for the development of the training model. The live system uses this training model to carry out real-time yes/ 
no analysis on images harvested from Twitter using keywords. Photographs BGS © UKRI [2022]. 
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A similar study was undertaken by Ref. [79] who used a smaller image dataset from different sources and recommend further work 
with a larger dataset before their algorithm can be used without manual intervention. The work presented here involves more 
extensive model training experiments and a larger dataset. 

We suggest that the methodology and labelled dataset will help the disaster management community build tools to detect landslide 
images automatically from social media, with potential for incorporation in multi-hazard impact assessment workflows alongside 
other established methods. Moreover, we anticipate that such a tool will improve response times for first responders. This will enable 
responders to add information pertaining to their understanding of what is happening on the ground in near-real-time providing data 
from those affected as soon as it is published on social media. 

This interdisciplinary work is the result of the collaboration between computer scientists, earthquake-, social media- and landslide 
hazard specialists. The initial objective was for the earthquake-triggered landslides to be reported to the European Civil Protection Unit 
as this hazard can hamper rescue operations. The objective was then extended to incorporate all landslides regardless of their trigger. 
This tool will be open for any institute wanting to speed up social media harvesting on this topic. 

4. Supervised Machine Learning approach 

The process of using Artificial Intelligence (AI) or Machine Learning (ML) for the identification of landslides in photographs 
typically requires two steps: (1) create a large, labelled dataset for the task at hand, and (2) train a ML model to achieve the desired 
classification task. Fig. 1 shows a graphical representation of the workflow. This training dataset contains a collection of photographs 
showing particular characteristics associated with landslides. To create a diverse dataset, we curated a total of 11,737 images from 
three data sources: Google, Twitter and BGS’s image database: GeoScenic [80] all of which contained images of landslides, and 
non-landslides. 6,284 images were downloaded from Google by querying landslide-related keywords such as landslide, landslip, earth 
slip, mudslide, rockslide and rock fall. We developed a multi-lingual list currently comprising 339 keywords in 32 languages: English, 
Albanian, Arabic, Basque, Bengali, Bosnian, Catalan, Chinese, Croatian, Dutch, French, Georgian, German, Greek, Hindi, Hungarian, 
Indonesia, Iranian, Italian, Japanese, Korean, Malaysia, Philippines, Polish, Portuguese, Romanian, Russian, Sesotho, Slovenian, 
Spanish, Swedish, and Turkish (Appendix 1). A total of 1,153 images were collected from Twitter through its Streaming API using the 
same keywords. In addition, 4,300 photographs were donated by the GeoScenic database that were known to be associated with 
fieldtrips involving landslides. Three landslide specialists, co-authors of this paper, then carried out an independent yes/no landslide 
interpretation on the 11,737 photographs using the methodology described below. Fig. 2 shows examples of collected photographs 
divided into ‘landslides’ and ‘not landslides’ that demonstrates the kind of noise associated with image harvesting. 

Although manually curated, keywords were used to acquire images from Twitter and Google; the resultant images are not always 
related to landslides and often contained irrelevant and noisy content. This demonstrates why the use of text-based data collection 
alone is not enough to gather landslide-related reports from social media or the Internet. While the images from the GeoScenic 
database were known to be associated with fieldtrips involving landslides, the set included both landslide and non-landslide photo-
graphs. Therefore, the collected images needed to be evaluated manually by the landslide specialists. Since the AI task is “given an 
image, recognise landslide” without any other external information or expert knowledge available to the AI model, the landslide 
specialists were tasked to devise a labelling methodology while keeping this “computer vision” perspective in mind. 

Fig. 2. Examples of images collected showing landslides and examples of noise (not landslides) Photographs BGS © UKRI [2022].  

C.V.L. Pennington et al.                                                                                                                                                                                              



International Journal of Disaster Risk Reduction 77 (2022) 103089

5

4.1. Expert-labelling methodology 

The decision-making process carried out for the purpose of training the computer model to identify landslide features in photo-
graphs differs from conventional desk- or field-based landslide identification familiar to the geologist. Expert assessment of photo-
graphs involved the application of several assumptions as outlined in the following methodology. 

1.There is no contextual knowledge or previous understanding of the landslide. A data-gathering exercise would usually be carried 
out by landslide specialists to gain as much ground information as possible before any interpretations are made. This requires a 
different approach. Here, information such as any landslide nomenclature, ground conditions, antecedent meteorological context 
or geographic region are excluded from the decision-making process.  

2. Each photograph must be treated in isolation. This may show all or part of a landslide and is confined to one viewpoint. Ideally, 
conventional landslide analysis involves viewing the landslide from several different perspectives and scales before an interpre-
tation is made.  

3. The model does not discriminate landslide ‘type’ (i.e. [81,82], but aims to recognise zones of depletion (where the material has 
come from) and accretion (where it has been deposited). This excludes, therefore, events where the landslide debris has been 
removed by coastal or fluvial erosion or where a landslide has been remediated.  

