
1. Introduction
Antarctic sea ice is a key constituent of the regional and global climate system. Its seasonal formation, transport 
and melt constrain the density structure of the Southern Ocean (e.g., Haumann et al., 2016), affecting heat uptake 
and storage (Haumann et al., 2020), and imposing a critical control on the global ocean circulation (Abernathey 
et al., 2016; Pellichero et al., 2018). Regionally, sea ice moderates coastal climate, while its variability and trends 
are key drivers of temperature fluctuations especially on the western Antarctic Peninsula (Turner et al., 2020). 
Projected changes in sea surface conditions have a dominant role in future projections of surface climate across 
the continent (Krinner et al., 2014), and therefore in the surface mass balance. Locally, future sea ice change will 
be critical for ecosystems (e.g., Cavanagh et al., 2017; Trathan et al., 2020) and have implications for human 
activities in the Southern Ocean.

Coupled climate models are our main tools for making centennial-scale projections of the climate system, but 
often have large biases in their representations of Antarctic sea ice and the Southern Ocean. Two recent studies 
(Roach et al., 2020; Shu et al., 2020) have assessed the skill of the Coupled Model Intercomparison Project, phase 
6 (CMIP6) (Eyring et al., 2016) in simulating Antarctic sea ice. Both conclude that it is not obvious whether 
CMIP6 is an improvement over the previous generation, CMIP, phase 5 (CMIP5) (Taylor et al., 2012). There has 
been a reduction in inter-model spread in time-mean sea ice cover across seasons, but the multi-model mean bias 
in summer (February) has increased in CMIP6. Moreover, both studies show that the majority of contributing 
models simulate negative trends when run under historical forcing (Roach et al., 2020), while observed trends 
have been weakly positive (Parkinson, 2019).
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The most recent Intergovernmental Panel on Climate Change (IPCC) assessment report, AR6, has not included 
projections of Antarctic sea ice loss in their headline statements due to "low confidence in projections". Specifi-
cally, they attribute this to "deficiencies of process representation" (Fox-Kemper et al., 2021). Holmes et al. (2019) 
found that a few models do capture processes driving the winter evolution of sea ice, suggesting that model selec-
tion could provide an avenue for reliable projections in this field.

While improvement in process representation will be necessary to improve confidence in projections, we can 
assess and reduce the uncertainty in existing projections by analyzing mean-state biases. In previous multi-model 
ensembles, there is a relationship between the historical state and future response of Antarctic sea ice extent (SIE; 
e.g., Bracegirdle et al., 2015); models with a greater SIE climatology in the recent past lose more ice in the future. 
This suggests that an emergent constraint, where the observed value of historical sea ice cover is combined with 
the multi-model relationship, may allow a constrained projection. Such constraints are an active research area in 
climate science, and IPCC AR6 used them as part of projections of future global mean surface temperature (Lee 
et al., 2021). Emergent relationships found in multi-model ensembles may have no physical basis, and therefore 
may not operate in the real world. However, in the case of sea ice cover, a "capacity for change" argument (Kajtar 
et al., 2021) partly explains the relationship; a model cannot simulate the loss of sea ice that is not present to begin 
with. Therefore, regardless of simulation of processes or trends, an accurate simulation of climatological mean 
sea ice cover is a necessary condition for accurate projections.

In the Arctic, coupled climate models also simulate a wide range of historical biases (Notz & Community, 2020) 
and do not in general capture the magnitude of recent trends (e.g., Rosenblum & Eisenman, 2017). Nevertheless, 
motivated by sudden observed declines in 2007 and 2012 and greater direct human interaction with the northern 
sea ice zone, considerable effort has gone into predicting metrics of sea ice behavior such as the "ice-free date" 
(e.g., Notz & Community, 2020).

