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Abstract
The current maturity of autonomous underwater vehicles (AUVs) has made their deployment practical and cost-
effective, such that many scientific, industrial and military applications now include AUV operations. However, the
logistical difficulties and high costs of operating at-sea are still critical limiting factors in further technology development,
the benchmarking of new techniques and the reproducibility of research results.
To overcome this problem, this paper presents a freely available dataset suitable to test control, navigation, sensor
processing algorithms and others tasks. This dataset combines AUV navigation data, sidescan sonar, multibeam
echosounder data and seafloor camera image data, and associated sensor acquisition metadata to provide a detailed
characterisation of surveys carried out by the National Oceanography Centre (NOC) in the Greater Haig Fras Marine
Conservazion Zone (MCZ) of the U.K in 2015.
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1 Introduction

Recent years have seen dramatic progress in the develop-
ment of Autonomous Underwater Vehicles (AUVs) and the
accompanying communication and sensor technology (Fer-
reira et al. 2019) (Ferri et al. 2017; Munafo and Ferri
2017; Ferri et al. 2018; Caiti et al. 2013). This in turn has
allowed a significant advance in marine survey and science
results (Caress et al. 2008). Recent examples include AUVs
deployed under the ice-shelves of Antarctica collecting data
that has changed our understanding of the under-ice environ-
ment (Jenkins et al. 2010), or the usage of a combination
of AUV and ROV missions to obtain unprecedented high-
resolution maps of marine vertical structures (Robert et al.
2017; Ribas et al. 2012).

It is likely that robotics will play a key role in the
future of ocean research and exploration (Huvenne et al.
2018; Robison et al. 2017). Marine robotic systems can
be deployed at depths and in environments that are out
of direct reach for humans, they can work around the
clock, for example, Autosub6000 (McPhail 2009) has a
maximum battery endurance of 36h and Autosub Long
Range 1500 (Roper et al. 2017) an endurance of more
than three months. AUVs can carry out a range of pre-
programmed operations (McPhail 2009), that can include
adaptive behaviours (Yoerger et al. 2021; Ferri et al. 2018),
freeing up resources to enable cost savings or to extend
the scope of activities undertaken in a particular project.
Despite these steps forward and undoubted achievements, the
underwater environment remains one of the most challenging
to operate in, being characterised by logistic difficulties
and high cost activities. These issues exacerbate the already
important difficulties in benchmarking new algorithms, and

in reproducing research results (Peng 2011; Bradbury and
Plückthun 2015).

A recent survey (Baker 2016) has revealed that more
than 70% of researchers have attempted and failed to
replicate another scientist’s research results, and more
than half have not succeeded to reproduce their own
experiments. Top methodological failings range from low
statistical power and poor analysis, to poor experimental
design and insufficient replication in the original lab,
with methodological improvements pointing strongly to a
more robust experimental design and to stronger statistical
analysis. All of this relates to long-understood aspects of
good experimental / survey design. In this respect, from
a scientific perspective, AUVs offer some key advantages,
being uniquely positioned to greatly increase the size of
the sampling unit and to greatly increase the level of
replication. Being well instrumented they also have the
ability to partition (stratify) the environment (sampling
population) into relevant compartments by co-measurement
of multiple parameters. From a marine robotics perspective,
one of the main reasons for a general lack of reproducibility
is often to be found in the lack of a clear experimental
description and in the difficulties in accessing the original
data. Sometimes, even when the data are made available,
the lack of informative metadata makes its effective usage
very difficult. The lack of time-synchronization among
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the sensors and the needs of pre-processing steps, often
requiring proprietary software, on the acquired data are
additional high-impact barriers. Moreover, in the underwater
case, the logistic difficulties and the high costs typically
associated with marine experiments and surveys usually
make reproducing a mission practically infeasible. As a
result, the available datasets may be seen to have a very
high value, prompting researchers and institutions to become
quite conservative when it comes to deciding on data
access permissions. To overcome some of these issues, this
paper introduces a multi-sensor dataset named AURORA
(A multi sensor dataset for robotic ocean exploration)
built by putting together multiple missions of the AUV
Autosub6000 (McPhail 2009), with the aim of allowing
other scientists to benchmark solutions, compare results,
and hopefully help the overall reproducibility of the related
research. The AURORA dataset groups together and makes
available high quality AUV navigation data with sidescan
Sonar (SSS), Multibeam EchoSounder (MBES) and camera
images. The data were collected during the RRS James Cook
cruise 125 (JC125) (Huvenne et al. 2016) and the non-
curated version of the raw data are available from the British
Oceanographic Data Centre (BODC). This article describes
the AURORA dataset, a carefully curated and selected subset
of sensor data and AUV navigation and sensor settings.
To make it easily accessible and usable for algorithm
development and benchmarking, the raw data have been
carefully polished, organised, space and time synchronised
and timestamped. Moreover, all sensor data have been
converted to standard formats and all data logs to human
readable form. When specific processing was necessary,
this is described, documented and exemplary code is made
available. In this respect, the dataset presented here provides
a unique set of synchronised vehicle and sensor data prepared
and made available to simplify test and reproducibility of
control, navigation, and sensor processing algorithms, using
data collected in the very dynamic and challenging offshore
environments of the Celtic Sea. To maximise its potential
impact as a benchmarking tool, AURORA includes both
raw and processed data, navigation and positions of the
vehicle together with all sensor settings and configurations.
The authors hope that the information provided will make
the dataset usable in many application areas such as ocean
engineering, robotics, and computer vision.
Below, the paper gives an overview of some publicly
available datasets that can be used to complement the
information provided in this work (Section 2); provides a
concise description of the AUV missions, of the area where
the data were collected, and of the environment at the time
when the missions were performed (Section 3); describes
the characteristics of the vehicle and its sensors (Section 4);
report the structure of the dataset (Section 5); presents
conclusions and directions of future work (Section 6).

