

Applied Multidimensional Geological Modelling

A CONTRIBUTION FOR:--

SECTION 4 – CASE STUDIES

CHAPTER 24: Application Theme 2: Geohazard Identification

CASE STUDY #4: ROLE OF 3-D GEOLOGICAL MODELS IN EVALUATION OF COASTAL CHANGE, TRIMINGHAM, NORFOLK, UK

Word Count: 2,005

Figures: 7

Tables: 0

Boxes: 0

Corresponding Author:

Andrés Payo

British Geological Survey,
Keyworth, NG12 5GD, UK

Tel: +44 0115 936 3103

Fax:

Mob:

EMAIL: agarcia@bgs.ac.uk

Additional Authors:

OUTLINE

1. INTRODUCTION
2. COASTAL BEHAVIOR MODELING FRAMEWORK
3. CONDITIONS AT TRIMINGHAM
4. EVALUATION OF CLIFF EROSION AT TRIMINGHAM
5. CONCLUSIONS
- REFERENCES

**Initial Conceptual Draft by
AKT January 31, 2018
(based BGS presentation &
references)**

Revised Draft:
Andres Payo 05/02/2018

AKT Final Revision 12/02/2018

FINAL APPROVAL:

1 ROLE OF 3-D GEOLOGICAL MODELS IN EVALUATION OF COASTAL CHANGE, 2 TRIMINGHAM, NORFOLK, UK

3 *Andrés Payo¹, Holger Kessler¹, Benjamin Wood¹, Michael A. Ellis¹, Alan Keith Turner^{1,2}*

4 ¹ *British Geological Survey, Keyworth, NG12 5GD, UK*

5 ² *Colorado School of Mines, CO 80401, USA*

6 1. INTRODUCTION

7 Coastal erosion was widespread around the United Kingdom during the 20th Century and is expected to
8 become even more pervasive through the 21st Century due to sea-level rise and climate change. Erosion
9 poses a direct hazard for coastal residents with potential risks of personal injuries or loss of life and
10 damage or complete loss of property. Failure of natural and artificial defenses during storms increases
11 the risk of coastal flooding. Erosion and flooding resulting from a specific coastal storm may be
12 predicted accurately, but mesoscale predictions – encompassing 10-100 km (5-50 miles) and decades to
13 centuries – are unreliable (Payo *et al.*, 2017). Yet these predictions are necessary to manage risks and
14 make decisions on protective measures, or to evaluate responses to climate change impacts (Murray *et*
15 *al.*, 2013; Nicholls, 2015). In response to this need, the National Environmental Research Council (NERC)
16 established two projects: *Integrating Coastal Sediment Systems* (iCOASST) (www.icoasst.net), and
17 *Improving our understanding of processes controlling the dynamics of our coastal systems* (BLUEcoast)
18 (www.bluecoastuk.org).

19 The 4-year iCOASST project (2012-2016) involved a consortium of UK Universities, research
20 laboratories (including the British Geological Survey, BGS), and engineering consultants, with the
21 Environment Agency as a key embedded stakeholder. The project's task was to determine how best to
22 predict mesoscale (i.e. decades to centuries) coastal morphological changes to guide long-term
23 shoreline management and strategy studies (Nicholls *et al.*, 2012; 2015; van Maanen *et al.*, 2016). This is
24 a difficult problem because the evolution of a coastal landform, such as a beach or cliff, is influenced by
25 interactions with adjacent coastal landforms and by human interventions and because, coastal erosion is
26 better understood and modelled than coastal recovery. The 4-year BLUEcoast project (2016-2020) is
27 focused on both physical and biological dynamic processes and their role in coastal recovery after storm
28 events. A principal BLUEcoast task is to produce a better representation of both transportable and
29 source material within the coastal zone.

