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• Modelled annual yields showed high accu-
racy, with low Mean Absolute Deviation
(MAD) at the catchment and hectare
scales.

• Accuracy (MAD) of modelled absolute
change in water yield showed moderate
fit for catchment and hectare scales.

• Anthropogenic modifications contributed
significantly to the inaccuracy of change
values (catchment and hectare scales).
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Editor: Ouyang Wei
 Accurate modelling of changes in freshwater supplies is critical in an era of increasing human demand, and changes in
land use and climate. However, there are concerns that current landscape-scale models do not sufficiently capture
catchment-level changes, whilst large-scale comparisons of empirical and simulated water yield changes are lacking.
Here we modelled annual water yield in two time periods (1: 1985–1994 and 2: 2008–2017) across 81 catchments
in England and validated against empirical data. Our objectives were to i) investigate whether modelling absolute
or relative change in water yield is more accurate and ii) determine which predictors have the greatest impact on
model accuracy. We used the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) Annual Water
Yield model. In this study, absolute values refer to volumetric units of million cubic metres per year (Mm3/y), either
at the catchment or hectare level.
Modelled annual yields showed high accuracy as indicated by the low Mean Absolute Deviation (MAD, based on nor-
malised data, 0 is high and 1 is low accuracy) at the catchment (1: 0.013±0.019, 2: 0.012±0.020) and hectare scales
(1: 0.03 ± 0.030, 2: 0.030 ± 0.025). But accuracy of modelled absolute change in water yield showed a more mod-
erate fit on both the catchment (MAD=0.055±0.065) and hectare (MAD=0.105± 0.089) scales. Relative change
had lower accuracy (MAD = 0.189 ± 0.135). Anthropogenic modifications to the hydrological system, including
water abstraction contributed significantly to the inaccuracy of change values at the catchment and hectare scales.
Quantification of changes in freshwater provision can bemore accurately articulated using absolute values rather than
using relative values. Absolute values can provide clearer guidance for mitigation measures related to human con-
sumption. Accuracy of modelled change is related to different aspects of human consumption, suggesting anthropo-
genic impacts are critically important to consider when modelling water yield.
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1. Introduction
Ecosystem services (ES), the benefits that people derive from nature
(MEA, 2005), are fundamentally linked with the quality of peoples' lives
(Pascual et al., 2017). Together with the conservation of biodiversity,
safeguarding, sustaining, and improving the current provision of ES has in-
creasingly become a focus of national and international policy (Bouwma
et al., 2018; Defra, 2020a; United Nations et al., 2021). This focus has
been highlighted by the formation and work of the Intergovernmental
Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES),
which aims to improve the linkages between biodiversity, ES, and policy
worldwide (IPBES, 2019; Pascual et al., 2017). The European Union's
(EU) Knowledge and Innovation Project also aims for an integrated system
to assess natural capital and ES. Accounting in the EU seeks to fully inte-
grate ES flows and their monetary valuation into accounting and reporting
systems (La Notte et al., 2017). This requires the accurate quantification of
ES, which requires clear guidelines, methodologies, standards, and long-
term evidence (Guerry et al., 2015; La Notte et al., 2017; Polasky et al.,
2015; Willcock et al., 2019).

Water yield (i.e., freshwater provision) in this study refers to annual
water yield as annual rainfall minus annual actual evapotranspiration,
with no distinction between surface and subsurface flows. Calculating and
predicting the ES of freshwater provision is of vital importance, as freshwa-
ter is necessary for human consumption and crop growth, among other uses
(Aylward et al., 2005; OECD, 2013; Rodell et al., 2018). Freshwater avail-
ability in a certain area is influenced by the hydrological cycle, which is
driven by temperature and precipitation; the human demand for water re-
sources for such uses as drinking, irrigation, and hydropower production;
and economic factors, which affect the efficiency and amount of extraction
andmanagement (Gleick, 2018; Grizzetti et al., 2015). Freshwater supply is
also intrinsically linked to other ES. For example, freshwaters provide cul-
tural services such as recreation and tourism, and intellectual, aesthetic,
and spiritual appreciation (Grizzetti et al., 2015). Regulatory services, in-
cluding water purification, erosion prevention, and soil formation, are in-
herent aspects of functioning freshwaters (Aylward et al., 2005; Grizzetti
et al., 2015). Additionally, freshwater habitats support approximately
10% of all known species, despite covering less than 1% of the Earth's sur-
face (Strayer and Dudgeon, 2010).

Due to increasing anthropogenic pressures, such as the effects of climate
change, pollution, flow regulation, and water extraction, the degradation
and destruction of freshwater ecosystems are widespread and growing
(Everard and Moggridge, 2012; Gleick, 2018; Strayer and Dudgeon,
2010). This results in the depletion and degradation of water resources
leading to freshwater scarcity in many regions of the world. Many studies
have therefore attempted to assess and model both flow and total water
yield, often with the explicit aim of trying to identify areas that are likely
to be vulnerable in terms of changes to water supply (e.g. Muhar et al.,
2016; Rodell et al., 2018). Assessment of water supply has been undertaken
qualitatively, quantitatively, or in monetary terms, and at different spatial
scales (e.g. Böck et al., 2018; Muhar et al., 2016; Rodell et al., 2018). For
example, Brunner et al. (2019) modelled the current and future supply of
water across the whole of Switzerland.

The availability of water is important for decision and policy making at
a range of scales for a range of purposes. In the UK, this has taken the form
of the Government's 25 Year Environment Plan, which sets out an ambi-
tious vision. One of its key objectives is to have ‘clean and plentiful
water’, which focuses explicitly on water yield, having an indicator
of ‘achieving sustainable abstraction’ (Defra, 2019a, 2019b; HM
Government, 2019). For example, in England, several plans and strategies
exist to ensure that there is enough water for the future needs of both peo-
ple and the environment (Environment Agency, 2021). Abstraction
licensing, water resources planning, and reporting require continuous as-
sessment and modelling of the quantity of water resources, including how
much abstraction the environment can sustainably supply (Defra, 2019a,
2019b) and understanding how availability may change in response to
various pressures. Local assessments inform environmental status and
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management choices to prevent deterioration and maintain water supply.
They can be used to translate higher level plans (e.g. River Basin Manage-
ment Plans and the Water Abstraction Plan (Environment Agency, 2017))
into local licensing policy (Environment Agency, 2021). For example, the
Catchment Abstraction Management System process assesses resource
availability at specific locations to determine abstraction availability for
public water supply and other sectors (e.g. agriculture) as well as contribut-
ing to strategic overview and policy decisions. Water Resources Manage-
ment Plans set out how each company intends to maintain the balance
between the supply and demand for water over the next 25 years at the
water resource zone level, following Environment Agency guidelines
(Charlton and Arnell, 2011), translating water yield from different sources
(river flow, groundwater, reservoir storage) into measures of water avail-
able for supply. More recently, the National Framework (Environment
Agency, 2020) identified strategic water needs for England and its regions
across all sectors, using different modelling approaches. Water require-
ments were projected across the country by 2050 based on statistical
modelling of likely supply and demand and through application of percent-
age changes to naturalflows (to assess the amount of water available for ab-
straction after considering water remaining for the environment). With no
action to address pressures, the national framework modelling suggests En-
gland could need up to 3435 Ml/d of water by 2050 to meet public water
supply needs. Several studies have modelled anticipated changes in river
flows from the catchment (e.g. Arnell and Reynard, 1996) to national scales
(e.g. Kay, 2021) using different hydrological models and climate projec-
tions. Taylor et al. (2019) forecasted water yield changes in response to
management and climate scenarios at the catchment scale. Such studies
are used to inform and guide management and policy, to ultimately ensure
the continuity of sufficient freshwater supplies.