2 Related Work

Publicly available datasets are becoming the norm for
algorithm comparison and benchmarking, thanks to a
substantial pull from the machine learning and computer
vision fields (Krizhevsky 2009; Cordts et al. 2016;
Russakovsky et al. 2015). Terrestrial robotics is also

witnessing a surge in the number of datasets made openly
available. A dataset captured from a VW station wagon for
use in mobile robotics and autonomous driving research
is presented in Geiger et al. (2013). The paper describes
six hours of traffic scenarios using a number of sensors,
ranging from laser scanner to high precision GPS/IMU
inertial navigation systems. Scenarios are diverse and they
include freeways, rural areas, and inner-city scenes. The
data are calibrated, synchronized, and timestamped. A large
dataset gathered from a robot driving several kilometres
through a park and campus is described in Smith et al.
(2009). All data are carefully timestamped and all data logs
are in human readable form with the images in standard
formats. Tools are also provided to access the data. The
data from 1000 km of recorded driving, collected over more
than a year is reported in Maddern et al. (2017). The data
were collected in all weather conditions, including heavy
rain, night, direct sunlight and snow. In the underwater
community several datasets have been published to compare
methods and algorithms. Most of them are in the form of
vision data (Kavasidis et al. 2014; Joly et al. 2015; Duarte
et al. 2016; Radolko et al. 2016; Skinner and Johnson-
Roberson 2017; Chavez et al. 2019). These datasets are task-
specific and can be categorised as either image classification,
image restoration, or underwater change detection. Synthetic
datasets are used to create large sets of training data for
deep-learning applications, for instance, WaterGAN (Li et al.
2018) uses a synthetic underwater colour image to train
a colour correction dataset. The integration of multiple
sensor data has allowed the generation of several datasets
(Bryson et al. 2013; Lindemuth and Lembke 2013; Mallios
et al. 2017) that open the way for the development of new
solutions in various tasks. A particularly interesting dataset
from a vehicle navigation perspective is that presented
in Mallios et al. (2017). This dataset consists of sonar,
doppler velocity log (DVL), inertial measurement units
(IMUs), depth, and camera information. The mission, which
explores an underwater cave, was performed in a very
challenging environment but it was relatively short, with
the vehicle running for approximately 500m. As in the
case of the imaging datasets, these datasets have been built
mainly to address the needs of one specific application
(e.g. localization and simultaneous localization and mapping
SLAM).

In contrast, AURORA, which collects data over more than
150 km of underwater navigation, aims at providing data
that are normally collected during long range oceanographic
missions and does not have the constraints of any specific
application. The dataset consists of all the necessary data
(from raw to processed) to allow users to use it and process
it according to their specific needs. Moreover, additional
information (metadata, sensors positions, navigation, etc.)
are provided in human-readable form.

3 Mission Data
The data presented in this work were collected in the Greater
Haig Fras Marine Conservation Zone (MCZ) area of the UK
(Figure 1).

Greater Haig Fras MCZ is located around 120km west
of Cornwall and it is considered a particularly significant
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Figure 1. General location of the Haig Fras survey area in the Celtic Sea shown as a blue rectangle. The black line shows the
position of the repeat Autosub6000 survey.

area as it encompasses all of Haig Fras, a geologically
valuable, fully submerged outcrop of bedrock, surrounded
by continental shelf seabed consisting of a wide range
of sediment types. Autosub6000 was first deployed in the
area in July 2012 (Ruhl 2013), with early results published
in Wynn et al. (2014), with a detailed account of the
environment and seafloor fauna of the survey area published
later (Benoist et al. 2019).