4. The model aims to show contemporary landslides. This means older but perhaps still active or dormant landslides are omitted from 
the model. Examples of this may include landslides that are slow moving or cyclic but are nonetheless active. Fully vegetated 
landslides may also fall into this category if there is no exposure of geological materials (e.g., rock or earth; Fig. 3).  

5. In order to train the model there was a requirement for a clear representation of a landslide as the major component of the image (e. 
g., Fig. 4).  

6. Where representation was borderline, consideration was given to whether the end user would be concerned by the image being 
returned as a landslide, e.g., in the situation where another geomorphological feature such as a retaining wall or a sinkhole might be 
returned as a landslide. Borderline cases are broadly grouped as (Fig. 5A) backscarps and extensional that could be faults (Fig. 5B), 
material engulfing buildings that could be the landslide deposit but could also have formed through other natural or manmade 
processes (Fig. 5C), debris falling onto roads that could be a landslide deposit or vegetation or mixed debris not associated with 
landsliding and (Fig. 5D) rivers in flow or flood channels that have a similar appearance to debris flow channels. 

Once the dataset creation and model training stages were completed, the demonstrator model was run using Twitter images in real- 
time. Fig. 6 illustrates the workflow involved in collecting, tagging and classifying images as ‘landslide’ and ‘not landslide’. 

4.2. Expert-labelling results 

Using the methodology outlined above, the three landslide specialists carried out independent yes/no interpretations of 11,737 
photographs. In order to ensure reliability of the final labels, an analysis was carried out to measure their agreement using two sta-
tistical measures: Fleiss’ Kappa [83] and percentage agreement (observer agreement). Despite the inherent difficulty of the labelling 
task, the three landslide specialists achieved good overall agreement. An overall Fleiss’ Kappa score of 0.58 was achieved, which 
indicates an almost ‘substantial’ inter-annotator agreement between the three landslide specialists. The percentage agreement is 76%, 
which is only slightly below the 80% mark set as a rule-of-thumb by Ref. [84]. 

Since the ultimate goal is to develop a system that will monitor the noisy social media streams continuously to detect landslide 
reports in real-time, negative (i.e., not-landslide) images were also retained in the dataset to represent completely irrelevant cases (e.g., 
cartoons, advertisements, selfies) as well as difficult scenarios (i.e., those which may look similar to landslides) such as post-disaster 
images from earthquakes and floods in addition to other natural scenes without landslides for model training purposes. The distri-
bution of the images in the final dataset across different categories and data sources are summarised in Table 1. 

As suggested by the table, only about 23% of the images are labelled as landslide in the final dataset. This shows an imbalanced 

Fig. 3. Example of a completely vegetated landslide (flow) that would be excluded from the dataset. BGS © UKRI [2022].  
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class distribution, which presents a challenge in model training simply because the model may decide to always predict not-landslide 
and achieve 77% accuracy (because of the skew in the distribution) but this would not be useful at all. Solutions to problems like this (i. 
e., finding a needle in the haystack) do always need to deal with the class imbalance issue meaning the training set presented here 
reflects this realistic scenario. 

Fig. 4. An example of where there is a clear representation of a landslide as a major component of the photograph BGS © UKRI [2022].  

Fig. 5. Examples of borderline classes. A: This image could be a landslide backscarp or a fault; B: Material engulfing buildings; C: Debris falling onto a road; D: Rivers 
in flow or channels that have a similar form to debris flow type landslides. Photographs BGS © UKRI [2022]. 
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4.3. Demonstrator model results 

The demonstrator model presented here is developed by training a convolutional neural network on the dataset introduced in this 
paper. Specifically, the dataset was split into training, validation, and test sets following a 70%, 10%, and 20% ratio, respectively. 
Then, a model based on ResNet-50 architecture was trained using Adam optimizer with an initial learning rate of 10− 4 and a weight 
decay of 10− 3. On the test set, the trained model achieves an overall Accuracy = 87% and Precision = 74%, Recall (Sensitivity) = 67%, 
and F1-score = 70% for the landslide class. For more details about the extensive model development experiments, we refer the reader 
to Ref. [78]. 