In this paper, we present projections of Antarctic sea ice area (SIA) in CMIP6. Our main purpose is to establish 
whether relationships between SIA historical climatology and its future change seen in past multimodel ensem-
bles remain in CMIP6, and whether CMIP6 gives us any greater confidence in projections. First, we revisit 
the results of Roach et al. (2020) and Shu et al. (2020), and highlight a specific improvement in CMIP6 versus 
CMIP5, namely the eradication of summer high-biased models. We also quantify future change in the full ensem-
ble. Secondly, we analyze relationships between historical SIA and future SIA change for February and Septem-
ber separately. Thirdly, driven by evidence of increased SIA loss in CMIP6, we probe the relationships between 
SIA change and global temperature change.

2. Data and Methods
This paper analyses SIA. This is calculated as gridded sea ice concentration (expressed as a fraction) multiplied 
by grid cell area, integrated around Antarctica. Observational uncertainty in SIA is greater than that in SIE. 
However, SIE is highly dependent on grid scale (Notz, 2014). Therefore, SIA is more robust for multi-model 
intercomparisons, or model-observation comparisons, and our use of SIA follows other CMIP6 analyses (Notz & 
Community, 2020; Roach et al., 2020).

The additional observational uncertainty introduced by using SIA is important if making projections that incor-
porate observations, such as in an emergent constraint. We use satellite remote sensing data from two algo-
rithms; NASA-Team v1.1 (Cavalieri et al., 1996) and Bootstrap v3.1 (Comiso, 2017). NASA-Team SIA is lower 
throughout the year and especially in winter (e.g., Figure S2 in Supporting Information S1). SIA is analyzed in 
February ("summer") and September ("winter"), the months of climatological minimum and maximum SIA in 
observations.

For specifics on the CMIP5 and CMIP6 sea ice variables used, see Text S1 in Supporting Information S1. We also 
calculate model annual-mean global mean surface air temperature, from CMIP variable tas.

We use the historical experiment, and focus on projections from "strong" forcing experiments- CMIP5 rcp85 
(Meinshausen et  al.,  2011) and CMIP6 ScenarioMIP ssp585 (O’Neill et  al.,  2016). We also present results 
from "moderate" (rcp45, ssp245) and "weak" (rcp26, ssp126) scenario runs. Historical means are calculated 
for the period 1979–2014 to make use of the maximum satellite period overlapping with the CMIP6 historical 
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simulations. For CMIP5, historical runs ended in 2005; data for years to 2014 is taken from rcp45 or, where this 
is unavailable, rcp85. End-of-the-century climatologies are defined following the IPCC standard (2081–2100).

We use notation SIAhist for historical SIA climatology, and ∆SIAF for the difference between the future and 
historical values under the scenario with radiative forcing F (e.g., ∆SIA8.5 for change under scenarios rcp85 and 
ssp585, which have radiative forcing 8.5Wm −2). Similarly, the change in global mean surface temperature is 
denoted ∆TASF. We also use "equilibrium climate sensitivity’ (ECS) from Meehl et al. (2020); see Text S1 for 
details and discussion.

To produce constrained projections we use a linear regression model obtained from regressing ∆SIA8.5 against 
SIAhist to predict future change, using one of the observational datasets as the predictor. Linear regression analysis 
uses python's statsmodels ordinary least squares method.

All individual model metrics and regression statistics are given in Holmes (2022) [dataset].

3. Results
3.1. Projected SIA Change in CMIP6

For both CMIP5 and CMIP6, the multi-model mean projection is for SIA loss in all forcing scenarios, for both 
summer and winter, by the end of the 21st century (Table 1). Under all scenarios except the strongest forcing 
(rcp85 and ssp585), there is at least one model, in both seasons and both CMIP5 and CMIP6, which simulates 
SIA increase by the end of the century. Roach et  al.  (2020) concluded that the historical simulation of SIA 
in CMIP6 was not notably improved, if at all, over CMIP5. Table 1 shows that, furthermore, the uncertainty 
in September projections as quantified by the inter-model range is greater in CMIP6 than CMIP5. There also 
appears to be some change in sensitivity to forcing in September; multi-model mean ∆SIAF is consistently of 
greater magnitude in CMIP6 than in CMIP5. In February, the direction of CMIP5 to CMIP6 change in inter-
model range is scenario-dependent, as is the change in multi-model mean ∆SIAF. To investigate these apparent 
differences between the ensembles, and examine their potential importance for SIA projections, we investigate 
the relationship between SIAhist and ∆SIAF.