In general terms, the survey area has a water depth of
ca. 100m and only modest topographic range (< 10m), it
encompasses a broad range of seabed types from exposed
bedrock to fine sandy sediments, that provide habitats
for many species of fish and larger invertebrates, some
having particular conservation interest (e.g. the ’ross coral’
Pentapora foliacea).

This work collates data obtained during the JC125
research expedition (Huvenne et al. 2016), to the Greater
Haig Fras survey area in 2015. From the perspective of this
work, two AUV missions are used:

1. Mission number 86 (M86), in which MBES, SSS
and camera data were acquired. The MBES data
acquisition was performed at an altitude of 50m from
the bottom for the MBES survey, 15m from the bottom
for the SSS data, 3m from the bottom for the camera
work, and at the mean speed of approximately 1.1m/s.
The mission lasted 20 hours (from 10th of October
2015 at 16:30 to 11th of October at 12:45) with a total
distance travelled of 81.25 km. Only the MBES data
set is included in AURORA.

2. Mission number 87 (M87), was carried out soon after
to collect camera and sidescan sonar images. The
SSS mission (a repeat of M86) was carried out at
high frequency at two different altitudes (15m, 3m).
However, the main SSS data have been acquired at
15m with an acoustic frequency of 410kHz. The photo
mission was performed at an altitude of 3m and more
than 40000 images were collected. The AUV reached
a maximum depth of 107.7m. The mission had a
duration of 15 hours. It started on 12th of October 2015
at 06:30 and ended on 12th of October at 22:00.

Note that this multi-altitude/ multi-sensor approach is a
common mission profile for AUV operations, where the first

dive is done to collect multibeam data to have a generic
view of a large area, while subsequent dives are planned
to collect data in specific regions using sidescan sonars and
cameras (Ferri et al. 2017).

The trajectory of the AUV in the area of operation is
shown in Figure 2.

During the cruise, the weather was relatively fair, with
a calm sea and a light breeze on the first two days (9-
10 August). For the following days conditions worsened,
reaching up to a sea state 6.

4 Platform and sensors
The data presented in this work was collected using
the Autosub6000 AUV (McPhail 2009). The vehicle
measures 5.5m in length and 0.9m in diameter, having a
weight in air of 1800kg (Figures 3, and 4). It is fitted
with five pressure-balanced lithium polymer rechargeable
batteries that can provide up to 54kWh. It can operate
for ∼ 36 hours (McPhail 2009), which corresponds to
about 230km at the maximum speed of 1.75m/s (McPhail
2009). It comes with control, collision avoidance and
terrain following algorithms to operate well in different
conditions and extreme environments. It has an IXSEA
Photonic Inertial Navigation System (PHINS) and an RDI
Teledyne Workhorse Navigator Acoustic Doppler Current
Profiler (ADCP) to enable underwater navigation with an
accuracy of about 0.05% of the distance travelled. The
LinkQuest Tracklink 10000 acoustic device, is used to
combine Ultra Short Base Line (USBL) and bi-directional
acoustic messaging system (acoustic telemetry) for real time
tracking of the AUV from the support ship.

Table 1 presents the specifications of the vehicle and of the
sensors used to generate this dataset.

4.1 Navigation sensors
The main navigation system is the IXSEA Photonic Inertial
Navigation System (PHINS) (IXBlue 2019). The PHINS
has a position accuracy of 0.05% of travelled distance and
a heading accuracy of 0.02o secant latitude RMS, when
DVL bottom lock is available. To enable high navigational
accuracy the PHINS uses the RDI Teledyne Workhorse
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Figure 2. Autosub6000 trajectory during mission M86 from
RRS James Cook cruise 125. Autosub6000 performed a
multibeam survey first (red line), and then a sidescan sonar
(SSS) (dashed blue line) and camera survey (continuous blue
line). Green circle: start of camera acquisition, Red circle: end
of camera acquisition; Green triangle: start of SSS acquisition,
Red triangle: end of SSS acquisition; Green star: start of
multibeam acquisition, Red star: end of multibeam acquisition.

Navigator DVL. The DVL, which has a 300kHz centre
frequency, works within an altitude range of 1.0 - 200m from
the seabed. The DVL has a bottom velocity resolution of
0.1cm/s and a long-term accuracy of ±0.2cm/s. The DVL
also acts as an Acoustic Doppler Current Profiler (ADCP)
to measure water velocities. The DS2806 HPS-A pressure
sensor is used to measure the depth. It can measure with a
range from 100mbar to 600bar.