We deployed the system online in February 2020 to monitor the live Twitter data stream and it has collected more than 54 million 
tweets and 15 million image URLs. Only about 2.5 million of these image URLs were deemed unique and downloaded for further 
analysis. The system identified about 38,000 landslide reports (including near-and-exact duplicates) worldwide, which corresponds to 
less than 1% of the collected image URLs and highlights the challenging nature of the problem. More details about this system 
deployment can be found in Ref. [85]. To verify the system performance in the real-world, 3,600 images that were deemed relevant 
and non-duplicate by the system were randomly sampled and labelled by the system as landslide and non-landslide images. 
System-predicted labels were then compared with expert annotations to evaluate the performance of the demonstrator model. There 
were 123 images correctly labelled by the system as landslides (true positives) and 3,395 images correctly labelled as non-landslides 
(true negatives). On the other hand, there were 39 images that were incorrectly labelled as landslides (false positives) and 43 images 
that were incorrectly labelled as non-landslides (false negatives). This quantitative verification exercise showed that the demonstrator 
model can detect landslide reports with Accuracy = 98%, Precision = 76%, Recall (Sensitivity) = 74%, and F1-score = 75%. Below, we 
further evaluate the performance of this demonstrator model qualitatively on a few example images with the help of heat maps or class 
activation maps [86], which highlight the discriminative parts of a photograph that the model is paying attention to (Tables 2 and 3). 
The confidence scores are computed by the demonstrator model using the SoftMax function. 

5. Discussion 

The aim of this work was to develop a system that monitors social media continuously and in real-time for general landslide-related 
content, using the landslide classification model to identify and retain the most relevant information. The system harvests photographs 
from these data and tags each image as landslide or not-landslide. A training model was developed through interdisciplinary working 
by the authors to establish a large image dataset that has then been applied to the live Twitter data stream. 

The demonstrator model is currently running live and landslide images are being harvested in real-time (https://landslide-aidr. 

Fig. 6. Graphical representation illustrating the workflow involved in collecting, tagging and classifying images from Tweets as ‘landslide’ and ‘not landslide’. 
Photographs BGS © UKRI [2022]. 

Table 1 
Distribution of the images across different categories and data sources.   

Google Twitter BGS Total 

Landslide 1,240 598 852 2,690 
Not-landslide 5,044 555 3,448 9,047 
Total 6,284 1,153 4,300 11,737  
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qcri.org/service.php). This is publicly available and users can filter by date and country as well as being able to explore data spatially 
via a map interface. The map interface uses a range of factors to geolocate data markers. The current version prioritises location-based 
text within Tweets over geolocation data or stated location of the user. While not perfect, this allows the map to display landslide sites 
and prevents it from becoming purely a representation of user locations. If geolocation data are used, the location is downgraded to 
adhere to rules around viewing geodata [87,88] and to protect user privacy. Future improvements to locating data are discussed below. 

Also available on the demonstrator model website is the list of keywords from Appendix 1 used to initially extract Tweets. We invite 
users to provide feedback on both the demonstrator itself and the list of keywords via the link above. Once feedback has been collated, 
we plan to carry out future iterations to move this work from a demonstrator model to an operational service. 

The image interpretation process used by the three landslide specialists was iterative in the initial phase of work. To maintain 
consistency of agreement, the methodology described above was established through much interdisciplinary discussion, which led to a 
phase of reinterpretation. While this put demands on the landslide specialists, the combined understanding produced this novel 
methodology with high levels of agreement. 

The methodology aimed to identify landslide features, but the task was not to discriminate scale, meaning that images labelled as 
landslides may be very small (<1 m and not strictly a landslide) and aerial photographs including multiple landslide events are not 
captured by the model (e.g., Fig. 7). Further iterations of this work could use more sophisticated object detection or image segmen-
tation techniques to solve this issue. 

Future work will include a Geolocation Inference module that will use Tweet metadata to geolocate images following the approach 

Table 2 
Photographs identified as containing a landslide showing the class activation map interpretation generated by the system. The confidence scores are computed by the 
demonstrator model using the SoftMax function. [Class activation map produced by QCRI Contains BGS © UKRI].  

Original photograph Class Activation Map interpretation Confidence 

100% 

100% 

98.7%  
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Table 3 
Photographs identified as NOT containing a landslide. The confidence scores are computed by the demonstrator model using the SoftMax function. [Class activation map 
produced by QCRI Contains BGS © UKRI].  

Original photograph Heat map interpretation Confidence 

99.9% 
This is a rock 
exposure, not 
landslide 

99.9% 
A field, not landslide 

99.9% 
A field, not landslide  
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used by Ref. [89] for spatial analysis of various factors associated with the COVID-19 pandemic. An automated real-time geographic 
representation of landslide locations will be developed. Understanding the location of landslides is an important element of this work 
as there may not be the magnitude of data compared to other hazards such as earthquakes. However, there are ethics to be considered 
as part of this location-based work such as that adopted by the UK government through the Data Ethics Framework [90] and the [91]. 
The work described in this paper could also be adapted to complement other hazard inventories, such as snow avalanches. 

It is important to reiterate that this work is not intended to be used in isolation during a disaster scenario. As well as the inherent 
noise within the data content itself, there are inaccuracies that could, for example in the worst case, hinder rescue operations if not 
combined with other data sources. Disaster managers should note that this work does not take into account:  

1. Areas without mobile or internet coverage (even if temporary). As natural hazards cause damage to infrastructure, this may lead to 
mobile phone or internet outages meaning information cannot be published to social media.  