Mapping is considered an effective way to support decision-making re-
garding ES, as it provides a spatially explicit representation of differences in
ES provision (Böck et al., 2018), helps to decide where policy interventions
may be most effective (Rieb et al., 2017), and can enable a risk-based ap-
proach of ‘know’, ‘target’, and ‘manage’ (OECD, 2013) at the landscape
scale. In the UK, Defra (2020a, 2020b) have similarly proposed the map-
ping of natural capital as the best way to determine the variability in the
distribution of ES provisions. Natural capital is easier to map explicitly
since it is the ‘stock’ of current natural assets (Guerry et al., 2015), whereas
ES mapping remains challenging due to the complexities of flows and ben-
eficiaries (Rieb et al., 2017).With regard towater supply, simple inferences
from land use and covermapping are often insufficient to effectively inform
policy and management regimes because the effect of land use change on
water resources is extremely context specific (Zhou et al., 2015) and depen-
dent on the exact path that water takes through the landscape as influenced
by topography and soil properties. Therefore, models are often required to
make assessment of likely changes and uncertainties of water supply at the
landscape scale (Böck et al., 2018). Furthermore, water resource systems
for supply are frequently heavily moderated, requiring a further step in
the modelling chain to assess how much water is available for supply,
often using outputs from hydrological models. This uncertainty is why rel-
ative change estimation is used.

However, current landscape-scale hydrological modelling often has
large uncertainties and inaccuracies (Calvin and Bond-Lamberty, 2018).
Therefore, the question remains how tomodel water yields with high accu-
racy across landscapes. This is especially true when modelling change of
freshwater provision over time, as many processes that influence water
yield change are both temporally and spatially variable (Smith et al.,
2019). Precipitation, land use and land cover are critical inputs in most
ES models that simulate water yield. These factors are important in deter-
miningwater supply, as precipitation is the principal driver of the hydrolog-
ical cycle, and the composition and configuration of land use and cover are
known to have a variety of impacts on overall freshwater supply (López-
Moreno et al., 2011; Maetens et al., 2012; Sun et al., 2015). The latter
point has even led to the modelling of water yield based purely on land
use (e.g. Hasan et al., 2020; Hassaballah et al., 2017). However, spatial dif-
ferences in ES provision cannot be explained by land use alone (Han and
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Dong, 2017), partly due to the complexities of hydrological processes men-
tioned above, but also due to model assumptions such as classifying land
use types as ‘pristine’ or ‘natural’, although this is often not sufficiently nu-
anced (Blair and Buytaert, 2016). Other factors and predictors that may in-
fluence how land use affects water yield include climatic factors, human
activities, and feedbacks between them (Calvin and Bond-Lamberty,
2018). These factors can result in large variations in model accuracy
when comparing locations where these factors have differing influences.
For example, in areas of the UK where snowmelt occurs, modelling hydro-
logical variability is less accurate compared to where it does not occur
(Smith et al., 2019). Due to the profound influence of human activities on
freshwater supplies, including water abstraction for irrigation and water
storage and management (e.g. via reservoirs), socio-hydrological models
that include the dynamics of co-evolution of coupled human-water systems
have risen in prominence in the last decade (Blair and Buytaert, 2016).
However, very high levels of uncertainty remain in such models, and
human-influenced factors rarely feature at the landscape or larger scales
(Calvin and Bond-Lamberty, 2018). Therefore, it is important to gain an un-
derstanding of how accurate currentmodels are that influence policy. To be
able to improve the interpretation of models, identifying factors that cause
inaccuracies is key, whether they are model-derived or extraneous. Track-
ing temporal and spatial changes in water yield should enable quantifica-
tion of the impact of such factors, through an understanding of the
important drivers of change, and the importance of the drivers in influenc-
ing model estimations.

Tracking water yield changes over time is especially important in terms
of policy decisions, to try and understand how, what and where changes
may occur in order to manage them. This information needs to be put sim-
ply, as it is often needs to be understood by laypeople trying to interpret
model outputs. Change in water yield is frequently presented as relative
(percentage) values, which are used to compare across space, time and
where uncertainties create a wide range of outcomes (e.g. Lempert,
2019). They are especially useful when objectives cannot be translated
into clear target indicators and values (Haasnoot et al., 2019), or where a
study is focused more on non-predictive, exploratory modelling (Lempert,
2019), such as in climate change impacts studies or of alternative futures.
For example, Chaplin-Kramer et al. (2019) used percentage change to
plot benefit gaps for future scenarios, and Ruckelshaus et al. (2015) used
percentages to relate water yield reductions to improvements in erosion
control. The use of percentages is widespread, e.g. investigating the impact
of climate change on water yield in 2030 and 2060 in the Lower Mekong
Basin, China (Trisurat et al., 2018), as guidance for the Water for Life and
Sustainability Fund in Colombia (Vogl et al., 2015) and to assess the impact
of erosion from mining activities in Himachal Pradesh, India (WAVES,
2015). However, it has been argued that conservation of natural processes
should rather be presented as absolute values to provide a more accurate
measure of change (Baumgärtner et al., 2006; Sol, 2019). Absolute mea-
sures are useful when decision makers are focused on some invariant stan-
dard or on one or more outcomes (Lempert, 2019), such as Water
Framework Directive (WFD) objectives.

Absolute and relative metrics of change are often presented together to
contextualise change. Large percentage changes do not necessarily mean
that this is meaningful to the system or decision of interest if the initial ab-
solute value is low. For example, an early study of climate change impacts
on the water available for supply as part of the water resources planning
process found large absolute impacts of 120 Ml/d equating to a relative
change of only 10%, whilst a change of 2.7Ml/d for anotherwater resource
zone represented a huge relative impact of almost 60% (Charlton and
Arnell, 2011). However, large percentage reductions in low flows may be
important for determining water available to both the environment and ab-
straction. In the National Framework (Environment Agency, 2020), per-
centage changes were applied to natural flows for differing river types
and at different flows. Estimated impacts and the additional capacity re-
quired to meet different pressures between regions were presented as
maps of absolute values and as a proportion of the water supplied in any
given water resource zone. Charlton et al. (2018) modelled how projected
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climate change impacts on river flow affect phosphorus concentrations,
the effectiveness of planned management interventions to reduce them,
and the implications for meeting WFD objectives. Both absolute values
and percentage changes were mapped showing small but inconsistent in-
creases in projected phosphorus concentrations across England. The maps
of percentage change in concentrations relative to an absolute baseline
identify where change in risk is greatest. Absolute changes in WFD status
are necessary to assess implications forWFD objectives. Together this infor-
mation informs strategic decision making at a national scale and helps to
target management responses. Importantly, most phosphorus concentra-
tion estimates were found to be sufficiently high for meeting thresholds
for algal growth suggesting the need for further management focused on
other drivers of risk, such as water temperature (Charlton et al., 2018).