Multi-model ensemble SIA projections

Generation Forcing F Month n Min Mean Max Range

CMIP5 2.6 February 24 −1.24 −0.28 0.53 1.78

CMIP6 2.6 February 25 −1.77 −0.43 0.38 2.15

CMIP5 4.5 February 33 −1.9 −0.52 0.12 2.02

CMIP6 4.5 February 27 −1.9 −0.65 0.07 1.97

CMIP5 8.5 February 34 −3.91 −1.09 −0.02 3.90

CMIP6 8.5 February 26 −3.31 −0.95 0.00 3.31

CMIP5 2.6 September 24 −4.41 −1.31 2.49 6.90

CMIP6 2.6 September 25 −7.38 −1.82 0.69 8.08

CMIP5 4.5 September 33 −6.23 −1.96 2.60 8.83

CMIP6 4.5 September 27 −10.61 −3.19 0.16 10.77

CMIP5 8.5 September 34 −9.02 −4.32 1.27 10.30

CMIP6 8.5 September 26 −12.90 −5.71 −0.17 12.74

Note. CMIP6, Coupled Model Intercomparison Project, phase 6; SIA, sea ice area. Columns show size of the ensemble, n, 
and multi-model ensemble statistics in February and September.

Table 1 
CMIP5 and CMIP6 Ensemble Projected Ice Change ∆SIAF (M km 2) for Differing Values of Radiative Mean Forcing, F (W 
m −2)
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3.2. Emergent Relationship in February (Summer)

3.2.1. CMIP6

In CMIP6 (Figure 1a) there is a strong linear relationship (r 2 = 0.92) between SIAhist and ∆SIA8.5. Many of the 
points lie almost on the one-to-one-line (gray dashed line, Figure 1a), indicating that models lose most of their 
ice by the end of the century in this scenario. Therefore, this statistical relationship has a mechanistic explana-
tion arising from a practical limit on ice loss. This is analogous to the “capacity for change” argument of Kajtar 
et al. (2021), although they discuss other aspects of the Southern Ocean climate system (not only sea ice) and 
consider the annual mean, therefore not reaching the limit of zero sea ice.

Strictly, the "physical limit" argument applies only to models which lose all their ice. We therefore introduce a 
conceptual distinction between "Group 1: All ice lost" models and "Group 2: Some ice retained" models. Group 
1 is defined as models whose SIA drops below a threshold of 0.1 Mkm 2 by the end of the 21st century (Text 
S2 and Figure S3b in Supporting Information S1). For these models, the correlation between SIAhist and ∆SIA 
is very high and constrained by the one-to-one line. These models dominate in CMIP6 (20/26), leading to the 
strong correlation for the full ensemble. Furthermore, within Group 1, models with smaller SIAhist lose their ice 

Figure 1. The emergent relationship between SIAhist and ∆SIAF, and its consequences for projections, for CMIP5 (red) and CMIP6 (blue). (a) February ∆SIA8.5 
versus February SIAhist. Thick solid colored lines indicate the linear regression model; shading indicates the confidence interval; the dashed line indicates the 
prediction interval. Observations are indicated in black; the multimodel mean by a cross; and the one-to-one line by a gray dashed line. Circled points are NorESM2 
models. (b) Projections from the unconstrained and constrained ensembles, for "weak", "medium" and "strong" forcing scenarios (see Data and Methods). For each 
ensemble (x-axis tick), the first set of points shows the minimum, mean and maximum SIAF from the unconstrained ensemble. The second set of points shows the 
mean projection, its 5%–95% confidence interval (shaded rectangle), and the 5%–95% uncertainty range on the prediction, using the ensemble constraint and Bootstrap 
observations. (c) as (a) but for September. (d) as (b) but for September, and with no CMIP5_subset.
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sooner; this suggests that historical climatology could have predictive power for the time of ice loss as well as its 
magnitude (Text S2 in Supporting Information S1).