30 This case study illustrates how the sub-surface material can be represented and quantified as a
31 bespoke-thickness model using Groundhog software (Wood *et al.*, 2017) and how this can be used to
32 produce better coastal evolution assessment using the *Coastal Modelling Environment* (CoastalME)

33 framework (Payo *et al.*, 2017). Geologists used Groundhog, a BGS software tool that utilizes a DTM,
34 surface geological line work, downhole borehole information and geophysical data to produce a
35 geological fence diagram that subsequently defined a 3-D geological framework model. Enhanced
36 Groundhog capabilities supported the conversion of the 3-D geological framework model to a thickness
37 grid model required by the numerical erosion model. CoastalME is a modeling platform which simulates
38 decadal and longer coastal morphological changes. Developed as a proof-of-concept in iCOASST, it is
39 being further developed within BLUECoast.

40 Because the Norfolk coast is subject to severe erosion threats, the EA Coastal Partnerships &
41 Strategic Overview Team for the East Anglia Area contacted the British Geological Survey (BGS) in
42 early 2017 to determine if erosion rates in that region could be more accurately assessed by
43 combining BGS expertise in subsurface geological modeling and prior experience with the
44 iCOASST/BLUEcoast projects. For an initial test case, a site near Trimingham was selected ([Figure
45 24-CE1](#)). The BGS organized a team of 11 staff-members with expertise on quaternary geology,
46 landslide processes at the study area, subsurface geological modeling, and coastal morphodynamic
47 modeling. This case study summarizes the experiences of this team in 2017 as they combined the
48 capabilities of Groundhog and CoastalME.

49 =====

50 **Figure 24-CE1 NEAR HERE**

51 Figure 24-CE1. Location of Trimingham within Great Britain and 10m resolution DTM. The Trimingham
52 project used a larger domain (black outline) to model coastal hydrodynamics and a smaller domain (red
53 outline) to integrate 3-D geological information with CoastalME simulation of coastal change.

54 =====

55 **2. COASTAL BEHAVIOR MODELING FRAMEWORK**

56 Geomorphic coastal systems models combine understanding of hydraulics, waves, tides, sediment
57 transport and sediment conservation that are captured as sets of logical arguments or conceptual
58 models, mathematical formulations, physical scaled models or statistical relationships (Payo 2017).
59 None of these models claim to represent reality in all its complexity, but instead provide a formal
60 framework to explore, qualitatively and/or quantitatively, the behavior of coastal geomorphic systems
61 that are too complex to analyze through reasoning. Rather than favoring one approach over another,
62 the prospect of integrating the different modelling approaches has been identified as a way forward to
63 develop a system-wide capability for assessing coastal geomorphological change (Nicholls *et al.*, 2015;
64 Payo 2017). An innovative integration approach involves utilization of the essential characteristics of

65 multiple landform-specific models using a common spatial representation within an appropriate
66 software framework.

67 In the Coastal Modelling Environment (CoastalME) framework, change in coastal morphology is
68 represented by means of dynamically linked raster and geometrical objects. A grid of raster cells
69 provides the data structure for representing quasi-3-D spatial heterogeneity and sediment conservation.
70 Other geometrical objects (lines, areas, and volumes) that are consistent with, and derived from, the
71 raster structure represent a library of coastal elements required by different landform-specific models.
72 [Figure 24-CE2](#) illustrate how a real coastal morphology (upper panel) is conceptualized as shoreline,
73 shoreface profiles, and estuary elements (middle panel). All elements can share sediment among them
74 (double-headed arrows). The shoreface comprises both consolidated and non-consolidated material
75 that forms the cliff, shore platform and beach respectively (bottom panel). At every time step the
76 shoreline is delineated at the intersection of the sea level and the ground elevation. Shore face profiles
77 are delineated perpendicular to the shoreline. Sea level and wave energy constrain the proportion of
78 shoreface profiles that are morphologically active at each time step. Eroded sediment from the
79 consolidated profile is added to the drift material to advance the shoreline, or is lost as suspended
80 sediment. Gradients of the littoral drift further control the advance and retreat of the beach profile and
81 the amount of sediment shared with nearby sections of the shoreline. Payo *et al.* (2017) provides
82 additional details.