Ultimately, the choice of change metric depends on the purpose; abso-
lute and relative changes provide different and complementary information
to decision makers. Confidence in modelling results influences their utility
in planning. Uncertainty and accuracy feed into this. Modelling errors will
manifest in estimates of change in both absolute and relative terms.What is
not understood is how accuracy emerges in the choice of representation or
whether the same sources of error drive this.

The aim of this study was, therefore, to investigate how best to quantify
water yield changes over time, to inform how to increase the accuracy of
models at the landscape scale for future management of the water environ-
ment. Specifically, we assessed:

1. Water yield for catchments in England for two time periods.
2. Whether absolute or relative change is a more accurate measure in the

context of modelling water yield. In this study absolute values refer to
volumetric units of million cubic metres per year (Mm3/y), either at
the catchment or hectare level.

3. Which, if any, predictors may lead to inaccuracies in the modelled
change in yield and consider the implications for assessing changes in
water yield in England.
To do this, we modelled water yield in England using the Annual Water

Yield (AWY) model, which is part of the Integrated Valuation of Ecosystem
Services and Tradeoffs (InVEST) suite. The InVEST models are widely used
physically-based models used in environmental decision-making, as they
allow for comparisons of trade-offs between different ES based on changing
land use/land cover scenarios. The AWYmodelwas designed to require less
parameterisation and data than some more complex hydrological models,
making it easier and faster to run over larger extents with readily available
datasets. As an alternative to more sophisticated models that can be re-
source or data intensive, AWY calculates the relative contribution of land
parcels to annual water yield (Sharp et al., 2018). Additionally, the AWY
model has been validated for the UK (Redhead et al., 2016) and shown
that it can produce accurate estimates of water yields at a landscape scale
(Sharp et al., 2018). We assessed estimation accuracy using validation
data for two time periods, 1990 (1985–1994) and 2015 (2008–2017). Fi-
nally, using linear regression we assessed the contribution of predictor var-
iables (climate, physical characteristics, and human impact) to model
estimation error.

2. Methods

2.1. Study site and context

The catchments used in this study lie within England, which has under-
gone large changes in water consumption and abstraction since at least the
1970s (Defra, 2020a; Gorenflo et al., 2012; Walker, 2013). To investigate
changes in water yield over time, we chose two time periods (for which
the model was run separately) that reflect different periods of land use/
cover and climate. The first time period (hereafter ‘time period 1’),
1985–1994, was guided by the 1990 UK land cover map (LCM1990,
Rowland et al., 2020), while the second period (time period 2),
2008–2017, was guided by the 2015 UK land cover map (LCM2015,
Rowland et al., 2017). Both land covermaps (LCM) are derived fromoptical
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satellite data. The data behind LCM1990 were re-processed in 2020 using
the same methods as for LCM2015, thus ensuring that change between
the maps is likely to be genuine, rather than due to methodological and
technological differences.

The second time period ended in 2017 as data were not available for all
parameters after that year. Study regions were selected on the basis of the
availability of validation data (see Validation in Section 2.2.2). If catch-
ments were nested, one of the overlapping catchments was randomly se-
lected to avoid bias towards smaller or larger catchments. This resulted in
a total of 81 catchments across England (Fig. 1) that we used for the analy-
ses.

2.2. Modelling water yield

2.2.1. Model setup
Annual water yield by catchment was simulated using the InVEST An-

nual Water Yield model (v 3.8.2). This model was designed to estimate
both the amount of water and value of hydropower produced by reservoirs
(Sharp et al., 2020). In brief, the AWY model uses water balances to deter-
mine yield. It uses three procedural steps in its calculation. First, it deter-
mines water balance, as the difference between precipitation and
evapotranspiration, based on spatial inputs such as soil type and rainfall.
Due to the difficulty of measuring actual evapotranspiration, potential
evapotranspiration is used instead, which was calculated using the Budyko
curve method (Budyko, 1974). Second, water yield is modified based
on other forms of consumption (e.g. groundwater recharge), and is
summarised at the sub-catchment level. Third, the model calculates final,
combined yield at the watershed level. However, the model does not con-
sider temporal dimensions of water supply or surface-ground interactions.
For more in-depth description of the model, please see the detailed user
guide (Pessacg et al., 2015; Redhead et al., 2016; Sharp et al., 2018).

The main purpose of InVEST AWY model is to enable detection of
change due to modifications such as land use change (Sharp et al., 2020).
It is designed to be run relatively easily with freely available data, and re-
quires a relatively limited set of parameters. Additionally, it has been vali-
dated in the UK (Redhead et al., 2016). Altogether, this makes it a useful
tool to use in this study as it can be determined as to which extra easily-
accessible parameters may be required for future updates to the model,
and is also a useful policy decision tool to assess changes.

Redhead et al. (2016) validated themodel for a single, ten-year time pe-
riod, using linear regression of modelled total water (water yield) against
empirical data, and demonstrated a high level of accuracy when using
Fig. 1. Locations of the 81 catchments (grey) across Englandmodelled in this study.
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UK-scale meteorological input data. Here, we ran the model for two time
periods, and assessed change between them. Table 1 shows the required in-
puts for the model and the specific inputs used in this study. Demand
values, or water abstraction, were optional inputs for the model, which
we included to improve accuracy. Water abstraction in m3 per pixel for
the LCM classes ‘arable and horticulture’, ‘urban’ and ‘suburban’was calcu-
lated for seven regions of England (North West, North East, Midlands,
Anglian, Thames, Southern and South West) using data from the Environ-
ment Agency (through Defra, 2020a, 2020b; EUROSTAT, 2020). Data
were not available at regional levels for 1985, 1989 and 1990–95, therefore
abstraction was calculated using percentages by region for 1995–2006 and
this percentage applied to aggregated values for these years to provide esti-
mated values. Abstraction values, or withdrawals, for public water supply,
industry, mineral washing and private water supply were assigned to urban
and suburban land classes following Redhead et al. (2016), and spray irriga-
tion and agriculture were assigned to arable land, as grassland is rarely irri-
gated in England. We were able to provide multiple values for these land
classes by splitting the input land cover codes to accommodate this com-
plexity using Environment Agency regional boundaries that were actively
used during time period 1.