2. The geographical variation in population density. In densely populated areas, there are likely to be more relevant Tweets due to 
numbers of people that could skew the data away from less densely populated areas that may have suffered greater damage.  

3. Variations in use of social media (i.e. Twitter) as a result of trends in national or regional uptake or demographics.  
4. Photographs that are embedded as thumbnails in web page links in Tweets. For example, an article published by the news media 

with photographs that was included in a Tweet is currently excluded. 

For these reasons, the authors recommend that this work is used as a tool to provide additional information to established 
workflows for disaster management. 

For landslides research, such as that involving national or regional landslide databases, it is hoped that this work will introduce 
considerable efficiency savings for institutions responsible for maintaining this workflow. Images of landslide events and impacts will 
be available automatically and social media is trawled in a systematic and continuous way. This has been adapted to the terminologies 
used in different countries through the list of keywords. The authors would like to improve this list to make the operational model more 
accurate. 

6. Conclusion 

This paper demonstrates the potential application of artificial intelligence for landslide recognition in images harvested from social 
media. In this study, we aimed to develop a model that can detect landslides in social media image streams automatically and in real- 
time. For this purpose, we created a large image collection from multiple sources with different characteristics to ensure data diversity. 
The collected images were assessed by three landslide specialists independently to attain high quality labels with almost substantial 
inter-annotator agreement. The assessment methodology is described and is the result of interdisciplinary working between geologists, 
computer scientists and social media specialists. The resulting model achieved high performance in terms of accuracy scores, which 
can be deemed sufficient for the purpose. The demonstrator model is publicly available and running in real-time and the authors invite 
feedback. There are a number of potential applications for this research. In this account image processing has been focused on “fresh” 
landslides as evidenced by the exposure of geological materials, which lends itself to the focus on the potential for Disaster Risk and 
Resilience. This paper is published in association with a technical paper that describes the model in detail. 
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Appendix 1 

List of all keywords in 32 languages used for data collection  

landslide, landslides, rockfall, rock 
fall, rockslide, rockslides, mudslide, mudslides, mudflow, mudflows, landslip, earthslip, Sturzstrom, 

avalanche, glissement de terrain, glissements de terrain, chute de pierres, coulée de boue, 
effondrement, avalanche, frana, frane, crollo di roccia, crolli di roccia, caduta massi, cadute massi, 
smottamento, smottamenti, slavina, slavine, lliscament de terra, esllavissada de terra, 
Despreniments de roques, colada de terra, corriment de terra, allau, Esllavissaments superficials, 
Deslizamiento, deslizamiento de tierra, caída de roca, desprendimientos de rocas, deslizamiento 
de rocas, avalancha de barro, deslizamiento de barro, deslizamiento de lodo, Colapso, tanah 
runtuh, kejatuhan batu, tanah runtuh, lumpur, tanah longsor, batu jatuh, guguran, lahar, 
longsoran besar, قالزنإلا,ةيرخصلاتارايهنالا,يرخصرايهنا,يرخصطوقس,يضرأقالزنا,يضرأرايهنا

