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O C E A N O G R A P H Y

Rising dissolved organic carbon concentrations 
in coastal waters of northwestern Borneo related 
to tropical peatland conversion
Nivedita Sanwlani1*†, Chris D. Evans2,3,4, Moritz Müller5, Nagur Cherukuru6, Patrick Martin1*

Southeast Asia’s peatlands are considered a globally important source of terrigenous dissolved organic carbon 
(DOC) to the ocean. Human disturbance has probably increased peatland DOC fluxes, but the lack of monitoring 
has precluded a robust demonstration of such a regional-scale impact. Here, we use a time series of satellite ocean 
color data from northwestern Borneo to show that DOC concentrations in coastal waters have increased between 
2002 and 2021 by 0.31 mol liter−1 year−1 (95% confidence interval, 0.18 to 0.44 mol liter−1 year−1). We show that 
this was caused by a ≥30% increase in the concentration of terrigenous DOC and coincided with the conversion of 
69% of regional peatland area to nonforest land cover, suggesting that peatland conversion has substantially 
increased DOC fluxes to the sea. This rise in DOC concentration has also increased the underwater light absorp-
tion by dissolved organic matter, which may affect marine productivity by altering underwater light availability.

INTRODUCTION
Coastal seas receive around 0.4 to 0.5 Pg of organic carbon (OC) 
annually from terrestrial ecosystems (1), of which around half is 
terrigenous dissolved organic carbon (tDOC) (2, 3). Fluxes of OC 
from land to sea appear to have increased globally because of multiple 
anthropogenic impacts (3, 4). Large-scale increases in tDOC fluxes 
to sea are known especially from Europe and North America (5–8), 
where they have been attributed primarily to increased organic matter 
solubility following reductions in acid deposition (5, 6), although this 
has likely been exacerbated in some areas by land use and climate 
change (3, 7, 8). However, across most of the world, we lack observa-
tional data of such changes. tDOC is not only quantitatively important 
in the global carbon cycle but can also affect coastal ecosystems by 
reducing the amount of light available for photosynthesis (9, 10) and 
acidifying seawater if it decomposes to CO2 (11, 12). It is therefore 
important to quantify long-term tDOC dynamics in coastal waters 
around the world and understand their drivers.

Peatlands store 500 to 700 Pg of soil carbon globally (13) and 
account for some of the largest fluvial tDOC fluxes (14). More than 
half of the world’s tropical peatland carbon is located in Southeast 
Asia, chiefly in Borneo and Sumatra (15), contributing ~10% of the 
annual global land-to-ocean tDOC flux (16, 17). Within the past three 
decades, >90% of peatlands in Southeast Asia have been modified 
by deforestation, with much of this land converted to drainage- 
based agriculture and forestry (18). This represents one of the fastest 
rates of land use change globally and has substantially increased 
CO2 emission and land subsidence due to peat oxidation (19–21). 
However, the impact on fluvial tDOC export across larger spatial 

scales remains enigmatic because of the lack of long-term DOC 
monitoring data. Resolving this question is critical for an accurate 
description of tropical peatland carbon cycling and to evaluate poten-
tial downstream impacts on coastal ecosystems in Southeast Asia.

The effect of peatland conversion on fluvial tDOC fluxes in 
Southeast Asia has so far been investigated directly by only two 
studies, which suggested that peatland disturbance increases tDOC 
fluxes by ~50% (22, 23). However, the first study (22) compared 
only one control intact peatland to two highly disturbed peatlands 
with unmanaged, deep drainage, while the second (23) compared 
only one natural river draining an intact peatland to a smaller 
artificial drainage canal. The apparent increase in tDOC flux 
appears to be caused by drainage and vegetation loss, reducing the 
evapotranspiration rate and thereby increasing freshwater runoff 
(22, 24). Since the increased runoff is not offset by dilution of tDOC 
concentrations, this leads to greater tDOC flux. Fluvial tDOC in 
degraded peatlands also has centuries-older radiocarbon ages than 
in intact peatlands, indicating that drainage mobilizes carbon that 
was sequestered deep within the peat (25, 26). Moreover, tDOC flux 
appears to be greater the more deeply drained the peatland is (26). 
Yet, this dependence of tDOC flux on drainage depth also means that 
fluvial carbon losses estimated from localized, catchment-specific 
studies [especially with unmanaged drainage as in (22)] may not 
scale up reliably to all peatlands in Southeast Asia, given their diverse 
land use types and management regimes. Thus, it remains highly 
uncertain whether and by how much fluvial tDOC fluxes from tropical 
peatlands have increased across larger spatial scales in Southeast Asia. 
Given that the degradation rate of peat-derived DOC in Southeast 
Asian river systems is also highly uncertain (27–29), the extent to 
which land use change has affected DOC loadings to coastal waters 
is largely unknown.