2.2.2. Validation
Daily gauged flow data from the Global Runoff Data Centre (GRDC,

2020) were acquired for all stations in England that had ≥ 360 days of
data for every year of the study time periods to ensure a high accuracy of
the validation data. In GRDC, each station corresponds to a single catch-
ment. The NRFA (National River Flow Archive) in the UK supply the flow
data to the GRDC that is used in this study. For each station for the unnested
81 catchments, the data were summed within years, and the mean annual
water yield for each catchment was calculated for each time period.
These empirical results were compared to the modelled results using
Mean Absolute Deviation (MAD) with normalised data. MAD was calcu-
lated by taking the mean (mathematical) absolute deviation from the 1-
to-1 line resulting in values between 0 and 1; smaller values of MAD indi-
cate higher levels of correspondence between modelled and empirical
data; i.e. lower inaccuracy. MAD was used as it reflects the degree to
which a model consistently reflects the validation values (Willcock et al.,
2019).

2.3. Drivers of inaccuracy in modelled values

First, MAD was used to investigate overall model inaccuracies by com-
paringmodelled valueswith validation data at catchment level, and hectare
level (calculated using the area of the catchment) and for relative values (as
percentage change) between the time periods of 1990 (1985–1995) and
2015 (2008–2017). The hectare scale estimates were examined to allow
comparisons across the same scale between different catchment sizes and
are simply the total water yield divided by the area of the catchment in
hectares. The percentage change is the same at both the catchment and
hectare scales, as the size of the catchment is constant between the two
time periods.

Second, we explored possible causes of inaccuracy in the modelled
changes in water yield over time. We assessed potential drivers of inaccu-
racy relating to human impact (including water abstraction), fine-scale
land cover, physical conditions (such as area of catchment and elevation),
and climate (see Table 2 for a full list of variables). Here we used the abso-
lute volumetric values including the sign, so values could be positive or neg-
ative. We tested whether any of the predictors were correlated to the
inaccuracy of the modelled change at the i) catchment and ii) hectare
scales, and the iii) percentage change between the time periods using linear
regression models of the residuals from the 1-to-1 line. If a predictor is
strongly related to inaccuracy, this suggests that inclusion or refining the
representation of that predictor, or a process involving that predictor, into
the model would have resulted in improved accuracy. Several predictors
used as model inputs were also included so we could examine the model's
ability to effectively represent the processes involving these parameters



Table 1
Input requirements for the InVESTAnnualWater Yieldmodel, with specific inputs derived for this study. Optional inputs, including demand (abstraction), are discussed in the
Model setup section.

General input data requirements Specific inputs for this study

Variable Definition Metric Derivation of parameter Type Source

Precipitation Average annual precipitation for each
cell.

mm Mean for the time period. Spatial
(raster –
1 km)

HadUK-Grid gridded climate
observations for the UK (Hollis
et al., 2019)

Annual
evapotranspiration

Potential loss of water from the soil by
both evaporation from the soil and
transpiration from vegetation.

mm Mean for each time period. Spatial
(raster –
1 km)

Climate hydrology and ecology
research support system potential
evapotranspiration dataset
(Robinson et al., 2020)

Root restricting layer
depth

Soil depth at which root penetration is
strongly inhibited because of physical
or chemical characteristics.

mm Mean for each time period. Spatial
(raster –
1 km)

European Soil Database derived
data (Hiederer, 2013a, 2013b)

Plant available water
content

Fraction of water that can be stored in
the soil profile that is available for
plants' use.

Fraction
between 0
and 1

Mean for each time period. Spatial
(raster –
1 km)

European Soil Database derived
data (Hiederer, 2013a, 2013b)

Land use/ land cover
(LULC)

Map coded with land use/land cover
classes.

N/A Two separate LULC rasters for each time period; both
produced using the same methods, thus are
comparable.

Spatial
(raster –
1 km)

LCM1990 (Rowland et al., 2020)
and LCM2015 (Rowland et al.,
2017)

Catchments Catchments of the study region. N/A The delineations were supplied along with flow
gauge data from the GRDC.

Spatial
(polygon)

GRDC (2020)

Root depth of land
use/land cover
classes

The depth at which 95% of a
vegetation type's root biomass occurs.

mm
(integer)

Pre-existing values used. Numeric
(float)

Redhead et al. (2016)

Plant
evapotranspiration
coefficient (Kc) of
land use/land cover
classes

Potential evapotranspiration by using
plant physiological characteristics to
modify the reference
evapotranspiration.

Coefficient
between 0
and 1.5

Pre-existing values used. Numeric
(float)

Redhead et al. (2016)

Z parameter Seasonal distribution of precipitation. Days Estimated as 26.02 for time period 1 and 27.52 for
time period 2. Calculated by multiplying the annual
mean rainy days (precipitation amount ≥ 1 mm) for
England by 0.2.

Numeric
(float)

Met Office (2020)
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(e.g. the model may not perform accurately where model parameters are at
high or low extremes). We also included land cover and precipitation as
predictor variables, to assess whether, despite being an input to the AWY
model, they contributed to model inaccuracy (e.g. there may be high levels
of uncertainty in the coefficients associatedwith certain land cover classes).
Water abstraction is included in the AWY model as part of the “demand”
input, and we also included it as a predictor variable (i.e. as one of the prox-
ies of human impact). The AWYmodel subtracts the demand from the total
modelled water yield.

Initially, univariate linear models with a single predictor were run
for all residuals without intercepts (see Supplementary Materials,
Tables S1–3). All variables were standardised using Z-transformations.
To reduce collinearity in the full regression models, correlation between
all variables was assessed using the R package caret (Kuhn, 2020). If vari-
ables had a Pearson's r greater than ±0.75, the variable with the lower R2

in the univariate models was removed. Finally, full models with all re-
maining predictor variables were run and stepwise selection (forward
and backward) using the R package MASS (Venables and Ripley, 2002)
was used to find the most parsimonious final model. Variance Inflation
Factors were investigated using the R package car (Fox and Weisberg,
2019); all values were <5 in the final models, indicating a low level of col-
linearity. The intercept was included in the final models, as it is assumed
that were factors outside of our analysis impacting the overall predictive
ability of our models. Spatial analysis was conducted in either R v.4.0.3
(R Core Team, 2020) or QGIS v3.4 (QGIS Development Team, 2021). All
statistical analyses and data visualisations were conducted in R (R Core
Team, 2020).
3. Results

The modelled mean annual water yield for both periods showed a low
MAD (low accuracy) when compared against validation data (Fig. 2). Nor-
malised MAD was 0.013 (±0.019) and 0.012 (±0.020) at the catchment
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level for periods 1 and 2 respectively. At the hectare scale, MAD was
0.036 (±0.030) and 0.030 (±0.025) for periods 1 and 2, respectively.
For change between the time periods (see Fig. 3) the most accurate model
was the absolute change at catchment scale (MAD = 0.055 ± 0.065),
followed by absolute change at hectare scale (MAD= 0.105 ± 0.089), al-
though theMAD for percentage changewasmuch higher (MAD=0.189±
0.135). Further details of the spatial difference between modelled and em-
pirical values are mapped in Supplementary Materials, Figs. S1 and S2.