يديلجلارايهنالا,ضرألاقالزنا،يضرألاقالزنالا,ةينيطلاتاقالزنإلا,ينيطلا , оползень, оползни, зсув, 
зсув грунту, зсув ґрунту, обвал, обвал скель, падіння скель, каМнепад, грязьовий потік, селеві 
потоки, обрушение, лавина, 산사태, 낙석, 암반사태, 진흙사태, 이류, 사태, 눈사태, heyelan, toprak 
kayması, heyelanlar, toprak kaymaları, kaya düşmesi, kaya kayması, kaya göçmesi, kaya akıntısı, 
moloz akıntısı, moloz akışı, moloz akması, moloz kayması, kaya düşmeleri, kaya kaymaları, kaya 
göçmeleri, kaya akıntıları, moloz akıntıları, moloz kaymaları, çamur akıntısı, çamur akışı, çamur 
kayması, çamur akması, tortu akıntısı, tortu akışı, tortu akması, tortu kayması, döküntü akıntısı, 
döküntü akışı, döküntü akması, döküntü kayması, lahar, çamur akıntıları, çamur kaymaları, tortu 
akıntıları, tortu kaymaları, döküntü akıntıları, döküntü kaymaları, laharlar, çığ, çığlar, Erdrutsch, 
Erdrutsche, Bergrutsch, Bergrutsche, Hangrutsch, Hangrutsche, Hangrutschung, 
Hangrutschungen, Abrutschung, Abrutschungen, Steinrutschung, Steinrutschung, Hangmure, 
Hangmuren, Steinschlag, Steinschläge, Murgang, Murgänge, Mure, Muren, Schlammlawine, 
Schlammlawinen, Murenabgang, Murenabgänge, Bergsturz, Bergstürze, Lawine, Lawinen, 
Schneelawine, Schneelawinen, Eislawine, Eislawinen, Staublawine, Staublawinen, ভূমিস্থলন, 
भूस्खलन, 地すべり, 土砂災害, 土砂崩れ, 山津波, 地滑り, 山崩れ, 山, 坍, 土石流, 雪崩, 表層雪崩, 滑 
り, κατολίσθηση, καθίζηση εδάφους, πτώση βράχου, βραχολίσθηση, ολίσθηση λάσπης, λασπολίσθηση, 
καθίζηση έδαφους, χιονοστιβάδα, pagguho ng lupa, pagkahulog ng bato, putik sa lupa, 滑坡, 山体滑 
坡, 岩崩, 岩滑, 泥石流, 山体塌方, 地崩, 雪崩, deslizamento de terras, Queda de rochas, 
deslizamento de rochas, Queda de blocos, deslizamento de lamas, lamas, Movimentos de massa, 
Avalanche, lur irristatzea, harrijausia, harri erorketa, arroka irristatzea, Lur kolada, azal 
irristatzea, gainazaleko irristatzea, higakin korrontea, alunecare de teren, alunecare de teren cu 
caderi de roci, caderi de roci, alunecare de noroi, alunecare de pamant, avalansa, Rrëshqitje toke, 
Rrëshqitje shkëmbore, Rrëshqitjet shkëmbore, Rrëshqitje e tipit “rënie e coprave dhe blloqeve 
shkembore, Rrjedhje balte, Rrjedhjet balte, Rrëshqitje dheu, Rrëshqitje toke, Rrëshqitje e tipit 
ortekë, zemeljski plaz, skalni podor, skalni zdrs, skalni zdrsi, blatni tok, blatni tokovi, zdrs 
pobočja, zdrs zemljine, plaz, skred, skreden, jordskred, jordskreden, bergskred, lerskred, 
släntstabilitet, kvicklera, snöskred, lavin, odron, klizǐste, lavina, kőlavina, hólavina, 
földcsuszamlás, talajcsúszás, talajcsuszamlás, sárfolyás, talajfolyás, iszapfolyás, sárlavina, 
talajkúszás, suvadás, kőomlás, hegyomlás, hegyomlások, iszapár, földcsuszamlás, 
földcsuszamlások, sárlavina, sárlavinák, törmeléklavina, lavina, lavinák, alunecare de teren, 
alunecare alunecări de stănci, alunecări de stănci, alunecare de noroi, alunecări de noroi, deplasări 
de teren, alunecare de pămănt, avalanșă, Aardverschuiving, aardverschuivingen, Bergstorting, 
Rotslawine, steenlawine, puinlawine, Modderlawine, Modderstroom, modderstromen, Lawine, 
kliziste, klizista, odron, odroni, blatni tok, blatni tokovi, zemljani tok, zemljani tokovi, lavina, 
lavine, osuwisko, osuwiska, obryw skalny, obrywy skale, osuwisko skalne, osuwiska skalne, 
lawina błotna, lawiny błotne, osuwisko, lawina, lawiny, گنس,گنسشزیر,هزغلنیمز,نیمزشنار

نمهب,هزغللگ,هزغلگنس,شراب , Ho heleha hoa mobu, Ho theteha hoa mafika, Seretse se phallang, 
Ho hlefoha hoa lefats’e, Ho heleha, le ho phalla hoa lehloa, მეწყერი, ქვათაცვენა, 
კლდეზვავი, კლდეზვავები, ღვარცოფი, ღვარცოფები, ზვავი, maanvyöry, putoavia 

(continued on next page) 
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(continued ) 

kiviä, kivivyöry, kivivyöryt, mutavyöry, mutavyöryt, sortuma, lumivyöry, snowmelt, snow melt, 
debris flow, cliff fall, cliff collapse, landslips  
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[55] J. Klimeš, J. Stemberk, J. Blahut, V. Krejčí, O. Krejčí, F. Hartvich, P. Kycl, Challenges for landslide hazard and risk management in ’low-risk’ regions, Czech 
Republic-landslide occurrences and related costs (IPL project no. 197), Landslides v14 (2017) 771–780, https://doi.org/10.1007/s10346-017-0798-7. 