To test the hypothesis that land conversion of peatlands has 
increased fluxes of DOC to coastal seas, we would ideally need 
observational time series of either the fluvial DOC flux or of the 
DOC concentration in coastal waters, spanning the main period of land 
conversion. Because there are no long-running time series of DOC 
measurements in Southeast Asia and most of the peatland-draining 
rivers are not gauged for water flux measurements, satellite remote 
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sensing of DOC in coastal waters is, at present, the only way to test 
this hypothesis. Because colored dissolved organic matter (CDOM; 
the optically active fraction of DOC) absorbs light at ultraviolet and 
visible wavelengths, ocean color satellites can quantify CDOM and 
DOC (30–32) in surface waters. Here, we use satellite ocean color 
data from July 2002 to June 2021 to quantify and assess long-term 
trends in CDOM, DOC, and total suspended matter (TSM) of 
coastal waters in northwestern (NW) Borneo (Fig. 1). Around 8% of 
this region is covered by coastal peatlands (33) that have experienced 
substantial land conversion since 2002 (34), making it a uniquely 
suitable location to test whether this disturbance has resulted in 
measurable changes in coastal DOC concentrations.

RESULTS AND DISCUSSION
Spatial and seasonal variations
We processed moderate resolution imaging spectroradiometer 
(MODIS) Aqua satellite data (1-km resolution) using a regionally 
parameterized inversion model (35) to estimate the CDOM, the 
CDOM source index (0) (36), and the concentrations of DOC and 
TSM. CDOM is quantified as the light absorption coefficient at 
440 nm in units of absorption per meter, which can be understood 

as a measure of CDOM concentration. Because our model was pa-
rameterized with data collected within 50 km of the coast in waters 
optically influenced by terrigenous CDOM and TSM, we expect it 
to underestimate DOC (but not CDOM) in oceanic waters, where 
the DOC pool is overwhelmingly of autochthonous marine origin 
(see Methods). We therefore restrict our analysis to areas classified as 
coastal optical water types (OWTs; as defined by reflectance spectra 
and referred to as coastal waters below), which can extend up to 
about 70 km from shore (fig. S1 and Methods).

Averaged over the period 2002–2021, the coastal waters have rela-
tively high CDOM absorption (mostly 0.20 to 0.7 m−1) and DOC con-
centration (mostly 50 to 110 mol liter−1), especially adjacent to the 
peat-rich regions north of the Rajang River and in the central region 
off the Lupar and Saribas rivers (Fig. 1, A and B). Peatlands are scarce 
further to the west, and coastal waters there showed the lowest CDOM 
and DOC values, except off the mouth of the peatland-draining 
Sambas River (Fig. 1, A and B). The CDOM source index, 0, was 
consistently ≥0.5 throughout the coastal waters (Fig. 1C), indicat-
ing a predominantly terrestrial source of CDOM and by inference 
of DOC. Coastal waters of Sarawak are subject to relatively strong 
tidal currents and mixing, which prevents persistent vertical strati-
fication and will mix fluvial inputs parallel to the coastline (37).

Fig. 1. Mean values from 2002 to 2021 of biogeochemical parameters quantified from satellite remote sensing. (A) CDOM, quantified as the absorption coefficient 
of light at 440 nm. (B) Concentration of DOC. (C) The CDOM source index, 0 (values ≥0.5 indicate the increasing dominance of terrigenous CDOM over CDOM of marine 
origin). (D) Concentration of TSM. Brown shading on land indicates peatlands. Note that our remote sensing method underestimates DOC concentrations (but not CDOM 
absorption; see Methods) in optically clear waters far from shore corresponding to OWT 1 (see fig. S1 and Methods).
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Fig. 2. Spatial distribution of annual mean DOC concentration showing increases in coastal waters from 2003 to 2020. DOC increases are particularly clear adjacent 
to areas where peatlands have been converted from peat swamp forests to drainage-based plantations during this period. Land cover classification is shown according 
to the Nusantara Atlas. White areas in the immediate vicinity of the coast indicate missing data (see Methods). Note that our remote sensing method underestimates DOC 
concentrations in optically clear waters far from shore corresponding to OWT 1 (see fig. S1 and Methods).
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These spatial patterns of CDOM, 0, and DOC point to peatlands 
as one of the main sources of DOC in these coastal waters, which is 
consistent with in situ spectral measurements of CDOM and 
fluorescent dissolved organic matter (FDOM) in this area (38, 39). 
Moreover, chemical and isotopic data from the Rajang River showed 
that peatland tDOC input causes the riverine DOC concentration to 
double along the delta (38, 40), even though the deltaic peatlands 
contribute less than 7% of the total catchment area (41). In contrast 
to CDOM and DOC, TSM concentrations decreased rapidly beyond 
the immediate vicinity of river mouths (Fig. 1D), as terrestrial sedi-
ment particles mostly settle to the seafloor within a short distance of 
the estuaries.