Linear regressions to identify predictors of water yield change inaccu-
racy (Table 1 and Fig. 4) showed that the best-fitting model was at the
catchment scale was moderate (R2 = 0.41), followed by the hectare scale
(R2= 0.40). Themodel with the least variation accounted for was percent-
age change, with a weaker model (R2 = 0.28). Results identified both pos-
itive and negative relationships, indicating a source of overestimation or
underestimation of change, respectively. At the catchment scale, three pre-
dictors were significant at p< 0.05: the amount of water abstraction in time
period 1 and the number of reservoirs per catchment had positive effects
(i.e. overestimation of change in catchments withmore abstraction and res-
ervoirs), while ‘all water barriers’ (sum total of culverts, dams, fords, ramp
bed sills, sluices, weirs, and others) had negative effects (underestimation
inaccuracy). Sluices, fords and ‘other water barriers’were positively signif-
icant at the p< 0.10 level. At the hectare scale, eight predictors were signif-
icant at the p< 0.05 level; five were positive: arable land percentage, water
withdrawal in time period 1, number of reservoirs, improved grassland per-
centage and other water barriers (e.g. hydroelectric deviations, mobile
gates, concrete, screen). The three predictors showing negative relation-
ships were: ‘all water barriers’, mean air temperature, and catchment area
(ha). Longitude and barrier-free length share (stream fragmentation) were
significant and negative, and woodland significant at the p < 0.10 level
and positive. At the relative (percentage) scale, only impervious built-up
and improved grassland were found to be positively and negatively signifi-
cant at the p< 0.05 level related to residuals from the 1:1 line, respectively.
Flow ratio was significant and positive, and precipitation was significant at
the p > 0.10 level and negative (Table 3).



Table 2
Predictor variables used to investigate the inaccuracy of the modelled values in the InVEST Annual Water Yield models. Variables were calculated as mean values for each
catchment.

Type Variable Further description Type Pre-processing Source

Human
impact

Water abstraction Total abstraction (million m3). Numeric
(float)

Total water abstraction between
2008 and 2017. See Section 2.2.1 for
details.

Environment Agency
through Defra (2020a,
2020b) and EUROSTAT
(2020)

Stream fragmentation Artificial barriers (weirs and dams only) that disrupt
flow of waterways as barrier free length and barrier
free length share. The latter refers to the proportion
of the total river network length.

Spatial
(polyline)

Mean barrier free length and share
calculated per catchment.

Jones et al. (2019)

Freshwater barriers Individual locations of barriers by type (culverts, dams,
fords, ramp bed sills, sluices, weirs, and others).

Spatial (point) The number of barriers by type, and
collectively, summed per catchment.

AMBER European Barrier
Atlas (AMBER Consortium,
2020)

Reservoirs Number of reservoirs. Numeric
(integer)

Summed per catchment. Global Reservoir and Dam
(GRanD) v1.3 Database
(globaldamwatch.org,
Lehner et al., 2011)

Maximum storage capacity of all reservoirs (km3). Numeric
(float)

Flow ratio Flow ratio between wet (October to December) and dry
season (January to September).

Numeric
(float)

Calculated as the mean between
October 1994 to September 2017.

GRDC (2020)

Land
cover
and
physical

Impervious density Percentage of sealed area (2018). Spatial
(raster – 10 m)

Land cover was calculated as a
percentage of the total catchment.
Classes aggregated were based on
Redhead et al. (2016).

Copernicus High Resolution
Layers (Langanke et al.,
2018)

Impervious built-up area Binary product of where sealed areas have built-up
areas (2018).

Arable Spatial (raster
- 25 m)

Land Cover Map 2015
(Rowland et al., 2017)Improved grassland

Semi-natural Other grasslands (rough, calcareous, acid and heather),
fen, marsh and swamp, heather and bog land covers
aggregated.

Woodland Coniferous and broadleaved woodland aggregated.
Urban and suburban
Area Area (km2) Spatial

(polygon)
Calculated as total area by
catchment.

GRDC (2020)

Elevation Elevation (m) Spatial (raster
- 50 m)

Calculated as mean elevation by
catchment.

Ordnance Survey 50 m
Digital Terrain Model
(Ordnance Survey, 2019)

Climate Air temperature Average daily mean temperature annually (°C). Spatial (raster
- 1 km)

Mean calculated 1985 and 2018. HadUK-Grid gridded
climate observations (Hollis
et al., 2019)

Average daily minimum temperature annually (°C).
Average daily maximum temperature annually (°C).

Precipitation Total precipitation annually (mm).
Sunshine duration Duration of bright sunshine annually (hours).
Wind speed at 10 m Average hourly mean wind speed a 10 m above ground

level annually (knots).
Sea level pressure (mean) Average hourly mean sea level pressure annually (hPa).
Relative humidity (mean) Average hourly vapour pressure annually (%).
Vapour pressure (mean) Average hourly mean vapour pressure annually (hPa).
Days of ground frost Number of days when the grass minimum temperature

is below 0 °C.
Days of snow lying Number of days with >50% ground covered by snow.
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4. Discussion

Two distinct findings emerged from the results of our study. First,
modelling of changes in freshwater provision was most accurate when rep-
resented as absolute values, rather than percentage (i.e., relative) values.
This can result from the sensitivity of percentage change to low initial
values, potentially exaggerating inaccuracies for percentage change, com-
pared to those for absolute change. The implications could reach beyond
the study area of this study, with the results indicating that caution should
be exercised when using percentage change metrics alone, and we strongly
recommend that absolute values should also be assessed. As absolute values
can be a more accurate representation of change than relative values, the
implications of reporting at the best accuracy at larger scales/remits, e.g. in-
ternationally, are important. Thus, absolute values can provide the most ro-
bust evidence that is used to guide national or transnational policy and
initiatives. Presenting absolute values of change in assessments can guide
management measures more accurately and be used to assess against
policy-relevant standards. This is especially true when the accuracy of the
change is of vital importance, such as in the case of expected shortages in
agricultural irrigation or drinking water, or at times when minimum values
are important, such as seasonal low flow. Considering freshwater supply in
terms of absolute scarcity allows quantification that can be related to
human consumptive needs and is necessary for calculating mitigation
6

measures in changing watersheds. There is utility in presenting percentage
values, as these can make the comparisons between temporally or geogra-
phically different locations easier to interpret and can also be more under-
standable for policy makers, especially when the resulting decisions relate
environmental concepts to economics (Baumgärtner et al., 2006). Our re-
sults suggest that ease of interpretation comes at a cost in terms of model
accuracy. However, for policy and decision-making, it is important to un-
derstand whether the level of difference in accuracy between relative and
absolute values will affect the outcome of an investigation and on any deci-
sions made. The authors suggest that confidence in any estimates is para-
mount, and this can be communicated through the use of both types of
values, whilst improving the understanding of what drives differences.
Stakeholder confidence can be increased through the improvement of esti-
mation error.