[56] T. Görüm, S. Fidan, Spatiotemporal variations of fatal landslides in Turkey, Landslides v18 (2021) 1691–1705, https://doi.org/10.1007/s10346-020-01580-7. 
[57] R. Franceschini, R. Ascanio, F. Catani, N. Casagli, Exploring a landslide inventory created by automated web data mining: the case of Italy, Landslides v19 

(2022) 841–853. 
[58] European Commission, INSPIRE Principles, 2021 last updated 27/01/2021, https://inspire.ec.europa.eu/inspire-principles/9. (Accessed 27 January 2021). 
[59] M.T. Niles, B.F. Emery, A.J. Reagan, P.S. Dodds, C.M. Danforth, Social media usage patterns during natural hazards, PLoS One 14 (2) (2019), e0210484, https:// 

doi.org/10.1371/journal.pone.0210484. 
[60] C.V.L. Pennington, K.A. Freeborough, C. Dashwood, T.J. Dijkstra, K. Lawrie, The national landslide database of great britain: acquisition, communication and 

the role of social media, Geomorphology v249 (2015) 44–51, https://doi.org/10.1016/j.geomorph.2015.03.013. 
[61] K.A. Lee, J.R. Lee, P. Bell, A review of Citizen Science within the Earth Sciences: potential benefits and obstacles, Proc. Geologists’ Assoc. v131 (6) (2020) 

605–617, https://doi.org/10.1016/j.pgeola.2020.07.010. 
[62] R. Bossu, M. Laurin, G. Mazet-Roux, F. Roussel, R. Steed, The importance of smartphones as public earthquake-information tools and tools for the rapid 

engagement with eyewitnesses: a case study of the 2015 Nepal earthquake sequence, Seismol Res. Lett. v86 (6) (2015) 1587–1592, https://doi.org/10.1785/ 
0220150147. 

[63] R. Bossu, R. Steed, G. Mazet-Roux, F. Roussel, C. Etivant, L. Frobert, S. Godey, The key role of eyewitnesses in rapid impact assessment of global earthquakes, in: 
Earthquakes and Their Impact on Society, Springer, Cham, 2016, pp. 601–618, https://doi.org/10.1007/978-3-319-21753-6_25. 

[64] R. Bossu, F. Roussel, L. Fallou, M. Landès, R. Steed, G. Mazet-Roux, A. Dupont, L. Frobert, L. Petersen, LastQuake: from rapid information to global seismic risk 
reduction, Int. J. Disaster Risk Reduc. v28 (2018) 32–42, https://doi.org/10.1016/j.ijdrr.2018.02.024. 

[65] R.J. Steed, A. Fuenzalida, R. Bossu, I. Bondár, A. Heinloo, A. Dupont, J. Saul, A. Strollo, Crowdsourcing triggers rapid, reliable earthquake locations, Sci. Adv. 
(2019). https://www.science.org/doi/pdf/10.1126/sciadv.aau9824. 

[66] R. Bossu, L. Fallou, M. Landès, F. Roussel, S. Julien-Laferrière, J. Roch, R. Steed, Rapid public information and situational awareness after the November 26, 
2019, Albania earthquake: lessons learned from the LastQuake system, Front. Earth Sci. v8 (2020) 235, https://doi.org/10.3389/feart.2020.00235. 

[67] M. Duncan, K. Mee, A. Hicks, S. Richardson, R.E.A. Robertson, M. Forbes, I. Ferdinand, C. Jordan, S. Loughlin, Citizen science using mobile phone technology in 
St Vincent & the Grenadines to facilitate near-real time multi-hazard observations, Geophys. Res. Abstr. v21 (2019) 1. https://meetingorganizer.copernicus.org/ 
EGU2019/EGU2019-14536.pdf. 

[68] S. Kocaman, C.A. Gokceoglu, CitSci app for landslide data collection, Landslides v16 (2019) 611–615, https://doi.org/10.1007/s10346-018-1101-2. 
[69] C.E. Choi, Y. Cui, G.G.D. Zhou, Utilizing crowdsourcing to enhance the mitigation and management of landslides, Landslides 15 (2018) 1889–1899, https://doi. 

org/10.1007/s10346-018-1034-9. 
[70] BGS, Report a Landslide, 2021, 29th September 2021, https://www2.bgs.ac.uk/reportalandslide/reportForm.html. 
[71] R.L. Baum, L.M. Highland, P.T. Lyttle, J.M. Fee, E.M. Martinez, L.A. Wald, “Report a landslide” A website to engage the public in identifying geologic hazards, 

in: K. Sassa, P. Canuti, Y. Yin (Eds.), Landslide Science for a Safer Geoenvironment, Springer, Cham, 2014, https://doi.org/10.1007/978-3-319-04999-1_8. 
[72] J. Kostelnik, L. Wald, R. Schmitt, F.K. Rengers, Bond Fire Debris Flows, California, 2021, 16th September 2021, https://landslides.usgs.gov/storymap/bond/. 
[73] K. Cieslik, S. Puja, U. Madhab, D. Art, C. Russell, J. Clark, D.M. Raj, C. Amrit, Building resilience to chronic landslide hazard through citizen science, Front. Earth 

Sci. 7 (2019) p278, https://doi.org/10.3389/feart.2019.00278. 
[74] F. Guzzetti, G. Tonelli, Information system on hydrological and geomorphological catastrophes in Italy (SICI): a tool for managing landslide and flood hazards, 

Nat. Hazards Earth Syst. Sci. v4 (2004) 213–232, https://doi.org/10.5194/nhess-4-213-2004. 