83 =====

84 Figure 24-CE2 NEAR HERE

85 Figure 24-CE2. Schematic diagram of the CoastalME approach (from Payo *et al.* 2017)

86 =====

87 CoastalME uses a simple representation of the ground elevation and sub-surface properties
88 ([Figure 24-CE3](#)) which is well aligned with our current understanding and modelling capacity of the sub-
89 surface. Ground elevation is characterized as a set of regular square blocks. Each block has a global
90 coordinate x, y, z. As shown by Blocks detail in [Figure 24-CE3](#), each block may be composed of six
91 different sediment fractions defined as “coarse”, “sand”, and “fine sediment”, with each size fraction
92 further defined as “consolidated” (capitalized) or “unconsolidated” (lower case). Block types a, b, c and
93 d illustrate blocks having the same total elevation but with different compositions. Integration with a 3-
94 D geological subsurface model permitted improved definition of these CoastalME grid elevations and
95 subsurface composition. This in turn resulted in better evaluations of responses of the cliff and shore
96 base materials to waves and currents.

97 =====
98 Figure 24-CE3 NEAR HERE
99 Figure 24-CE3. CoastalME representation of ground elevation and sub-surface at different levels of detail
100 (from Payo *et al.* 2017)
101 =====

102 3. CONDITIONS AT TRIMINGHAM

103 The Trimingham coast experiences periods of higher than usual rates of erosion followed by periods of
104 relative stability. This makes prediction of erosion rates particularly difficult. Published reports suggest
105 the cliff at Trimingham eroded between 1.5-2.5 m/year in the 1966-1985 period. Evaluation of historic
106 maps suggests 50-60 m of erosion over a period of 100 years, or 0.5-0.6 m/year. The Shoreline
107 Management Plan *Kelling Hard to Lowestoft Ness* (East Anglia Coastal Group, 2010) reports that erosion
108 of 75-150 m can be expected over the next 100 years (0.75-1.5 m/year). Littoral sediment processes on
109 the coast around Trimingham have been studied through observations and modeling (HR Wallingford,
110 2003a; 2003b). These reports provide estimates of potential net longshore sediment transport, changes
111 in beach volume and steepness, cliff recession, and sediment yields.

112 The geology of the region consists of a thick layer of glacial deposits unconformably overlying
113 marl and fossiliferous limestone of the Cretaceous Chalk Group. The rockhead surface dips gently to the
114 east and is at or below sea-level along the coast, except for a few distinctive bedrock highs; one high
115 occurs at Trimingham. Lee *et al.* (2011b) provide a detailed discussion of the glacial deposits; they
116 consist of four recognized tills separated by sequences sand, silt and clay representing ice-marginal
117 glaciolacustrine conditions, including large sand deltas and rhythmic, varved lake deposits.

118 The coastal cliffs between Trimingham and Overstrand offer a rare opportunity to examine the
119 internal architecture these deposits (Figure 24-CE4). These cliffs form the eastern eroded extent of the
120 Cromer Ridge, interpreted as a push moraine formed at the southern margins of the Middle Pleistocene
121 ice sheet. The stratigraphy of Trimingham cliffs has presented something of a geological puzzle to many
122 scientists due to their intense glacitectonic deformation (Hart, 1990; Hobbs *et al.*, 2008; Lee *et al.*,
123 2011b), and the frequent obscuring of exposures by large rotational landslides (Hutchinson, 1976). Lee
124 *et al.* (2011a) reported on studies of coastal sections at Trimingham undertaken for 10 years (1996-
125 2006). These studies took advantage of cliff and coastal erosion which created new, often temporary,
126 exposures.

127 =====

128 Figure 24-CE4 NEAR HERE

129 Figure 24-CE4. Cross-sections of the Trimingham to Overstrand coastal sections showing the interpreted
130 geology and landslides. (Lee *et al.*, 2011a; modified from Hart, 1990)

131 =====

132 4. EVALUATION OF CLIFF EROSION AT TRIMINGHAM

133 After reviewing existing information sources, the BGS team concluded that any analysis of cliff erosion at
134 Trimingham must consider the following:

- 135 • Interactions between alongshore sediment transport and erodibility of the glaciectonic cliff
136 material control the cliff recession rates;
- 137 • Future recession rates depend on variations in cliff height and presence/absence and condition of
138 artificial coastal-defense structures; and
- 139 • Small beach volumes cause highly variable observed annual recession rates, ranging from 0-15
140 m/year between 1993-2001.