For "Group 2" models, a different, weaker relationship holds between SIAhist and ∆SIA (Text S2 in Supporting 
Information S1). "Group 2" models dominate in the "weak" (r 2 = 0.34, p < 0.01) and "moderate" forcing scenar-
ios (r 2 = 0.71, p < 0.01) (Figure S1 in Supporting Information S1).

An understanding of the mechanism for this emergent relationship, due to the dominance of "Group 1" models, 
provides a basis for using it to make predictions about the future state of the real world (Data and Methods, 
final paragraph). We discuss our confidence in this interpretation in the Discussion section. The resulting 
constrained  prediction for ∆SIA8.5 in CMIP6 is for greater ice loss than predicted by the multimodel mean 
(Figure 1b). The constraint also gives a narrower uncertainty range, which does not encompass near-zero ice loss. 
The existence of a narrowed uncertainty range is robust to using μ ± 2σ (where μ and σ are the ensemble mean 
and standard deviation) rather than maximum and minimum as a quantification of ensemble spread. We display 
maximum and minimum because the ensemble distribution of ∆SIAF is heavily skewed. Using NASA-Team 
observations to constrain the projection would imply weaker ice loss than shown in Figure 1b), but still greater 
than the multimodel mean.

Two models, NorESM2-LM and NorESM2-MM, which lose much less ice in all forcing scenarios than implied 
by the linear regression (Figure 1a, circled), are discussed in Text S3 of Supporting Information S1.

3.2.2. Comparison to CMIP5

The relationship between climatology and future change is weaker for CMIP5 (Figure 1a, red). This is due to a 
smaller proportion of "Group 1" models in CMIP5 (12/34); and in particular due to CMIP5 models with large 
positive SIAhist biases, which retain a lot of ice. There are no such highly-biased models in the CMIP6 ensemble. 
This change represents an improvement in the ensemble representation of Antarctic sea ice, although it results in 
an increase in the magnitude of the multi-model mean negative bias (Roach et al., 2020).

We wish to test the hypothesis that the relationships in CMIP5 and CMIP6 are consistent over their shared 
historical range; that is, that the difference in ∆SIA8.5 between the ensembles is due only to the change in SIAhist. 
We therefore create the reduced ensemble "CMIP5_subset", consisting of only CMIP5 models whose SIAhist 
falls within the CMIP6 historical range (0.01–3.95 Mkm 2). The excluded models are labeled in Figure 1b) and 
discussed in Text S3 in Supporting Information S1.

The regression slope in CMIP5_subset is more strongly negative than that in CMIP5 as a whole (Figure S3a in 
Supporting Information S1), although the relationship does not explain any more of the variance. The regres-
sion slope is more strongly negative in CMIP6 than in either CMIP5 or CMIP5_subset, leading to a constrained 
prediction of greater ice loss in CMIP6 (Figure 1b). Outliers within the shared historical range may be strongly 
influencing this difference; therefore, there is weak evidence that sea ice in CMIP6 models is more sensitive 
to a strong greenhouse gas forcing scenario than in CMIP5 models. "Time of ice loss" analysis (Figure S3b in 
Supporting Information S1) supports this evidence, since it suggests that for a given SIAhist, CMIP6 models are 
more likely to have lost all ice by 2100 than CMIP5 models. Comparing the ensemble means alone (e.g., Table 1) 
would give the opposite conclusion about the relative sea ice sensitivity of the model ensembles.