During the November to February northeast monsoon period, 
when rainfall is highest, waters with elevated CDOM, CDOM 
source index 0, DOC, and TSM all extended further offshore than 
during the drier May to August southwest monsoon (figs. S2 to S6). 
Riverine DOC fluxes and CDOM absorption in coastal waters in the 
region are highest during the northeast monsoon (42, 43), reflecting 
the importance of rainfall in driving tDOC flux from tropical 
peatlands (24). The seasonal patterns in our data thus further 
support our conclusion that peat-draining rivers are a key source of 
DOC to the coastal waters.

Long-term trends
To identify long-term dynamics in tDOC, we mapped the spatial 
distribution of the annual mean DOC (Fig. 2) and CDOM (fig. S7) 
together with land cover changes over the period 2003–2020. In-
creases in DOC and CDOM are clearly visible close to coast and 
coincide spatially with the main areas of peatland conversion (Fig. 2 
and fig. S7). When averaged across the area of coastal waters, there 
was a statistically significant (P < 0.05) increase in DOC and CDOM 
over our time series (Fig. 3, A and B), with Theil-Sen slopes for DOC 
of 0.310 mol liter−1 year−1 and for CDOM of 0.00185 m−1 year−1 
(95% confidence intervals, 0.178 to 0.441 mol liter−1 year−1 and 
0.0008 to 0.0030 m−1 year−1). This amounts to average increases 
over the 19-year period by 5.89 mol liter−1 for DOC (95% confi-
dence interval, 3.38 to 8.38 mol liter−1) and by 0.0352 m−1 for CDOM 
(95% confidence interval, 0.0152 to 0.0565 m−1). In contrast, there 
was no statistically significant trend in average TSM concentration 
or in rainfall (Fig. 3, C and D).

Before 2004, most of the peatlands in the study region were still 
intact peat swamp forests, but subsequently, 69% of peatlands were 
converted to nonforest cover, chiefly industrial plantations (Figs. 2 
and 3E). Although forest loss also occurred in mineral soil and 
mangrove forests, these losses were proportionally much smaller 
(Fig. 3, F and G). Multiple linear regression analysis showed that 
annual average DOC concentration and CDOM absorption were 
significantly related to both annual cumulative peatland forest con-
version and annual rainfall (both r2 > 0.60, all P ≤ 0.001; table S1). 
The fact that rainfall was a significant predictor of the interannual 
CDOM and DOC variation supports the interpretation that our 
results reflect dynamics in tDOC flux, since rainfall is a key driver of 
tDOC flux from tropical peatlands (24).

Three lines of evidence further indicate that the increase in CDOM 
and DOC is caused by tDOC input, and especially from peatlands. 
First, we also detected a significant increase in the mean CDOM 
source index 0 across coastal waters of 0.00142 year−1 (95% confi-
dence interval, 0.00021 to 0.00262 year−1; fig. S8A), and the annual 
mean 0 was significantly related to annual cumulative peatland 

conversion and annual mean rainfall (multiple linear regression; 
table S1). Second, the specific CDOM absorption coefficient, i.e., 
the CDOM to DOC ratio, of the added DOC, which we estimated 
by dividing the increase in CDOM (0.0352 m−1) by the increase in 
DOC (5.89 mmol m−3), is high at 0.0060 m2 mmol−1. High specific 
absorption coefficients are characteristic of tDOC (44), and our 
previously reported in situ data (38) from this region show that 
specific absorption coefficients >0.0050 m2 mmol−1 were only 
found where the ultraviolet spectral slope of CDOM (S275–295) was 
<0.020 nm−1, indicating a large tDOC contribution (fig. S9) (45). 
Because our remote sensing model does not calculate DOC based on 
a single specific absorption coefficient but selects a specific absorp-
tion coefficient ranging between 0.00060 and 0.01615 m2 mmol−1 
depending on the satellite-measured reflectance spectrum (35), this 
result indicates that the increase in CDOM and DOC was driven by 
tDOC input. Unlike the CDOM source index 0, the average specific 
CDOM absorption coefficient of the coastal DOC pool as a whole 
(i.e., the coastal water average CDOM to DOC ratio) did not show a 
significant trend (fig. S8B). This likely reflects the fact that the 
CDOM spectral slope, which is used to calculate 0, is often more 
sensitive to small changes in coastal tDOC concentrations than total 
CDOM absorption (46, 47). Third, calculating the Theil-Sen trends 
in the annual mean CDOM, DOC, and 0 for each pixel individually 
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Fig. 3. Time series showing increased dissolved organic matter concentrations 
in coastal waters and land conversion of peatlands. Mean monthly (gray circles) 
and annual (blue dots) values of (A) CDOM absorption, (B) DOC concentration, 
(C) TSM concentration across the coastal waters, and (D) monthly precipitation on 
land. Solid red lines in (A) and (B) show statistically significant Theil-Sen trends 
(P < 0.05). The time series of TSM and rainfall showed no statistically significant 
trend. Gray error bars show 1 SD across the coastal water region (A to C) or across 
the land area (D). Land cover changes over time are shown for (E) peatlands, 
(F) mineral soil forest, and (G) mangrove forest.
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showed that the largest and statistically significant trends (CDOM 
>0.0040 m−1 year−1, DOC >0.5 mol liter−1 year−1, 0 >0.002 year−1; 
all P < 0.05) were found in coastal waters receiving inputs from the 
main peatland areas (Fig. 4, A to C, and fig. S10). In contrast, the 
spatial distribution of the Theil-Sen trend in TSM showed small 
negative and positive trends across the region, which were mostly 
not statistically significant (Fig. 4D and fig. S10). Although anthro-
pogenic disturbances, especially in mineral soil catchments, can 
increase suspended sediment concentrations in rivers (48), most 
conversion of nonpeatland forests had already occurred before our 
time series (34), and the TSM in rivers in our study region consists 
overwhelmingly of inorganic particles that do not originate primarily 
from peatlands (38). Peatland conversion is therefore not necessarily 
expected to increase TSM fluxes strongly.