141 The limited resources available for this proof-of-concept initial project resulted in the BGS team
142 integrating 3-D geology with CoastalME process modeling within a relatively small area at Trimingham. A
143 larger “CoastalME domain” (entire rectangular area in [Figure 24-CE1](#)) was used to minimize boundary-
144 condition influences on the CoastalME simulations of waves and alongshore currents. A much smaller
145 domain (red outline on [Figure 24-CE1](#)) was used to build a 3-D subsurface geology model.

146 The BGS team created an integrated digital terrain model (DTM) for the larger CoastalME
147 domain by combining data from NextMap 5m-resolution DTM from the Ministry of Defence, EA 2m-
148 resolution DTM of the shore areas obtained from 2016 Lidar surveys, and 10m-resolution bathymetry
149 data from United Kingdom Hydrographic Office. These sources left an “information gap” along the
150 shallow offshore; elevations in this zone were estimated by linear interpolation to produce an
151 integrated 10m-resolution DTM.

152 The 3-D geological model was constructed according to standard BGS modeling procedures
153 ([Chapter 10](#)) using borehole logs and geological maps to create a series of interlocking interpreted cross
154 sections and ultimately a 3-D geological framework model ([Figure 24-CE5](#)) The completed model
155 consisted of six geological units and extended from approximately 1.25 km behind the coast to 7 km
156 offshore.

157 =====
158 Figure 24-CE5 NEAR HERE
159 Figure 24-CE5. Creating the 3-D Geological Model. A) User-defined network of interlocking cross sections
160 (boreholes are red dots); B) Typical interpretive cross section; C) Typical digitized spatially-referenced
161 cross section with borehole; (D) Completed 3-D geological model. (BGS)
162 =====

163 Groundhog Desktop (Wood *et al.*, 2017) was used to manage the digital borehole and cross
164 section data. Its capabilities were extended to support the export of 3-D material-property distributions
165 as raster files to define material distributions and thicknesses in a form acceptable to CoastalME (Figure
166 24-CE6).

167 =====
168 Figure 24-CE6 NEAR HERE
169 Figure 24-CE6. Geological model horizons are grouped into material classes, forming CoastalME layers;
170 these are exported as thickness rasters for CoastalME simulations. (BGS)
171 =====

172 5. CONCLUSIONS

173 As a test case, the BGS team used CoastalME to simulate coastal recession at Trimingham for two
174 scenarios by changing only the subsurface composition, with all other factors unchanged. Waves were
175 assumed constant and propagating normal to the coastline with a 1 m significant wave height and an 8
176 second period. The simulations evaluated this wave regime for a period of 25 days. The first scenario
177 assumed the cliff was composed of fine material that, when eroded, would be lost in suspension and not
178 contribute to the nearshore sediment budget. The second scenario assumed a cliff made entirely of sand
179 material that, when eroded, became part of the beach volume.

180 These two simulations illustrate how different subsurface material distributions are important
181 influences on cliff recession rates at Trimingham (Figure 24-CE7). The cliff recession for a fine-grained
182 muddy cliff was up to 950m greater than for a sandy cliff. These two scenarios indicate the sensitivity of
183 shoreline evolution at Trimingham to cliff composition, and thus the importance of including accurate
184 geological information in simulations.

185 =====
186 Figure 24-CE7 NEAR HERE
187 Figure 24-CE7. Results from two cliff erosion scenarios at Trimingham. Black line shows erosion
188 assuming a sandy cliff; red line shows erosion assuming a fine-grained muddy cliff. Dashed line shows
189 initial cliff location at start of simulation (PRESENTATION #48)
190 =====

191 Variations in cliff recession rates are due to influences of material contributed from the cliffs on
192 beach volumes and how the characteristics of this material influence indirect morphodynamic

193 conditions. The sediment yield per unit of eroded cliff is a function the cliff height and sediment
194 characteristics. Large yields can increase beach width, resulting in an advancing shoreline. Subsequently,
195 these wider and thicker beaches reduce the energy reaching cliff base, thus reducing the recession rate,
196 and the energy reaching shore platform, thus reducing rate of shore face erosion.