4.2 Perception sensors
The vehicle carried a sensor suite which included: 300
kHz ADCP for water velocity measurements, an EdgeTech
2200M sidescan sonar with chirp sub-bottom profiler, a
multibeam echosounder, and dual conductivity, temperature,
and depth (CTD) sensors. In addition to these standard
sensors, one vertical downward-facing camera, and one
oblique forward-facing camera were also fitted. The
AURORA dataset focuses on the data acquired from the
downward-facing imaging camera, the sidescan sonar and
the multibeam echosounder:

1. The FLIR, formerly Point Gray Research Inc.
Grasshopper 2 camera used has a 2/3-inch sensor,
comprising 2448 x 2048 pixels. The camera was

Table 1. Main characteristics of the sensor suite specifications.
System Specifications

Autosub6000
Body Type Torpedo
Size (L×W×H) 5.50m ×0.90m ×0.90m
Weight 2000 kg
Maximum Depth 6000m
Dynamic Buoyancy No
Endurance (nominal load) 36 hours

INS - PHINS
Position accuracy (with DVL) 0.05% of traveled distance
Heading accuracy (with DVL) 0.02 deg secant latitude RMS
Roll and pitch dynamic accuracy (no aiding) 0.01 deg RMS

DVL - RDI Teledyne Workhorse 300
Frequency 300 kHz
Velocity Accuracy ± 0.4% ± 0.2 cm/s
Altitude 1.0− 200.0m
Max ping rate 7 Hz

Depth DS2806 HPS-A
Pressure range 100 mbar - 600 bar
Output span 4V ± 1%
Repeatability ± 0.25% of span

Grasshopper2 imaging camera
Sensor Sony ICX625AQ
Resolution 2448× 2048
Sequence period 1000 ms

EdgeTech 2200M sidescan sonar and sub-bottom profiler
Frequency 410 kHz
Altitude 15 m
Sub-bottom profiler Chirp Sweep 16 ms, 2− 13kHz

Kongsberg EM2040 multibeam
Frequency 200− 400 kHz
Beam Count 256 and 400
Beam Angle (Degree) 140o

equipped with a 12 mm focal length lens with resultant
horizontal and vertical acceptance angles of 26.71o

and 22.65o, respectively. The vertical camera was
mounted in the forward section of the vehicle, at
90o with respect to the longitudinal axis (Figure 4).
With this geometry, and operating at a 3m altitude,
the vertical camera captures an image of size 1.78m2

seabed. An 11 J xenon strobe unit designed at the
NOC was used with each camera (Figure 5), with a
1Hz repetition rate. The AURORA dataset includes
more than 40000 images from the vertically oriented
camera.

2. The Kongsberg EM2040 multibeam sonar sys-
tem (Kongsberg 2019) operated at a 200kHz frequency
with a maximum ping rate of 50Hz. The system
provides 400 beams with an angular range of ±70o

across track and a 0.4o bandwidth along track.
3. The Edgetech 2200M (Edgetech 2019) is a dual-

frequency sidescan sonar (120/410kHz) and sub-
bottom profiler. All missions used the high-frequency
system with a 410kHz, 50kHz bandwidth, 2.4ms
wideband pulse, together with a 2-13kHz 16ms sub-
bottom chirp pulse running at 6Hz repetition rate
(Huvenne et al. 2016).

The sensor data are then geo-referenced using the AUV
navigation system (INS, DVL and CTD sensor) described
in Section 4.1. Figure 3 shows the position of the various
sensors on the vehicle and their offsets (see also Table 2).
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Figure 3. Autosub6000 sensors and their position on the vehicle during the Haig Fras surveys (dimensions are in mm). The
centre-of-gravity (CoG) is represented with a red circle and it is located 1156mm from the reference axis O.

Figure 4. Autosub6000 showing camera locations and
orientations on the vehicle. Note that the oblique camera was
not used during this mission (adapted from Morris et al. (2014)).

Table 2. Sensor offsets with respect to the centre of gravity of
the vehicle (COG) ∗.

Sensor Value (mm) [x,y,z]

DVL/PHINS [-1148, 0.0, -387]
Vertical Camera [1683, 230, -407]
EM2040 (TX) [1521, 0.0, -421]
EM2040 (RX) [1051, 0.0, -421]
2200M (Sidescan) [-448, ± 430, -156]

5 Data structure

The dataset is provided in raw and standard format so as
not to constrain users by requiring a specific tool. All data
have been synchronised and timestamped to make it easily
accessible in both time and space. The general structure is
shown in Figure 6.