Although the increases in CDOM and DOC concentrations 
could theoretically be caused by reduced tDOC removal from coastal 
waters, we consider this to be unlikely. tDOC is removed by physi-
cal dilution, flocculation, sediment adsorption, and remineralization 
(49, 50). Calculating physical dilution rates would require a high- 
resolution ocean circulation model and is beyond the scope of our 
study, but previous research suggests that, at least up until 2012, 

there was no long-term trend in water flushing rate across the 
Sunda Shelf Sea (51). Flocculation occurs within hours because of 
salinity increases across estuaries and accounts only for a small 
fraction of tDOC (52). Adsorption to sediments removes little 
tDOC at TSM concentrations <10 mg litre−1 (53); there was also no 
consistent and significant decrease in TSM. Therefore, we discount 
the possibility that changes in adsorption or flocculation of tDOC 
caused the observed trends. Remineralization especially by photo-
oxidation is likely a key removal pathway for peatland tDOC in 
Southeast Asia (12), and the removal rate could therefore be driven 
by changes in cloud cover. However, cloud cover across our study 
region showed no significant trend (fig. S11). The most plausible 
explanation for the rise in CDOM and DOC concentrations is 
therefore that tDOC fluxes from peatlands increased following 
land conversion.

Increases in tDOC flux
Our remote sensing analysis indicates that there has been a rise in 
terrestrial dissolved organic matter across large scales in coastal 
waters that is concomitant with the period of peatland conversion. 
Over the 19 years of our time series, DOC increased by approximately 

Fig. 4. Spatial distribution of trends in dissolved organic matter and TSM over the period 2002–2021. Theil-Sen trends were calculated for each 1-km2 pixel across 
the time series for (A) CDOM, (B) DOC, (C) the CDOM source index 0, and (D) TSM. The largest increasing trends in CDOM and DOC occurred in coastal waters adjacent to 
the main peatland areas (A and B), while for TSM, only small and inconsistent (positive and negative) trends were seen across the region (D). Trends in 0 are greater 
somewhat further from shore, reflecting the fact that 0 close to shore is already high due to the dominance of terrigenous DOC in these waters throughout the time series 
(cf. Fig. 1) and the fact that spectral slopes show nonlinear concentration-dependent changes (see Methods).
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5.9 mol liter−1, and annual mean DOC concentrations averaged 
roughly 62 mol  liter−1 after 2015. On the basis of the FDOM 
spectroscopy, it was estimated that 20 to 40% of the total DOC in 
coastal waters in this region is tDOC (39), which implies concentra-
tions of 12 to 25 mol liter−1 by the end of our time series. The long-
term increase of 5.9 mol liter−1 that we attribute to tDOC therefore 
implies an average increase in coastal waters of between 30 and 97% 
relative to the initial tDOC concentration. Given that the peat-derived 
FDOM is more labile to photochemical degradation than total tDOC 
(39), we consider the estimate based on an average coastal tDOC 
content of 40% to be more likely, which would mean that tDOC con-
centrations have increased by around 30% in coastal waters since 
2003. On the basis of localized site-scale assessments, it was previ-
ously estimated that peatland conversion increases riverine DOC flux 
by ~50%, higher than our estimated DOC concentration increase. 
However, our results correspond to a conversion of 69% of regional 
peatland area; normalizing our estimate to converted area implies 
that DOC would increase by 43% relative to the beginning of our time 
series if all remaining peatland area was to undergo land conversion. 
The increase in coastal DOC concentration that we calculate from 
our remote sensing analysis is therefore in remarkably close agree-
ment with the increase in peatland DOC flux of 50% estimated by 
the previous site-scale studies (22, 23). Crucially, our analysis shows 
that such tDOC losses occur across large areas of managed peatland 
plantations and not just from unmanaged, freely draining sites and 
that this additional tDOC accumulates in coastal waters rather than 
being largely decomposed within rivers.