BGS PROPOSED TRIMINGHAM REFERENCES

East Anglia Coastal Group (2010) Kelling Hard to Lowestoft Ness. Shoreline Management Plan 6 (Adopted March 2012). AECOM Ltd. 162p. [ONLINE: Available at: <http://www.eacg.org.uk/docs/smp6/smp/kelling%20to%20lowestoft%20ness%20smp%20-%20final.pdf>] (Last accessed January 2018)

Hart, J.K. (1990) Proglacial Glaciectonic Deformation and the Origin of the Cromer Ridge Push Moraine Complex, North Norfolk, England. *Boreas*. 19. p. 165-180.

Hobbs, P.R.N., Pennington, C.V.L., Pearson, S.G., Jones, L.D., Foster, C., Lee, J.R. & A. Gibson (2008) *Slope Dynamics Project Report: Norfolk Coast (2000-2006)*. British Geological Survey Research Report OR/08/018. 166p.

HR Wallingford (2003a) Overstrand to Walcott Strategy Study: Cliff Processes (Part II). HR Wallingford Report EX 4692 (February 2003) 50p. [ONLINE: Available at: https://www.north-norfolk.gov.uk/media/3098/coastal_environment_013_4.pdf] (Last accessed January 2018)

HR Wallingford (2003b) Overstrand to Walcott Strategy Study: Cliff SCAPE Modelling and Cliff top Recession Analysis (Part II). HR Wallingford Report EX 4692 (June 2003) 44p. [ONLINE: Available at: https://www.north-norfolk.gov.uk/media/3100/coastal_environment_013_6.pdf] (Last accessed January 2018)

Hutchinson, J.N. (1976) Coastal landslides in cliffs of Pleistocene deposits between Cromer and Overstrand, Norfolk, England. *IN: Laurits Bjerrum Memorial Volume, Contributions to Soil Mechanics (Janbu, N., Jorstad, F. & B. Kjaernsli; Eds.)*, Norwegian Geotechnical Institute, Oslo. p. 155-182.

Lee, J.R., Pennington, C.V.L. & P.R.N. Hobbs (2011) Trimingham: Structural Architecture of the Cromer Ridge Push Moraine Complex and Controls for Landslide Geohazards. *IN: Glaciectonics (Phillips, E., Lee, J.R. & H.M. Evans; Eds.). Field Guide, Quaternary Research Association*. p. 218-227.

Lee, J.R., Phillips, E., Evans, H.M. & D. Vaughan-Hirsch (2011) An Introduction to the Glacial Geology and History of Glaciectonic Research in Northeast Norfolk. *IN: Glaciectonics (Phillips, E., Lee, J.R. & H.M. Evans; Eds.). Field Guide, Quaternary Research Association*. p. 101-115.

Murray, A.B., Gopalakrishnan, S., McNamara, D.E. & M.D. Smith (2013) Progress in Coupling Models of Human and Coastal Landscape Change. *Computers & Geoscience*. 53. p. 30-38.

Nicholls, R.J. (2015) Coastal Evolution and Human-Induced Sea-Level Rise: History and Prognosis. *IN: Proceedings of Coastal Sediments, San Diego, May 2015 (Wang, P., Rosati, J.D. & J. Cheng; Eds.)*. p. 1-12.

Nicholls, R.J. & 17 Others (2012) iCOASST – Integrating Coastal Sediment Systems. *IN: Proceedings of the 33rd International Conference on Coastal Engineering (Lynett, P. & J. McKee Smith; Eds.)*. p. 100-115.

Nicholls, R.J. & 25 Others (2015) Improving Decadal Coastal Geomorphic Predictions: An Overview of the iCOASST Project. *IN: Proceedings of Coastal Sediments, San Diego, May 2015 (Wang, P., Rosati, J.D. & J. Cheng; Eds.)*.