C.V.L. Pennington et al.                                                                                                                                                                                              

https://meetingorganizer.copernicus.org/EGU2016/EGU2016-4334.pdf
https://meetingorganizer.copernicus.org/EGU2016/EGU2016-4334.pdf
https://doi.org/10.5066/P9E2A37P
https://link.springer.com/content/pdf/10.1007/s10346-017-0843-6.pdf
https://link.springer.com/content/pdf/10.1007/s10346-017-0843-6.pdf
http://pid.geoscience.gov.au/dataset/ga/74273
https://doi.org/10.1371/journal.pone.0218657
https://pmm.nasa.gov/landslides/report.html
https://thinkhazard.org
https://doi.org/10.1007/s12665-011-1304-5
https://doi.org/10.1016/j.geomorph.2015.03.021
https://doi.org/10.1016/j.geomorph.2015.03.021
https://doi.org/10.1007/978-3-030-60196-6_11
https://doi.org/10.1007/s10346-012-0346-4
https://doi.org/10.1002/2017EF000715
https://doi.org/10.1016/j.ijdrr.2012.11.002
https://doi.org/10.1016/j.geomorph.2020.107061
https://doi.org/10.1016/j.geomorph.2020.107061
https://doi.org/10.1007/s10064-013-0538-8
https://core.ac.uk/download/pdf/296209205.pdf
https://www.preventionweb.net/publications/view/33067
http://refhub.elsevier.com/S2212-4209(22)00308-9/sref46
http://refhub.elsevier.com/S2212-4209(22)00308-9/sref46
http://refhub.elsevier.com/S2212-4209(22)00308-9/sref47
http://refhub.elsevier.com/S2212-4209(22)00308-9/sref47
https://doi.org/10.1007/s11069-009-9401-4
https://doi.org/10.1016/j.geomorph.2015.05.019
https://doi.org/10.1007/s10346-017-0798-7
https://doi.org/10.1007/s10346-020-01580-7
http://refhub.elsevier.com/S2212-4209(22)00308-9/sref52
http://refhub.elsevier.com/S2212-4209(22)00308-9/sref52
https://inspire.ec.europa.eu/inspire-principles/9
https://doi.org/10.1371/journal.pone.0210484
https://doi.org/10.1371/journal.pone.0210484
https://doi.org/10.1016/j.geomorph.2015.03.013
https://doi.org/10.1016/j.pgeola.2020.07.010
https://doi.org/10.1785/0220150147
https://doi.org/10.1785/0220150147
https://doi.org/10.1007/978-3-319-21753-6_25
https://doi.org/10.1016/j.ijdrr.2018.02.024
https://www.science.org/doi/pdf/10.1126/sciadv.aau9824
https://doi.org/10.3389/feart.2020.00235
https://meetingorganizer.copernicus.org/EGU2019/EGU2019-14536.pdf
https://meetingorganizer.copernicus.org/EGU2019/EGU2019-14536.pdf
https://doi.org/10.1007/s10346-018-1101-2
https://doi.org/10.1007/s10346-018-1034-9
https://doi.org/10.1007/s10346-018-1034-9
https://www2.bgs.ac.uk/reportalandslide/reportForm.html
https://doi.org/10.1007/978-3-319-04999-1_8
https://landslides.usgs.gov/storymap/bond/
https://doi.org/10.3389/feart.2019.00278
https://doi.org/10.5194/nhess-4-213-2004


International Journal of Disaster Risk Reduction 77 (2022) 103089

14

[75] S.D. Moeller, “Regarding the pain of others’’: media, bias and the coverage of international disasters, J. Int. Aff. v59 (2) (2006) 173–196. The Globalization of 
Disaster (SPRING/SUMMER 2006), https://www.jstor.org/stable/24358432. 

[76] C.V.L. Pennington, A.M. Harrison, Landslide year?, 2012, Geoscience Magazine v23 (2013) 10–15, https://www.geolsoc.org.uk/Geoscientist/Archive/June- 
2013/2012-Landslide-year. 

[77] P. Lacroix, Landslides triggered by the Gorkha earthquake in the Langtang valley, volumes and initiation processes, Earth Planets Space v68 (2016) 46, https:// 
doi.org/10.1186/s40623-016-0423-3. 

[78] F. Ofli, M. Imran, U. Qazi, J. Roch, C. Pennington, V.J. Banks, R. Bossu, Landslide Detection in Real-Time Social Media Image Streams, 2021, https://doi.org/ 
10.48550/arXiv.2110.04080. 

[79] R. Can, S. Kocaman, C. Gokceoglu, A convolutional neural network architecture for auto-detection of landslide photographs to assess citizen science and 
volunteered geographic information data quality, ISPRS Int. J. Geo-Inf. v8 (7) (2019) 300, https://doi.org/10.3390/ijgi8070300. 