The environmental implications of rising tDOC in coastal waters 
depend on its biogeochemical fate. Peat-derived tDOC in Southeast 
Asia often mixes conservatively across estuaries (16, 38, 54) and 
appears to be relatively refractory to direct microbial remineraliza-
tion, but is labile to photooxidation (12, 55). Research off Sumatra 
suggests that the majority of peatland tDOC that reaches coastal 
waters is remineralized within the Sunda Shelf Sea over time scales 
of 1 to 2 years, resulting first in ocean acidification before gradually 
degassing to the atmosphere (12, 56). This suggests that the ultimate 
fate of the peatland tDOC that we detected is likely to accumulate as 
atmospheric CO2.

In addition, light absorption by CDOM, together with absorp-
tion and scattering by TSM, controls the depth of the euphotic zone 
(57). Since TSM concentration did not show a temporal trend, the 
increase in CDOM that we found implies that the euphotic zone 
depth across the coastal waters likely showed a long-term decrease. 
Such coastal darkening is thought to have affected marine produc-
tivity and ecological functioning elsewhere by reducing productivity 
and light availability to benthic photosynthetic communities (9, 10). 
The overall increase in CDOM absorption that we have estimated 
(0.0352 m−1 at 440 nm) is similar in magnitude to the long-term 
increase reported off Norway (0.012 m−1 at 500 nm), which was 
linked to ecological regime shifts (9). Our results thus show that the 
impacts of peatland disturbance on coastal ecosystems may go 
beyond just changes to the carbon cycle.

Considerably longer monitoring will be needed to determine 
whether the strong reduction in the rate of peatland conversion 
since 2015 will stabilize the coastal tDOC concentrations, so that 
long-term trends can be distinguished from interannual variability. 
Our data reinforce the need for coordination between governments, 
industry, and academia to manage human activities on tropical 
peatlands to reduce carbon losses (58).

METHODS
Remote sensing data processing
Atmospherically corrected level 2 remote sensing reflectance (Rrs) from 
the MODIS Aqua Collection 6.1 ocean color product by NASA’s 
Ocean Biology Processing Group was downloaded from https://
oceancolor.gsfc.nasa.gov/. NASA’s atmospheric correction procedure 
has been validated in open-ocean and coastal locations and is con-
sidered appropriate for global use (59–61) but was further validated 
with data from Southeast Asia (see “Validation of atmospheric correc-
tion scheme,” below). The MODIS Rrs was processed with a regionally 
parameterized inversion model, described in detail in (35), to retrieve 
CDOM (quantified as the light absorption coefficient at 440 nm), the 
CDOM source index 0 (36), and the concentrations of DOC and 
TSM. The model operates similarly to the generalized inherent op-
tical property model (62) and is based on the approach of spectral 
matching of the remotely sensed and simulated reflectance. Reflec-
tances are simulated on the basis of a regional spectral library of 
specific inherent optical properties and associated reflectance spectra 
that we measured in NW Borneo in 2017. For each satellite-measured 
reflectance spectrum, the model identifies the closest matching spec-
trum from the spectral library, selects the associated specific inherent 
optical properties and 0 value, and iteratively adjusts the DOC and 
TSM concentrations until the modeled spectrum best matches the 
satellite-derived optical signature [note that the spectral matching is 
performed at the level of the backscattering albedo after converting 
the MODIS Rrs to backscattering albedo; see (35)]. The spectral li-
brary contains data from 41 stations measured across a range of op-
tical conditions from relatively clear coastal waters up to 50 km away 
from shore to stations in river plumes of both low-DOC, sediment- 
rich rivers and high-DOC blackwater rivers. We applied this model 
to the MODIS time series, and the resulting daily data were aggre-
gated to obtain monthly averages. These monthly averages were then 
further averaged across the region of coastal waters (see below) to 
obtain the monthly means and SDs for coastal waters for our time 
series analysis. Moreover, we used the monthly averages to generate 
19-year average maps of CDOM absorption coefficient at 440 nm, 
DOC, 0, and TSM over the study region. Missing values in pixels very 
close to shore in our annual and monthly average maps (white areas 
in Fig. 2 and figs. S3 to S7) are the result of persistent cloud cover or 
poor data quality flagged by NASA in the level 2 data product.