The individual projections of the high-biased CMIP5 models are not possible in reality, because some predict 
the loss of more ice than is currently observed. Furthermore, our results suggest that a linear regression is not a 
helpful descriptor of the CMIP5 ensemble, due to the greater dominance of "Group 2" models and in particular 
high-biased models which do not lie close to the one-to-one line (Figure 1a) and thus alter the linear regression 
(compare Figure S3a in Supporting Information S1 with Figure 1a). We do not assess the realism of this nonlinear 
behavior for high SIAhist, because observations lie in the range where a linear regression does appear to be a good 
description of the relationship between climatology and change. Therefore, we conclude that CMIP6 has a more 
consistent projection of total ice loss under a strong forcing scenario, and the improvement in the underlying 
ensemble gives us confidence in this change.
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3.3. September (Winter)

In September (Figure 1c), likewise, models with more sea ice in the historical period lose more ice. For both 
ensembles, this relationship is weaker than for February, but the historical climatology still explains nearly 50% 
of the variance in projections for the "strong" forcing scenario. The relationship is present in the "medium" forc-
ing scenario, but in the "weak" scenario is not statistically significant or only weakly so (Holmes, 2022). Shu 
et al. (2020) excluded the CMIP6 MIROC models from their analysis due to extreme biases (<5 Mkm 2 winter 
sea ice; Figure 1c far left). Removing this pair of models does not change the regression slope, but reduces the 
CMIP6 variance explained to 30%.

The no-ice limit described in February does not explain this relationship. Other proposed physical mechanisms 
for emergent constraints include a "growth-thickness" feedback (Bitz, 2008; Bitz & Roe, 2004) whereby thick, 
extensive multi-year Arctic ice thins more rapidly than thin ice. However, the relevance of this for the more 
seasonal Antarctic ice, and for projections of area rather than volume, is unclear.

CMIP6 models lose more sea ice on average than those in CMIP5 (Figure 1c, crosses). In the range of historical 
values close to observations, confidence intervals on the regression (pale colored lines, Figure 1c) for CMIP5 and 
CMIP6 do not overlap, implying that this difference between ensembles is statistically significant. This is true 
despite a similar range of historical climatologies, implying that the multi-model relationship between climatol-
ogy and change cannot explain the difference.

As a hypothesis to explain this difference, we turn to the fact that the upper end of ECS in CMIP6 exceeds that 
in CMIP5 (e.g., Zelinka et al., 2020). This quantifies the fact that global temperature in CMIP6 models responds 
more strongly to CO2 forcing than in CMIP5 models on centennial timescales. We therefore explore the hypoth-
esis that the greater SIA loss in CMIP6 is driven by greater global temperature change, by analyzing first the 
within-ensemble relationship between ∆TAS and ∆SIA, and then the difference between ensembles. We conduct 
this analysis for both seasons for completeness.

3.4. Relationship With Global Temperature Change

3.4.1. February

Analysis of models with a shared range of SIAhist, and threshold exceedance analysis, provided weak evidence 
of greater summer sea ice sensitivity to greenhouse gas forcing in CMIP6 than CMIP5 (Figure 1b). Examining 
the relationship between ∆TAS8.5 and ∆SIA8.5 for CMIP6 models reveals a moderate relationship (r 2 = 0.60; 
Figure 2a, blue). Excluding the four strongest warming models, r 2 falls to 0.28 and the slope weakens to −0.41 
(not shown; see data), suggesting the relationship is dominated by these four models. No such relationship 
exists in CMIP5 (Figure 2a), and the previously discussed CMIP5_subset (excluding models with high SIAhist, 
numbered in Figure 2a as in Figure 1a) also has only a weakly significant regression. In the absence of a consistent 

Figure 2. Relationship of global mean temperature change ∆TAS8.5 with sea ice change ∆SIA8.5. (a) February, with CMIP5 high-climatology models from Figure 1a 
indicated numerically; (b) September. Note non-zero limit on x-axis. Other details as in Figure 1a.
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relationship between ∆SIA8.5 and ∆TAS8.5 across the ensembles, we cannot confidently conclude that the greater 
global warming in CMIP6 is driving greater sea ice loss.