Our second major finding is that variables related to human consump-
tion of water, or human-driven landscape change, have the greatest impact
on the residuals when investigating the accuracy of predicting changes in
water supply. These regression models investigated the predictors of inac-
curacy in modelled annual water yield change using the residuals as the in-
dependent variable in a series of linear regression using catchment, hectare,
and percentage values using a variety of relevant predictors. These models
ranged from amoderate R2 of 0.41 and R2 0.40 for the catchment and hect-
are level models, to a weaker R2 of 0.28 for the percentage level model. The

http://globaldamwatch.org


Fig. 2. InVESTmodelled total annualwater yield (millions of cubicmetres per year (Mm3/y)) against empirical gaugedwater yield for 81 catchments for (a and c) time period
1: 1990 (1985–1995) and (b and d) time period 2: 2015 (2008–2017) and by total yield per catchment (a and b) and per ha (c and d). The normalisedmean absolute deviation
is shown under each graph's title. The 1–1 line is shown as a blue dashed line. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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results suggest that deviations in modelled annual catchment water yield
from validation data can be explained in part by humanmodification in hy-
drological processes, making anthropologically influenced processes criti-
cally important factors to consider in water yield modelling and data
collection, as hypothesised by Redhead et al. (2016). Water abstraction ac-
tivities andmajor artificialmodifications (e.g. water barriers and number of
reservoirs) were also particularly significant factors. Smith et al. (2019)
reached similar conclusions when modelling streamflow in the UK and
found that excluding artificially modified processes from the models re-
sulted in unrealistic flow patterns. To account for the effects of human im-
pacts, Pokhrel et al. (2015) used a model that combined human impacts,
groundwater pumping, and surface interaction and runoff to model water
yield. They found that adding human impacts increased the accuracy of
the model and the results matched the observed data much better. How-
ever, as noted by Pokhrel et al. (2015), the coarse resolution (~100 km2)
of their model is a limitation, which means that such a model would not
be sufficiently accurate at the catchment or hectare level, and so interpreta-
tion of the model at the landscape-scale would be uncertain.

The reasons for inaccuracies at the catchment level have previously
been highlighted by studies that have focused on individual catchments
7

to assess local level human impacts. For example, Xin et al. (2019), who fo-
cused on the Huifa River basin in China, identified how reservoirs affect
streamflow. The authors found that the presence of reservoirs, among
other human factors, had a dramatic effect on intra-annual variability, caus-
ing streamflow to decrease in every season. This was most notable during
the irrigation season (May to July), when large amounts of water stored
in the reservoirs were used for agriculture. Similar findings were also
found in the Vu Gia Thu Bon River basin in Vietnam, and across the UK,
by Firoz et al. (2018) and Tijdeman et al. (2018), respectively. In both
cases, the intensity and frequency of droughts downstream depended
strongly on the hydropower operations of reservoirs and abstractions.
One of the challenges is that management interventions tend to be local,
not catchment wide. For the River Deben in England, Hutchins et al.
(2021) demonstrated a clear improvement in water quality simulations
when specific local knowledge of hydrology and flow routing was included.
This offers greater insights and confidence for management decisions, but
the greater information requirements can be prohibitive at much larger
scales. Frameworks that use large-scale screening studies and then increas-
ingly refined modelling, proportional to local problems, allow more appro-
priate management solutions to be developed (Hutchins et al., 2021) and



Fig. 3. Plots showing change of modelled annual water yield against empirically observed changes in yield between two time periods: 1990 (1985–1995) and 2015
(2008–2017). Graphs show this change as (a) water yield at the catchment scale, (b) water yield at the hectare scale, and (c) percentage change. The size of each
catchment is marked from the smallest as light blue to largest as dark blue. The normalised mean absolute deviation is shown below the title of each graph. No
normalisation was carried out prior to comparing the change between the two periods. The 1–1 line is shown as a blue dashed line. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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would allow the inaccuracy at the catchment level to be examined in
greater depth.

Our study also found that, in contrast towoodland cover, whichwas not
a significant predictor of the residuals, percentage cover of agricultural land
(in the form of cropland and improved grassland) had a significant positive
effect on the deviation from the validation data, indicating a positive rela-
tionship between agricultural land and residuals. This suggests that the
more agricultural land there is in the catchment, the more likely the
model is to predict that change was more positive than was observed,
which is in agreement with Redhead et al. (2016). This overestimation
due to agricultural land cover is likely due to the differing conditions and
managements of agrarian land, properties of which differ greatly, showing
high variability depending on factors such as stocking densities, crop types
and rotations, and management activities such as tillage (O’Connell et al.,
2007). The model is parameterised at the landscape scale, with a single pa-
rameter for ‘average’ cropland and improved grassland. However, the
aforementioned runoff-affecting farm managements are decided at a local
(i.e. farm-level) scale by individual actors (Blair and Buytaert, 2016),mean-
ing this variation cannot bemapped adequately at the landscape scalewith-
out sufficient knowledge. This variation among different farms could be the
reason for increased deviation (i.e. overestimation) when comparing
modelled data with validation data. This could be improved by separating
agricultural land into different crops and deriving parameter values for
each type, whilst being mindful of management (e.g. crop rotation) for dif-
fering years. These issuesmay explainwhy the area of agricultural landwas
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found to be a significant predictor of inaccuracy as it is a more modified
land cover type, as opposed to the other less-intensive land covers that
were included as predictors. Ultimately, the intensive use of agricultural
land makes feedback with water processes much more dynamic and vari-
able (Calvin and Bond-Lamberty, 2018), and their modelling at the land-
scape scale challenging. However, these aspects are beginning to be
explicitly considered in landscape socio-hydrological landscape models
(Blair and Buytaert, 2016; Wada et al., 2017).