Payo, A. 2017. Section 5.6.3 Modelling Geomorphic systems: Coastal. In: Cook, S.J., Clarke, L.E. & Nield, J.M. (Eds.) *Geomorphological Techniques* (Online Edition). British Society for Geomorphology, London. ISSN: 2047-0371. [ONLINE: Available at: http://geomorphology.org.uk/sites/default/files/chapters/5.6.3_ModellingGeomorphicSystemsCoastal.pdf] (Last accessed February 2018)

Payo, A., Favis-Mortlock, D., Dickson, M., Hall, J.W., Hurst, M., Walkden, M.J.A., Townend, I., Ives, M.C., Nicholls, R.J. & M.A. Ellis (2017) CoastalME Version 1.0: A Coastal Modelling Environment for Simulating Decadal to Centennial Morphological Changes on Complex Coasts. *Geoscientific Model Development*, 10 (7). p. 2715-2740.

van Maanen, B. & 12 Others (2016) Simulating Mesoscale Coastal Evolution for Decadal Coastal Management: A New Framework Integrating Multiple, Complementary Modelling Approaches. *Geomorphology*. 256. p 68-80.

Wood, B., Richmond, T., Richardson, J. & J. Howcroft (2017) *BGS Groundhog® Desktop Geoscientific Information System v1.8.0 External User Manual*. British Geological Survey Internal Report OR/15/046. 178p.

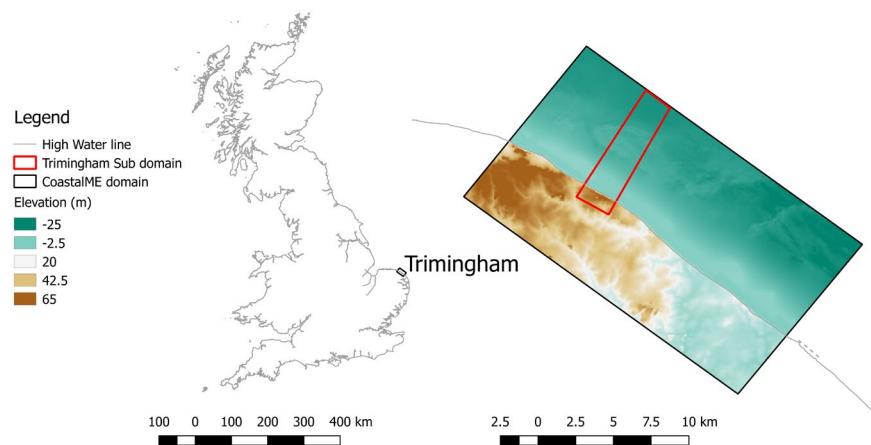


Figure 24-CE1. Location of Trimingham within Great Britain and 10m resolution DTM. The Trimingham project used a larger domain (black outline) to model coastal hydrodynamics and a smaller domain (red outline) to integrate 3-D geological information with CoastalME simulation of coastal change.

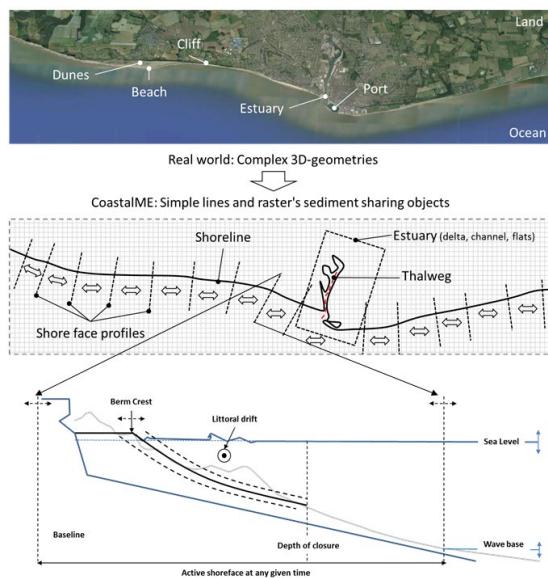


Figure 24-CE2. Schematic diagram of the CoastalME approach (from Payo et al. 2017)