We recall that CMIP6 models lose most of their summer ice (Figure 1), giving a correlation of almost 1 between 
SIAhist and ∆SIA8.5. Therefore, the relationship between ∆TAS8.5 and ∆SIA8.5 (Figure 2a) implies that SIAhist 
and ∆TAS8.5 are not independent. Indeed, in CMIP6 these values are positively correlated, such that models with 
higher February SIAhist warm more (r 2 = 0.45; not shown). This relationship exists in all CMIP6 forcing scenar-
ios, but not CMIP5. Kajtar et al. (2021) found that, while models with a colder midlatitude Southern Ocean in 
CMIP5 have greater global warming, this relationship between local baseline temperature and global temperature 
change shifts to the sea ice zone in CMIP6. This therefore appears consistent with the existence of a relationship 
between summer SIAhist and ∆TAS8.5 in CMIP6, as found here (Figure 2a). An investigation of the mechanisms 
behind this relationship is beyond the scope of the paper. One hypothesis, that models that warm more in the 
21st century have already warmed more and therefore lost more ice in the historical period, would have led to the 
opposite relationship.

3.4.2. September

Global temperature change explains 47% of the variance in projections of CMIP6 September ice loss (Figure 2b). 
In contrast to February, this relationship is also statistically significant, although weaker, in CMIP5. The modest 
relationship in CMIP5 is slightly stronger than the relationship (r = −0.4, r 2 = 0.16) between CMIP5 annual mean 
Antarctic ∆SIA8.5 and global ∆TAS8.5 found in Bracegirdle et al. (2015); our model subset differs, but results are 
partially reconciled (r 2 = 0.21) if we use annual mean ∆SIA8.5.

The regression slope is statistically indistinguishable for the two ensembles. However, CMIP6 models warm more 
on average (Figure 2b, crosses), so that this same slope corresponds to the greater ice loss found in CMIP6. Simi-
lar results apply for weaker forcing scenarios (Figure S4 in Supporting Information S1). We therefore conclude 
that greater winter SIA loss in CMIP6 is related to the greater global warming. Warming in the 21st century 
under a strong forcing scenario and ECS are highly correlated (e.g., Grose et al., 2018), and indeed, correlations 
between ECS and ∆SIA8.5 are similar to correlations between ∆TAS8.5 and ∆SIA8.5 (not shown).

Finally, given the relationships found for September between ∆SIA and both SIAhist and ∆TAS, we perform a 
multiple regression to quantify their combined role in explaining ensemble spread in projections. This regression 
has r 2 = 0.65 for CMIP6 ∆SIA8.5 (r 2 = 0.40 for ∆SIA4.5 and r 2 = 0.35 for ∆SIA2.6).

4. Conclusions and Discussion
In this study, we have for the first time presented an overview of CMIP6 projections for 21st century Antarctic 
SIA change, ∆SIA. In the light of large ensemble spread (uncertainty), and lack of confidence in model projec-
tions, we have examined two drivers of ensemble spread in ∆SIA and their importance in different seasons, and 
the scope for constraining projections based on model-observation comparisons of the past.

In CMIP6 (as in CMIP5; Bracegirdle et al., 2015), SIAhist is strongly related to ∆SIA (an emergent relation-
ship), especially under a strong forcing scenario in February (summer). Here, a "capacity for change" argument 
provides a physical basis for using this emergent relationship to observationally constrain model projections of 
∆SIA. The constrained CMIP6-based projection shows a clear loss of all summer sea ice by the end of the 21st 
century under strong forcing. This is not the case in CMIP5. There is also stronger loss in CMIP6 than CMIP5 for 
projections based on other forcing scenarios. A prominent reason for the stronger emergent constraint on CMIP6 
February projections is that there are a number of models with very large positive SIAhist biases in CMIP5, but 
not in CMIP6. The eradication of such biases is a substantial advance for climate modeling, and the more consist-
ent relationship between climatology and change is an important consequence. Our confidence in this statistical 
prediction is discussed later.