[80] BGS, GeoScenic, 2021, 29th September 2021, http://geoscenic.bgs.ac.uk. 
[81] O. Hungr, S. Leroueil, L. Picarelli, The Varnes classification of landslide types, an update, Landslides v11 (2014) 167–194, https://doi.org/10.1007/s10346-013- 

0436-y. 
[82] D.M. Cruden, D.J. Varnes, Landslide types and processes, in: A.K. Turner, R.L. Schuster (Eds.), Landslides Investigation and Mitigation, Transportation research 

board, US National Research Council. Special Report 247, Washington, DC, 1996, pp. 36–75 (Chapter 3). 
[83] J.L. Fleiss, Measuring nominal scale agreement among many raters, Psychol. Bull. 76 (5) (1971) 378, https://doi.org/10.1037/h0031619. 
[84] P.S. Bayerl, K.I. Paul, What determines inter-coder agreement in manual annotations? A meta-analytic investigation, Comput. Ling. 37 (4) (2011) 699–725, 

https://doi.org/10.1162/COLI_a_00074. 
[85] F. Ofli, U. Qazi, M. Imran, J. Roch, C. Pennington, V. Banks, R. Bossu, A Real-Time System for Detecting Landslide Reports on Social Media Using Artificial 

Intelligence, 2022. https://arxiv.org/pdf/2202.07475v1.pdf. 
[86] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Learning deep features for discriminative localization, in: Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, 2016, pp. 2921–2929, https://doi.org/10.1109/CVPR.2016.319. 
[87] Twitter, Developer Terms: Geo Guidelines, last updated 22nd October 2014, 2022, 14th March 2022, https://developer.twitter.com/en/developer-terms/geo- 

guidelines. 
[88] Twitter, Developer Policy, Section Using Geo-Data, 2022, 14th March 2022, https://developer.twitter.com/en/developer-terms/policy. 
[89] M. Imran, U. Qazi, F. Ofli, TBCOV: two billion multilingual COVID-19 tweets with sentiment, entity, geo, and gender labels, Data 7 (1) (2022) 8, https://doi. 

org/10.3390/data7010008. 
[90] UK Government, Data Ethics Framework: Legislation and Codes of Practice for Use of Data, 2020. Last updated 16 September 2020, https://www.gov.uk/ 

government/publications/data-ethics-framework/data-ethics-framework-legislation-and-codes-of-practice-for-use-of-data, 29th September 2021. 
[91] Locus Charter, Locus Charter Report, 2021. Last updated February 2021, https://ethicalgeo.org/wp-content/uploads/2021/03/Locus_Charter_March21.pdf, 

29th September 2021. 

C.V.L. Pennington et al.                                                                                                                                                                                              

https://www.jstor.org/stable/24358432
https://www.geolsoc.org.uk/Geoscientist/Archive/June-2013/2012-Landslide-year
https://www.geolsoc.org.uk/Geoscientist/Archive/June-2013/2012-Landslide-year
https://doi.org/10.1186/s40623-016-0423-3
https://doi.org/10.1186/s40623-016-0423-3
https://doi.org/10.48550/arXiv.2110.04080
https://doi.org/10.48550/arXiv.2110.04080
https://doi.org/10.3390/ijgi8070300
http://geoscenic.bgs.ac.uk
https://doi.org/10.1007/s10346-013-0436-y
https://doi.org/10.1007/s10346-013-0436-y
http://refhub.elsevier.com/S2212-4209(22)00308-9/sref77
http://refhub.elsevier.com/S2212-4209(22)00308-9/sref77
https://doi.org/10.1037/h0031619
https://doi.org/10.1162/COLI_a_00074
https://arxiv.org/pdf/2202.07475v1.pdf
https://doi.org/10.1109/CVPR.2016.319
https://developer.twitter.com/en/developer-terms/geo-guidelines
https://developer.twitter.com/en/developer-terms/geo-guidelines
https://developer.twitter.com/en/developer-terms/policy
https://doi.org/10.3390/data7010008
https://doi.org/10.3390/data7010008
https://www.gov.uk/government/publications/data-ethics-framework/data-ethics-framework-legislation-and-codes-of-practice-for-use-of-data
https://www.gov.uk/government/publications/data-ethics-framework/data-ethics-framework-legislation-and-codes-of-practice-for-use-of-data
https://ethicalgeo.org/wp-content/uploads/2021/03/Locus_Charter_March21.pdf

	A near-real-time global landslide incident reporting tool demonstrator using social media and artificial intelligence
	1 Introduction
	2 Background
	3 Aims
	4 Supervised Machine Learning approach
	4.1 Expert-labelling methodology
	4.2 Expert-labelling results
	4.3 Demonstrator model results

	5 Discussion
	6 Conclusion
	Funding
	Declaration of competing interest
	Acknowledgments
	Appendix 1 Acknowledgments
	List of all keywords in 32 languages used for data collection

	References