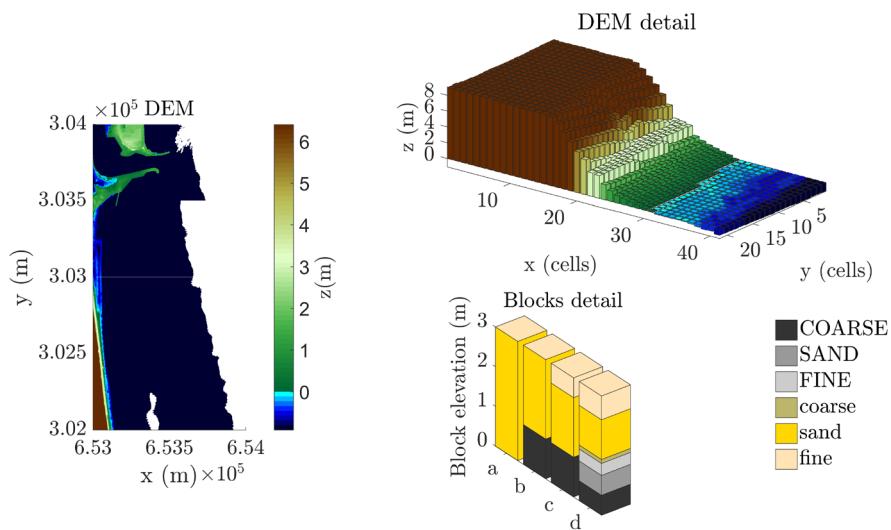


Figure 24-CE3. CoastalME representation of ground elevation and sub-surface at different levels of detail (from Payo et al. 2017)

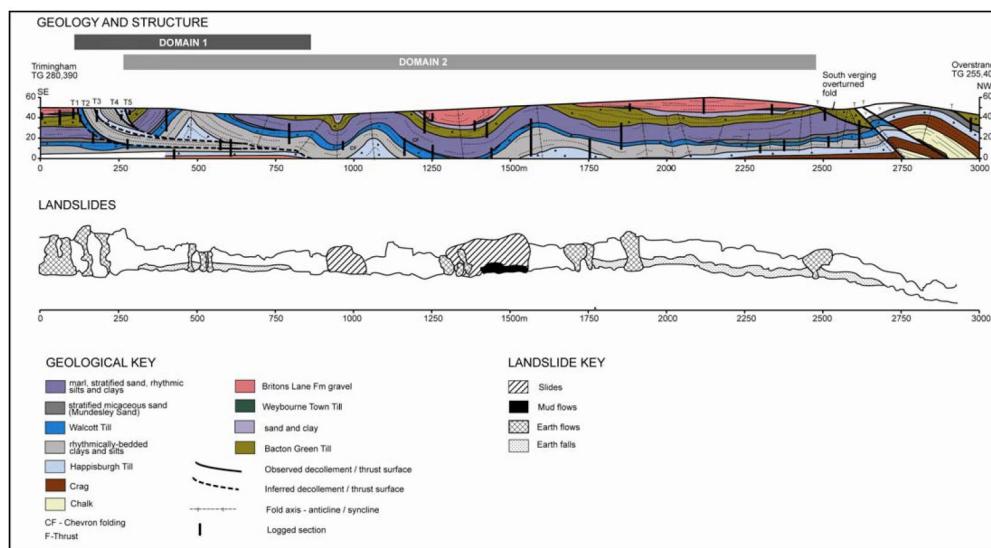


Figure 24-CE4. Cross-sections of the Trimingham to Overstrand coastal sections showing the interpreted geology and landslides. (Lee et al., 2011a; modified from Hart, 1990)