There is a relationship, albeit weaker, between SIAhist and ∆SIA in September; here, the regression has similar 
slope and r 2 values for CMIP5 and CMIP6 but there is an offset such that CMIP6 SIA loss is greater. In all 
forcing scenarios, models which warm more globally in the 21st century lose more September sea ice. Further, 
greater  sea ice loss in CMIP6 than CMIP5 is related to the presence of models with higher ECS in CMIP6.
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Therefore, constraining Antarctic SIA loss under strong (or indeed moderate) forcing scenarios is related to 
constraining ECS. This is an ongoing topic of research. Sherwood et al. (2020) reviewed three lines of evidence -  
recent warming, the paleoclimate record, and feedback understanding - and concluded that both high and low 
extreme values of ECS were unlikely, suggesting that the high-end ECS CMIP6 climate models are unrealistic. 
The IPCC sixth Assessment Report confirmed this assessment (Lee et al., 2021), concluding that there was a 90% 
probability of the full ECS lying within the 2–5°C range. This implies that the greater SIA loss in CMIP6 found 
in this paper may be an artifact of this too-high ECS and warming in CMIP6. Southern Ocean cloud processes, 
particularly mixed-phase cloud feedbacks, have been an emerging theme in understanding of the higher ECS in 
CMIP6 (e.g., Zelinka et al., 2020; Bjordal et al., 2020). Since cloud cover is important for sea ice, this could imply 
a more complex interaction than sea ice merely responding to warming.

Having discussed the plausibility of the global temperature response to forcing (the x-axis in Figure 2), we now 
address our confidence in the relationship between SIA change and that warming. Implicitly, this will also inform 
our confidence in the projection of total summer ice loss.

It is possible that all or most climate models have SIA that is too sensitive to global temperature changes. A first 
line of evidence is based on a historical mismatch between observed positive SIA trends and simulated negative 
SIA trends. Specifically, CMIP models that capture near-to-observed historical sea ice trends have too little 
global warming (equivalently models with realistic warming have too-negative sea ice trends; Rosenblum & 
Eisenman, 2017). This result also holds in CMIP6 (Roach et al., 2020, Figure 3). Even models with tropical vari-
ability nudged to observations, a proposed mechanism driving discrepancy between observed and modeled sea 
ice trends, do not capture historical sea ice trends, implying the forced sea ice response is too strong (Schneider 
& Deser, 2018). The implications for model projections on centennial timescales under strong forcing is unclear. 
However, sensitivity experiments based on physical arguments suggest that this result may hold; standard CMIP 
experiment protocols do not incorporate ongoing increases in freshwater flux from Antarctic ice sheets. Includ-
ing such fluxes has been shown to mitigate sea ice loss over the 21st century in coupled models with a range 
of historical states (compare Bronselaer et al., 2018; Bintanja et al., 2015; Sadai et al., 2020). Further, Rackow 
et al. (2022) demonstrates that a climate model with a high resolution, locally eddy-resolving, ocean component 
simulates slower sea-ice decline than its standard resolution counterpart; this implies that standard resolution 
models have too-fast decline.

In summary, we show evidence to support the assertion that when evaluating sea ice projections from a model 
ensemble a key step is to exploit emergent relationships between historical climatology and response to extract a 
more precise ensemble mean projection. However, it is also clear that potential systematic ensemble-wide biases 
and/or missing processes in aspects such as global climate sensitivity and freshwater input from ice sheets are key 
to assessing accuracy in projections.

Data Availability Statement
CMIP data can be accessed through the ESGF data portals (see http://pcmdi-cmip.llnl.gov/cmip5/availability.
html and esgf-node.llnl.gov/search/cmip6). Individual model details and metrics calculated for this paper, and all 
ensemble regression statistics, are available at the Polar Data Centre via [https://doi.org/10.5285/e67242f2-e9aa-
4402-85a3-be42d13354af] (Holmes, 2022).
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