Our results suggest that the relatively simple set of parameters used by
the AWY model are a good basis for modelling changes in annual water
yield generally, indicating the usefulness of the InVEST AWY model. How-
ever, they also show that the model could likely be improved by further
considering human influence factors at the landscape scale, wherever in
the world the model is being used. The AWY model already includes ab-
straction, which was a significant predictor of inaccuracy in the change be-
tween modelled water yields. Therefore, this suggests that uncertainty in
the value is not an issue, but that it is not represented accurately in the
model. That is, if we have the amount abstracted in the model but this
amount is related to inaccuracy, uncertainty in that value will not lead to
a significant effect on inaccuracy. Additionally, water abstraction data
can be difficult to obtain (e.g. Larsen et al., 2019), assuming it has been col-
lected at all. Internationally, data quality may thus be limiting when vali-
dating for previous time periods. Specifically, we found that water
abstraction and number of reservoirs showed significant positive relation-
ships with model inaccuracy for absolute temporal change, at both hectare



Fig. 4.Dot andwhisker plots showing significance of the predictors of inaccuracy in modelled annual water yield change using linear regression with standardised variables,
with stepwise selection of themost important variables. Scaledmodel coefficients are shownwith CI whiskers for Table 1, ordered bymagnitude of absolute estimate size for
change by (a) catchment, (b) hectare, and (c) percentage (intercepts not shown). A positive value represents a source of overestimation and a negative a source of
underestimation. Colours of variable names on the y-axis represent types of predictor: blue for direct human influence-related, green for physical and land cover related,
and brown for climate related. Whereas urban and suburban and impervious built-up areas are grouped here under land cover, it must be noted that they are also
indicators of human impact. Significance is denoted by shape: solid circle representing p < 0.05, hollow circles representing p < 0.10 and crosses representing p > 0.10.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Predictors of inaccuracy in modelled annual water yield change, identified using linear regression with standardised variables, with stepwise selection of the most important
variables. Estimates and Confidence Intervals (CI) are shown. Predictor variable rows in bold indicate where the significance was p ≤ 0.05. See Fig. 4 for dot and whisker
visualisation.

Predictors Residuals from change by catchment Residuals from change by hectare Residuals from percentage change

Estimates CI p Estimates CI p Estimates CI p

(Intercept) 0.00 −0.18–0.18 1.000 −0.00 −0.19–0.19 1.000 −0.00 −0.19–0.19 1.000
Water abstraction (Era 1) 0.47 0.16–0.79 0.004 0.49 0.05–0.92 0.029
All water barriers −0.46 −0.82 to −0.10 0.012 −0.62 −1.06 to −0.18 0.006
Number of reservoirs 0.41 0.12–0.70 0.007 0.43 0.12–0.75 0.008
Catchment area (ha) −0.23 −0.53–0.08 0.14 −0.35 −0.66 to −0.05 0.024
Sluices 0.22 −0.03–0.47 0.085
Fords 0.21 −0.01–0.43 0.058
Other water barriers 0.18 −0.03–0.39 0.09 0.33 0.07–0.59 0.014
Arable 0.54 0.03–1.04 0.037
Air temperature −0.49 −0.87 to −0.10 0.014
Improved grassland 0.42 0.06–0.78 0.024 −0.25 −0.49 to −0.02 0.036
Longitude −0.35 −0.70–0.00 0.053
Urban and suburban 0.24 −0.11–0.60 0.17
Woodland 0.23 −0.03–0.50 0.081
Relative humidity −0.2 −0.52–0.11 0.198
Barrier-free length share −0.19 −0.42–0.04 0.098
Impervious Build-up 0.42 0.22–0.62 <0.001
Flow ratio 0.3 −0.00–0.61 0.053
Precipitation −0.27 −0.54–0.01 0.057
R2 / R2 adjusted 0.411 / 0.354 0.404 / 0.288 0.280 / 0.242
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and catchment scales, while water barriers were a negative predictor in
both cases. The number of reservoirs and water barriers are not included
as inputs in the AWYmodel, and their inclusion could improvemodel accu-
racy. Within European countries, especially those in the EU, some of these
datasets (e.g. water barriers) are openly available, which means that their
inclusion as additional parameters in the model would be possible. This is
unlikely to be the case, however, for all countries internationally, across
all datasets, therefore implications on accuracy on models depending on
context need to be considered.
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While our results point to factors that could be included inmodels to re-
duce their inaccuracy in terms of deviance, the R2 values of the predictive
linear regression models identifying drivers of residuals in the relationship
between modelled and measured changes suggest that more variation
could be explained by other factors that remain to be explored. These fac-
tors may be current limitations to the accuracy of the findings. We strongly
suspect such factors are likely human or geologically induced, as these are
factors are specifically noted in InVEST user's guide with an indication that
may not be well captured. Current model parameters could be
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supplemented with further, related variables, as these could be a source of
variation in such processes as in subsurface drainage, thus addingmore lim-
itations to the accuracy of thefindings presented here. For example, in karst
landscapes – those created from the dissolution of carbonate rocks, from
which phenomena such as caves and sinkholes can form (Ford and
Williams, 2013) - water supply protection is a major challenge, due to
being highly vulnerable to environmental and human changes (Farrant
and Cooper, 2008; Lv et al., 2020). Karst rock types are widespread across
the UK (see Fig. 1 in Farrant and Cooper, 2008), therefore any changes in
the condition of these areas could dramatically change water supply in cer-
tain locations, data of whichwas not included in this study. For other poten-
tial sources of error, including spatial and temporal, please see
Supplementary Materials, Section 3.

Dynamic feedbacks between human activities and water systems may
also not have been considered, which is often an issue in socio-
hydrological modelling studies at larger scales (Hassaballah et al., 2017;
Sivapalan et al., 2014), possibly overlooking locally important decisions
made by individual actors in individual catchments (Blair and Buytaert,
2016). Additionally, inaccuracies may have been present in the validation
data, as water can bypass gauging stations in various ways, e.g. pipelines
and floods. In terms of consumptive abstraction, the model will correctly
predict that the water was there, but it does not appear in the validation
data because it has been taken out of the system, causing an apparent
overestimate. This issue with validation data, and our results of human
impact having effects on model deviance, suggest that the most populated
catchments would have the some of the least accurate modelling, though
these are areas where accurate models are most important across the
world.

Building on the results of this work, there are several potential avenues
for future research. As the temporal difference between the modelled time
periods was probably not long enough to draw conclusions about long-term
climatic changes, future studies could increase the number of years be-
tween the time periods. However, this may be difficult due to the necessity
of empirical data required for accurate modelling, for example water ab-
straction rates, and the need for consistent land cover maps for each time
period. It would also be useful to extend the study to larger regions, both
in terms of number of catchments and geographical extent, as this study
only covered England. Such future research could include modelling in dif-
ferent biomes, or investigating different types of catchments, e.g. by land
cover heterogeneity, areas of extreme climatic variability or those not
constrained by gauge data. We did not explore the link to the condition of
the catchment in this study, but suchmetrics could be included in the future
e.g. by making plant available water capacity dynamic.

5. Conclusion

Due to the increasing pressures on freshwater demand and supply from
population growth and climate change, there is a need for future manage-
ment plans to be more adaptive and flexible (Everard and Moggridge,
2012; Gleick, 2018). Our study suggests that modelled absolute values
need to be presented alongside percentage values when quantifying change
in freshwater provision. The use of eachwill depend on the context and pur-
pose of the particular management decision. Accuracy of change estimates
depends on different drivers and highlights their complementarity for un-
derstanding potential management choices. There is a need to incorporate
more of the influence of human activities and consumptive use into
landscape-scale water yield models. As demonstrated here, the InVEST
AWY model provides a robust basis for modelling annual water yield, al-
though incorporating a better understanding of anthropological impacts
could lead to improved reliability in predicting changes in water yield.