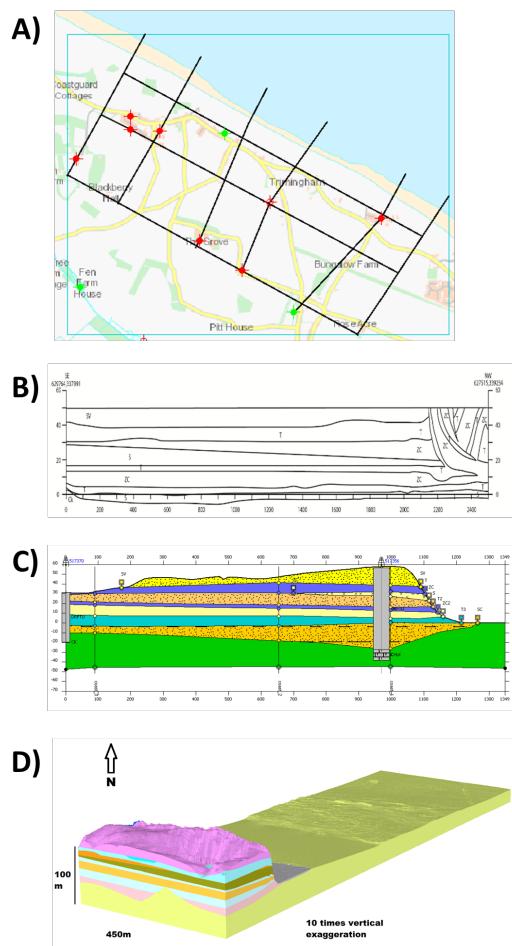


Figure 24-CE5. Creating the 3-D Geological Model. A) User-defined network of interlocking cross sections (boreholes are red dots); B) Typical interpretive cross section; C) Typical digitized spatially-referenced cross section with borehole; (D) Completed 3-D geological model. (BGS)

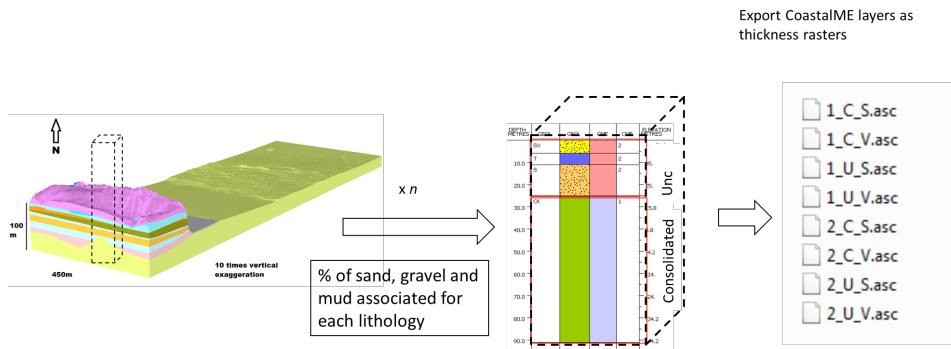


Figure 24-CE6. Geological model horizons are grouped into material classes, forming CoastalME layers; these are exported as thickness rasters for CoastalME simulations. (BGS)

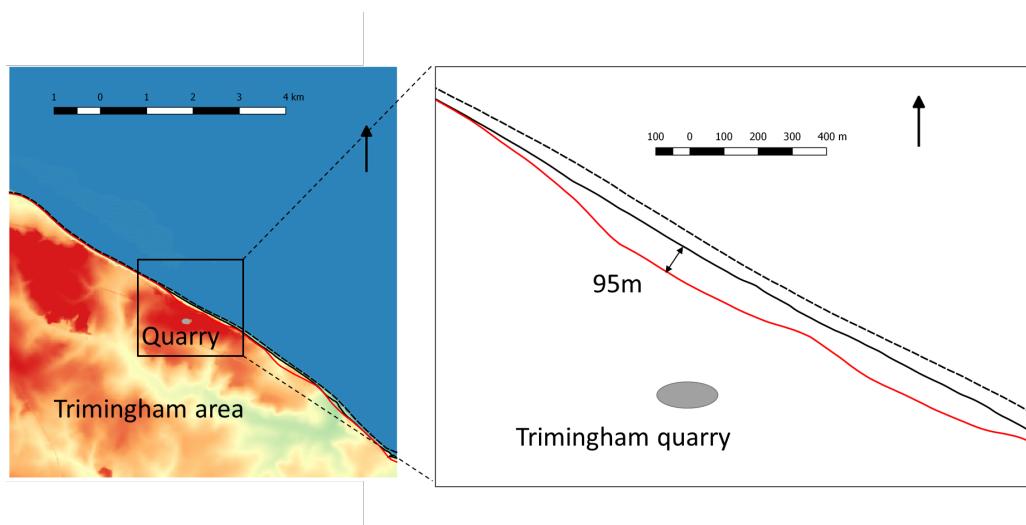


Figure 24-CE7. Results from two cliff erosion scenarios at Trimingham. Black line shows erosion assuming a sandy cliff; red line shows erosion assuming a fine-grained muddy cliff. Dashed line shows initial cliff location at start of simulation (BGS)