Our remote sensing model classifies the OWT of each pixel based 
on the ratio of reflectance at 650 to 443 nm to distinguish between highly 
turbid waters influenced by river discharges [type 3: Rrs(650):Rrs(443) 
> 1.5], coastal turbid waters [type 2: 0.05 < Rrs(650):Rrs(443) ≤ 1.5], 
and clear, open-ocean waters [type 1: Rrs(650):Rrs(443) ≤ 0.05]. 
Because we only had access to nearshore vessels for field work and 
our main objective was to sample coastal rather than oceanic waters, 
stations with OWT 1 are not represented in our spectral library. 
Our model therefore associates OWT 1 pixels with the clearest 
OWT 2 stations in our spectral library. Given that any OWT 1 waters 
across the Sunda Shelf are relatively oligotrophic (63) and far from 
sources of tDOC and receive strong solar radiation year round, they 
will have lower DOC-specific CDOM absorption than any of the 
stations in our spectral library, which are influenced by tDOC. Con-
sequently, our spectral library will necessarily underestimate DOC 
concentrations in regions dominated by OWT 1, even though the 
CDOM absorption in these waters (0.02 to 0.06 m−1; Fig. 1 and 
fig. S3) falls within the expected range for oligotrophic tropical surface 
waters (64–66). We therefore restrict our analysis to areas classified 
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as coastal OWTs (OWTs 2 and 3), which extend up to about 70 km 
from shore (fig. S1). On the basis of this definition, we delineated 
the nearshore region in which pixels were classed most frequently 
as OWTs 2 and 3 (fig. S1) and only used data from OWT 2 and 
3 pixels within this coastal water region to calculate the monthly 
and annual mean concentrations and analyze their long-term temporal 
trends. An uncertainty analysis for our remote sensing technique is 
provided in a separate section below.

An important feature of this modeling approach is that DOC is 
not simply calculated as a single, empirical relationship from CDOM 
that is applied across the entire dataset. Instead, by using all of the 
41 specific inherent optical property spectra that we measured in 
the field, the model effectively uses 41 different CDOM-DOC ratios 
(ranging from 0.00060 to 0.01615 m2 mmol−1), depending on the 
measured reflectance spectrum. This has the advantage of being 
robust in the face of biogeochemical processes such as photobleaching, 
which can remove CDOM preferentially relative to the total DOC 
(38, 67) and thereby alter the specific absorption. This approach is 
also likely to be more robust in the face of long-term temporal 
trends in land ocean carbon fluxes: Because tDOC is enriched in 
CDOM relative to marine-produced DOC (44), an increase in tDOC 
might increase the DOC-specific CDOM absorption in coastal 
waters. Therefore, spatial and temporal variation in CDOM in our 
dataset does not always translate into proportionally equal varia-
tion in DOC.

CDOM source index 0
The CDOM source index 0 was calculated from our in situ CDOM 
measurements (38) and included in the spectral library, such that 
the model selects not only the specific inherent optical properties 
but also the value of 0. This index was proposed to distinguish 
between CDOM of terrestrial origin and CDOM produced autoch-
thonously in the marine environment (36). It is calculated from the 
hyperbolic slope () of the CDOM absorption spectrum between 
350 and 650 nm

   a  cdom  ( ) =  a  cdom  (350 nm )   (      ─ 350   )     
−

   

The source index 0 is then calculated as

     0   =   
 a  cdom  (350 nm ) −  (    1 _    )  

  ────────────  
 a  cdom  (350 nm ) +  (    1 _    )  

    

Values of 0 range from +1.0 to −1.0, with high positive values 
indicating a terrigenous source of CDOM, while low negative 
values indicate a marine autochthonous source of CDOM [note that, 
in the original publication proposing the index (36), the calculation 
appears to have been implemented differently from the equation 
given, which resulted in a sign reversal, such that terrigenous 
CDOM was characterized by negative values and marine CDOM by 
positive values]. Intermediate values of 0 result from mixing of 
terrestrial and marine CDOM sources.

We compared the source index 0 with the CDOM spectral slope 
from 275 to 295 nm (S275–295) and the spectral slope ratio (SR; the 
ratio of the 275- to 295-nm slope to the 350- to 400-nm slope) in our 
in situ CDOM dataset (38). Both S275–295 and SR have been shown 
to correlate with dissolved organic matter apparent molecular weight 
(45) and are widely used as markers of tDOC in the ocean (45, 68, 69). 
We found a strong correlation between 0 and both S275–295 and SR 

(fig. S12), which confirms that 0 is an appropriate tracer for terrige-
nous CDOM in remote sensing analyses in our study region.

Long-term trend analysis
We calculated the Theil-Sen slope with Mann-Kendall significance 
test to test our monthly average time series for statistically significant 
(P < 0.05) long-term trends. Using the monthly average data allows us 
to use the longest possible time series from the MODIS satellite record, 
from July 2002 to June 2021, without introducing seasonal biases. 
The uncertainty in the trends is provided by the 95% confidence in-
terval of the trend slope, as provided by the function sens.slope() in the 
R package trend. To further examine the spatial distribution of trends, 
we calculated the Theil-Sen slope from the monthly average CDOM, 
DOC, 0, and TSM within each individual pixel in the study area 
across the 19-year time series, again using the Mann-Kendall test to 
calculate the P values. The Theil-Sen slope and Mann-Kendall test 
are robust nonparametric methods to estimate temporal trends that 
are often preferable to ordinary least-squares regression methods (70).