The folder structure is based on the separation between
the two vehicle missions. Within each mission one folder
per sensor is used to store data. AUV navigation data

are included together with the sensor data. Each folder
includes one index file that can be used to easily access the
data (or specific variables in the data) and to synchronize
all sensors together. Along with the raw data, some pre-
liminary post-processing have been performed to simplify
usage such as colour conversion for camera data or format
conversion for SSS data. The data are hosted and avail-
able at https://ieee-dataport.org/open-access/aurora-multi-
sensor-dataset-robotic-ocean-exploration. Exemplar code
and detailed instructions on how to process the data are
available at https://github.com/noc-mars/aurora.

The following sub-sections go into the details of the
processing performed and on the detailed structure of the
metadata provided with the dataset.

5.1 Imaging camera
AURORA contains 45319 images of size 2448 x 2048
with four representive examples reported in Figure 7. The
Grasshoper2 camera captures raw format images. To convert
the raw format data into colour images, a demosaicking or
debayering function is required. The result is stored as a
jpeg image together with the raw image. The MATLAB and
Python processing code is available to detail what operations
have been performed. The images are accompanied by
a comma separated (csv) metadata file that contains the
position, depth and altitude, relative folder and availability
of every frame taken by the camera.

5.2 Sidescan sonar data
The SSS raw data are stored in JSF format (Edgetech
2016). This file includes low and high-frequency sidescan
data as well as the chirp sub-bottom profiler data all
collated together. To ensure greater clarity when working
with these files, two main issues had to be overcome. First,
the JSF format is a proprietary format with no specific
documentation. Second, the official document (Edgetech
2016) is not intended to be a complete description of
this format. As a result those files were processed as
follows. First, the raw data are converted into eXtended
Triton Format (XTF) (Zhang et al. 2016) files through a

∗x is positive forward, y is positive to port, and z is positive upward.
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Figure 5. Schematic of the Autosub6000 in operational mode above the sea floor showing the camera locations and fields of view.
aw = angle width; ah = angle height of vertical camera. Note. Autosub and the perspective grid are not to scale (adapted
from Morris et al. (2014)).

Figure 6. Structure of the AURORA dataset. Note that the AUV
navigation files are included together with the sensor data. Each
folder includes an index file to simplify and synchronize the data.

converter program provided into the SSS folder and set
Gain 15dB TVG 0dB/100m . The next steps concern the
extraction of image and ping information. To achieve this, the
SonarWiz software (Technolog 2016) was used. Firstly, the
navigation information are imported into each .xtf file. This
is because, during the JC125 missions, the SSS navigation
is obtained separately from Autosub data files. Then, the
new .xtf file with navigation, which Autosub collects during
its mission, were imported into SonarWiz and the images
were extracted. Finally, individual pixel lines were processed
in high-resolution into a greyscale mosaic. The mosaic has
been stored in .tiff format. The SSS folders include both raw
data and .xtf files (with and without navigation information).
Finally, a metadata file was created with further information
such as time, number of pings, navigation. An example of the
sidescan sonar data is shown in Figure 8.

Figure 7. Camera images captured during the JC125
expedition (mission 87).

Figure 8. Sidescan sonar transect acquired during during
Autosub6000 mission 87, port and starboard channels.

5.3 Multibeam echosounder sonar

The Kongsberg EM2040 stored its information in .all
format (Kongsberg 2018). The provided multibeam files
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Figure 9. MBES backscatter (left) and MBES bathymetry data
(right) acquired during the JC125 expedition, mission 86.

were partially pre-processed to simplify access. The
following steps have been performed.

Due to an in-mission time desynchronization problem, to
process the MBES data, all files had to be merged into a
single file. This is not a standard procedure for multibeam
processing but it was necessary for these data to maintain
the correct metadata structure (only the first recorded file
possessed the required header information). This has been
done while maintaining the file in chronological order. The
resulting file was imported to SonarWiz and navigation, and
beam data were extracted. The collected multibeam data is
reported in Figure 9.

6 Conclusion

This paper provides a comprehensive dataset of AUV
navigation, sidescan sonar, multibeam, and camera images.
The data were collected during two missions of the
Autosub6000 AUV in the Greater Haig Fras Marine
Conservation Zone in the Celtic Sea. The data have
been carefully polished, timestamped and time and space

synchronised, and are provided both in raw form and after
a very light and preliminary pre-processing to make them
more easily accessible. The ambition is to continue to update
the dataset to include additional sensors and to add more
missions as they become available.
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