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Supplementary Figures
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Figure 1 — The full observation well time-series dataset for both India and Pakistan. Note that the large difference in sample
size obscures the quantity of older data available for the analysis in Pakistan. We present all individual time-series in this
format so that the nature of the dataset is clear and transparent. Supplementary fig 2 shows that the quantity of historic data
available in India and Pakistan is comparable.
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Figure 2 — Histogram showing distribution of tubewell time-series lengths.
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Figure 3 — Histogram showing distribution of total number of time-series annual groundwater level (GWL) observations.
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Figure 4 — Histogram showing distribution of total number of missing time-series annual groundwater level (GWL)
observations.
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Figure 5 — Mean water level in each state and decade. The interquartile range is shown by the upper and lower bounds of the
blue box, the median is represented by the black line and the mean by the black point in the blue box, the whiskers represent
the interquartile range times 1.5 and the points represent outliers.
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Figure 6 — Map of mean water level depth for individual observation wells in each decade.
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Figure 7 — Map of mean water level depth for canal commands in each decade.
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Figure 8 — Tubewell Mann-Kendall trend results using a minimum of six data points in a decade, as shown in the main
article but presented here for easy comparison with Supplementary Fig 5 which shows the Mann-Kendall trend results using
a minimum of four data points in a decade and Supplementary Fig 6 which shows the Mann-Kendall trend results using a
minimum of eight data points in a decade.
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Figure 9 — Tubewell Mann-Kendall trend results using a minimum of four data points in a decade.
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Figure 10 — Tubewell Mann-Kendall trend results using a minimum of eight data points in a decade.
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Figure 11 — Deviation from mean precipitation and mode (> 50% of tubewells) Mann-Kendall water level trend in each
canal command.
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Figure 12 — Relative precipitation versus water level change at the start and end of each decade. Individual tubewell
observations are coloured by the decade the canal command they are located in was constructed. The histograms on the top
and the left of the figure panel show the underlying distribution. Shapes indicate the Mann-Kendall results for individual
tubewells in each decade and provide confidence in our use of water level change at the start and end of each decade in the
analysis. Mann-Kendall rising water level trends are generally found in the right hand site of the plot which relates to sites
with shallower water levels at the end of the decade than at the start and vice versa.
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Figure 13 — Sen’s slope estimator results using six data points in a decade.
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Figure 14 — Mean canal command Sen’s slope estimator results based on six data points in a decade and used to calculate

groundwater level accumulation in the study area.
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Figure 15 — Estimated groundwater accumulation in Haryana, India. Note only two sites, which were in close proximity,
were available to estimate accumulation in Haryana between 1900 — 1939, so the estimates in this period only reflect
localised groundwater accumulation in a limited area of north-east Haryana (see fig 6 for location of these sites) rather than
a average of accumulation across Haryana.The blue envelope shows the estimated range of accumulation, the dashed line
shows the best estimate, the porosity values used to calculate groundwater accumulation were based on previous work in the
study area.
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Figure 16 — Estimated groundwater accumulation in Punjab, India. The blue envelope shows the estimated range of
accumulation, the dashed line shows the best estimate, the porosity values used to calculate groundwater accumulation were
based on previous work in the study area.
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Figure 17 — Estimated groundwater accumulation in Punjab, Pakistan. Note that there were no data with which to estimate
accumulation in 1960 — 1969 or 1970 — 1979. So these decades do not contribute to our accumulation estimates. The blue
envelope shows the estimated range of accumulation, the dashed line shows the best estimate, the porosity values used to
calculate groundwater accumulation were based on previous work in the study area.



Supplementary Notes

Note 1: Mann — Kendall Trend Test for Autocorrelated Data
The Mann-Kendall test is a non-parametric hypothesis test based on ranked data that aims
to identify a monotonic trend, linear or non-linear, in a time series. The test is based on the

S statistic defined as:
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Here N is the total number of observations in the time series; Y¥; and Y; are sequential
observations (ranks) of the data Y, and:

sgn(f) =1if6 >0; =0if6 =0;=—-1if6 < 0.

A positive value of S is indicative of a positive trend; conversely, a negative value of §
indicates a negative trend in the data. In the absence of trend and when N 2 8, the statistic

is approximately normally distributed’? with mean:
E[S] =0
and variance:

N(N-1)(2N+5)

var(S) = "

To perform the hypothesis test, the Z standardised test statistic is used, which follows the

standard normal distribution:

S—-1
——S5$>0
v/ Var(§)
Z =10 S=0
S+1
L—S <0
v/ Var(S)

The null hypothesis of no trend is rejected at a;, where L is the chosen significance level, if

the absolute value of Z is greater than the theoretical value Z; _g, /5.

To account for serial autocorrelation, a modified Mann-Kendall test was applied called

block-bootstrap Mann-Kendall**. The modified method is most useful in the presence of



autocorrelation®®, the method resamples the data in predetermined blocks a large number
of times to estimate the significance of the observed test statistic, i.e. the S test statistic.
The block length was set to the number of contiguous significant serial correlations plus
one>. The process of assessing the significance of a trend in the presence of serial
autocorrelation was therefore (1) estimate the S test statistic from the original dataset, (2)
estimate the number of significant contiguous serial correlations k and add one, (3)
resample the original time series in blocks of k+1 approximately 2000 times3, compute the S
test statistic, estimate the simulated distribution, and (4) assess significance of the trend. If
the test statistic calculated in step 1 lay outside the confidence interval of the simulated

distribution from step 3, the null hypothesis was rejected and the trend was considered

significant.
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