For CDOM, DOC, and 0, which showed statistically significant 
increases over time (P < 0.05), we further calculated multiple linear 
regressions using cumulative area of peatland conversion and rain-
fall as predictors. Land classification and forest coverage data were 
taken from the Nusantara Atlas for Borneo (https://nusantara-atlas.
org) (34, 71) across all of the river catchments draining into our 
study region (from the Department of Irrigation and Drainage, 
Sarawak, Malaysia). Because the land cover data are only available 
on an annual basis by calendar year, we used January to December 
annual averages for CDOM, DOC, 0, and rainfall for this analysis 
from 2003 to 2020 (2002 and 2021 were omitted because only half a 
year of data were available for each).

Precipitation data for the period of 2002–2021 were extracted 
from the Integrated Multi-satellitE Retrievals for the Global Precip-
itation Measurement (GPM) dataset, which combines information 
from the GPM satellite constellation (72). Percentage cloud cover was 
obtained from CLARA-A2 (CM SAF Cloud, Albedo and Radiation, 
AVHRR-based, Edition 2) (73) from the Koninklijk Nederlands 
Meteorologisch Instituut (KNMI) Climate Explorer over the area 
1.0°N 108.5°E to 3.5°N 113.0°E (available up until June 2019).

Validation of atmospheric correction scheme
NASA’s currently operational iterative atmospheric correction ap-
proach for ocean color infers aerosol reflectance and identifies the 
aerosol type at two near-infrared (NIR) bands using water optical 
properties, and quantifies particulate contributions considering con-
vergence to NIR remote sensing reflectance (Rrs) (74–76). The algo-
rithm then extrapolates the aerosol spectra to the visible wavelengths 
through predefined lookup tables (74) to yield atmospherically cor-
rected spectral water-leaving radiances, which can be used to infer water 
column optical properties and constituent concentrations (62, 77, 78). 
This correction scheme has been validated in open-ocean and coastal 
locations and is considered appropriate for use globally (59–61, 79).

To verify that this correction is also applicable in Southeast Asia, 
a validation exercise was carried out using a total of 41 in situ mea-
surements from three sources: (i) 29 radiometer and aerosol optical 
depth (AOD) measurements from a fixed observatory maintained 
by NASA’s Aerosol Robotic Network–Ocean Color in the Gulf of 
Thailand (9°N 101°E), (ii) one measurement of in situ water-leaving 
Rrs and AOD collected at 3°N 91.76°E downloaded from the 
SeaWiFS Bio-Optical Archive and Storage System (SeaBASS; from 
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cruise i8si9n), and (iii) in situ water-leaving Rrs measurements from 
11 stations during our fieldwork in NW Borneo in 2017 (38). The 
performance of three atmospheric correction schemes was investi-
gated for MODIS Aqua (13 data points from the Gulf of Thailand site, 
1 data point from the SeaBASS archive, and 3 data points from NW 
Borneo), MODIS Terra (10 data points from the Gulf of Thailand 
site and 3 from NW Borneo), and VIIRS (Visible Infrared Imaging 
Radiometer Suite) (6 data points from the Gulf of Thailand site and 
5 from NW Borneo): (i) NASA’s iterative correction scheme (76) also 
used for our MODIS Aqua time series analysis (referred to as NASA 
below), (ii) the Management Unit of the North Sea Mathematical 
Models AC scheme (referred to as MUMM below) (80), and (III) NIR/
shortwave infrared (SWIR) switching method (referred to as SWIR 
below) (81). We derived AOD (29 measurements from the Gulf of 
Thailand) and water-leaving Rrs (a total of 41 measurements) with 
each atmospheric correction scheme using the SeaDAS software pack-
age and compared these against the in situ measurements. The results 
were evaluated on the basis of bias, root mean square error (RMSE), 
and mean absolute error (MAE) (fig. S13 and table S2). Overall, the 
MUMM method produced the lowest agreement across all wave-
lengths (bias: 118 to 170%; MAE: 0.0026 to 0.0061), followed by SWIR 
(bias: −10.4 to 11.5%; MAE: 0.00016 to 0.0014). The NASA iterative 
algorithm consistently outperformed the other two correction schemes 
(bias: −17 to 1.95%; MAE: 0.00015 to 0.001), indicating that the 
shape of the Rrs spectrum is reproduced more accurately. We there-
fore used the Rrs level 2 data for our analysis, which are already 
atmospherically corrected using the NASA iterative procedure.

Uncertainty analysis for satellite retrievals
The uncertainty for satellite remote sensing retrievals is typically 
estimated via matchups, i.e., comparing in situ measurements and 
satellite remote sensing retrievals at the same location and time. In 
our field dataset, the extensive cloud cover precluded this approach. 
Instead, we used a Monte Carlo simulation to estimate the un-
certainty in retrievals of DOC, CDOM, and TSM based on the esti-
mated uncertainty in Rrs (see “Validation of atmospheric correction 
scheme” section above). We used the Rrs spectra in our spectral 
library as the basis for the Monte Carlo simulation: For each of 
these 41 spectra, we generated 5000 random spectra by creating 
5000 random numbers for each wavelength, with mean equal to the 
actual Rrs value for that spectrum and wavelength and SD equal to 
the RMSE of Rrs at that wavelength (see “Validation of atmospheric 
correction scheme” section above), and combining these numbers 
at random into new spectra. We then supplied all of the randomly 
generated spectra (5000 spectra × 41 stations) in turn to our optical 
model to calculate the resulting concentrations of DOC, CDOM, and 
TSM. We then took the SD of the output for each of the 41 stations 
as the estimate of uncertainty. We omitted any cases in which 
randomly generated spectra were classed as OWT 1, since our main 
data analysis only used OWTs 2 and 3. However, we included all 
cases in which randomly generated spectra from OWT 2 stations 
were classified as OWT 3 by the optical model and vice-versa.

The resulting SDs are shown in fig. S14. In all cases, relatively 
high SDs are seen especially for stations inside rivers and coastal 
OWT 3, where concentrations are high. Since our analysis for the 
present work is concerned exclusively with coastal areas and not 
with rivers, we estimated the overall average retrieval uncertainty as 
the mean and median SD of all coastal stations; these are indicated 
by horizontal lines on fig. S14. For DOC, these are ±37.8 (mean SD) 

and  ±27.7 mol  liter−1 (median SD); for CDOM, they are 
±0.36 (mean SD) and ±0.32 m−1 (median SD); and for TSM, they 
are ±1.6 (mean SD) and ±1.2 mg liter−1 (median SD). Since the 
mean coastal water SD for DOC and especially for CDOM is strongly 
influenced by the high SD of one OWT = 3 station, the median is 
likely a more accurate reflection of the average retrieval error across 
our coastal water region. These estimated retrieval uncertainties 
account for uncertainty in the atmospheric correction and any 
inherent model errors (35).

Our estimated retrieval uncertainty for DOC is within the range 
of remote sensing uncertainties reported from matchups for coastal 
waters off northeast America (±11 to 36 mol liter−1) (82), while 
the uncertainties for our high-concentration stations (±100 to 
240 mol liter−1; fig. S14) are similar to the uncertainties reported 
from matchups for a DOC-rich marsh estuary in the Gulf of Mexico 
(±150 to 190 mol liter−1) (83). For CDOM, our uncertainty in 
aCDOM(440) is similar to the uncertainty of ±0.29 m−1 reported for 
aCDOM(412) in a coastal bay in Florida (31). Our uncertainty esti-
mates are likely conservative, because we did not constrain the 
spectral shape of the randomly generated spectra in any way, i.e., 
the Rrs at each wavelength could vary independently of all other 
wavelengths. This will have allowed some of the random spectra to 
have unrealistic spectral shapes, likely leading our remote sensing 
model to select inappropriate optical properties and thus increasing 
the variability. By allowing this unconstrained variation in our 
Monte Carlo simulation, our resulting uncertainty is likely to be an 
upper-end estimate of the true uncertainty.

This estimate of uncertainty applies to retrievals from individual 
images. By averaging over monthly and annual time scales and 
spatially across the coastal water region, random errors will partly 
cancel out, such that the average values will still be accurate. While 
cloud cover in the region is high, over the course of each month, on 
average 88 ± 15% of pixels across the coastal region contained valid 
data. Since temporal variability within a month is low compared with 
the spatial, seasonal, and interannual variation, using monthly averages 
thus greatly mitigates uncertainties arising because of cloud cover.

Independent long-term comparison
Additional support for the accuracy of our remote sensing analysis 
is provided by an independent analysis in which we compared our 
satellite-derived time series of CDOM concentration for a 3 km 
× 3 km location in the west of our study region (centered on 1.914°N 
109.741°E) to a record of relative variation in terrestrial humic acid 
concentration recorded as luminescent growth bands in a core of a 
massive Porites sp. coral collected from an adjacent coral reef (43). 
Such luminescent bands are caused by the inclusion of terrestrial 
humic acids, which are a key component of CDOM, from ambient 
seawater into the coral skeleton and can accurately reconstruct river 
discharge (84, 85). The analysis shows that monthly average coral 
luminescence intensity is strongly correlated with average monthly 
satellite-derived CDOM concentration throughout the 12-year 
period of overlap between coral growth and the satellite record 
(r2 = 0.57, P < 0.001) (43). This shows that our remote sensing model 
returns accurate estimates of seasonal and interannual variability in 
CDOM throughout the remote sensing time series.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abi5688
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