Declaration of competing interest

The authors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the
work reported in this paper.
10
Acknowledgements

This work was supported by BESTMAP under the European Union's Ho-
rizon 2020 research and innovation programme (grant agreement No.
817501). The views expressed in this paper are those of the authors and
do not necessarily represent the views of the Environment Agency or other
institutions. The authors are thankful to the anonymous reviewers for their
helpful comments.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2022.155042.
References

AMBER Consortium, 2020. The AMBER Barrier Atlas. A Pan-European Database of Artificial
Instream Barriers. Version 1.0 June 29th 2020.

Arnell, N.W., Reynard, N.S., 1996. The effects of climate change due to global warming on
river flows in Great Britain. J. Hydrol. 183, 397–424. https://doi.org/10.1016/0022-
1694(95)02950-8.

Aylward, B., Bandyopadhyay, J., Belausteguigotia, J.-C., Börkey, P., Cassar, A., Meadors, L.,
Saade, L., Siebentritt, M., Stein, R., Tognetti, S., Tortajada, C., Allan, T., Bauer, C.,
Bruch, C., Guimaraes-Pereira, A., Kendall, M., Kiersch, B., Landry, C., Rodriguez, E.M.,
Meinzen-Dick, R., SuzanneMoellendorf, Pagiola, S., Porras, I., Ratner, B., Shea, A.,
Swallow, B., Thomich, T., Voutchkov, N., Lead, C., Bruce, A., Authors, L., Bo, P.,
Authors, C., Moellendorf, S., Editors, R., Constanza, R., Jacobi, P., Rijsberman, F., 2005.
Freshwater Ecosystem Services, Ecosystems and Human Well-being: Current State and
Trends.

Baumgärtner, S., Becker, C., Faber, M., Manstetten, R., 2006. Relative and absolute scarcity of
nature. Assessing the roles of economics and ecology for biodiversity conservation. Ecol.
Econ. 59, 487–498. https://doi.org/10.1016/j.ecolecon.2005.11.012.

Blair, P., Buytaert, W., 2016. Socio-hydrological modelling: a review asking “why, what and
how?”. Hydrol. Earth Syst. Sci. 20, 443–478. https://doi.org/10.5194/hess-20-443-2016.

Böck, K., Polt, R., Schülting, L., 2018. Ecosystem services in river landscapes. In: Schmutz, S.,
Sendzimir, J. (Eds.), Riverine Ecosystem Management: Science for Governing Towards a
Sustainable Future. Springer Open, pp. 413–434.

Bouwma, I., Schleyer, C., Primmer, E., Winkler, K.J., Berry, P., Young, J., Carmen, E.,
Špulerová, J., Bezák, P., Preda, E., Vadineanu, A., 2018. Adoption of the ecosystem ser-
vices concept in EU policies. Ecosyst. Serv. 29, 213–222. https://doi.org/10.1016/j.
ecoser.2017.02.014.

Brunner, M.I., Björnsen Gurung, A., Zappa, M., Zekollari, H., Farinotti, D., Stähli, M., 2019.
Present and future water scarcity in Switzerland: potential for alleviation through reser-
voirs and lakes. Sci. Total Environ. 666, 1033–1047. https://doi.org/10.1016/j.
scitotenv.2019.02.169.

Budyko, M.I., 1974. Climate and Life. Academic press.
Calvin, K., Bond-Lamberty, B., 2018. Integrated human-earth system modeling - state of the

science and future directions. Environ. Res. Lett. 13. https://doi.org/10.1088/1748-
9326/aac642.

Chaplin-Kramer, R., Sharp, R.P., Weil, C., Bennett, E.M., Pascual, U., Arkema, K.K., Brauman,
K.A., Bryant, B.P., Guerry, A.D., Haddad, N.M., Hamann, M., Hamel, P., Johnson, J.A.,
Mandle, L., Pereira, H.M., Polasky, S., Ruckelshaus, M., Shaw, M.R., Silver, J.M., Vogl,
A.L., Daily, G.C., 2019. Global modeling of nature’s contributions to people. Science
(80-.) 366, 255–258. https://doi.org/10.1126/science.aaw3372.

Charlton, M.B., Arnell, N.W., 2011. Adapting to climate change impacts on water resources in
England-an assessment of draft water resources management plans. Glob. Environ.
Chang. 21, 238–248. https://doi.org/10.1016/j.gloenvcha.2010.07.012.

Charlton, M.B., Bowes, M.J., Hutchins, M.G., Orr, H.G., Soley, R., Davison, P., 2018. Mapping
eutrophication risk from climate change: Future phosphorus concentrations in English
rivers. Sci. Total Environ. 613-614, 1510–1526. https://doi.org/10.1016/j.scitotenv.
2017.07.218.

Defra, 2020a. Enabling a natural capital approach: guidance (March 2020). [WWW Docu-
ment]. URL https://assets.publishing.service.gov.uk/government/uploads/system/
uploads/attachment_data/file/869801/natural-capital-enca-guidance_2_March.pdf.

Defra, 2020b. e-Digest statistics about: inland water quality and use, water abstractions and
supply. Available (archived) [WWW Document]. URL https://web.archive.org/
web/20090731142326/http://www.defra.gov.uk/environment/statistics/inlwater/
iwabstraction.htm.

Defra, 2019a. Measuring environmental change: outcome indicator framework for the 25 year
environment plan [WWW document]. URLDep. Environ. Food Rural Aff. www.gov.uk/
government/publications.

Defra, 2019b. Abstraction reform report: progress made in reforming the arrangements for
managing water abstraction in England [WWW document]. URL https://assets.
publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/
file/914427/abstraction-reform-report.pdf.

Environment Agency, 2021. Managing water abstraction [WWW document]. URL https://
www.gov.uk/government/publications/managing-water-abstraction/managing-water-
abstraction.

Environment Agency, 2020. Meeting our Future Water Needs: A National Framework for
Water Resources, p. 91.

https://doi.org/10.1016/j.scitotenv.2022.155042
https://doi.org/10.1016/j.scitotenv.2022.155042
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030400485111
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030400485111
https://doi.org/10.1016/0022-1694(95)02950-8
https://doi.org/10.1016/0022-1694(95)02950-8
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030401064619
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030401064619
https://doi.org/10.1016/j.ecolecon.2005.11.012
https://doi.org/10.5194/hess-20-443-2016
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030338404404
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030338404404
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030338404404
https://doi.org/10.1016/j.ecoser.2017.02.014
https://doi.org/10.1016/j.ecoser.2017.02.014
https://doi.org/10.1016/j.scitotenv.2019.02.169
https://doi.org/10.1016/j.scitotenv.2019.02.169
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030339060075
https://doi.org/10.1088/1748-9326/aac642
https://doi.org/10.1088/1748-9326/aac642
https://doi.org/10.1126/science.aaw3372
https://doi.org/10.1016/j.gloenvcha.2010.07.012
https://doi.org/10.1016/j.scitotenv.2017.07.218
https://doi.org/10.1016/j.scitotenv.2017.07.218
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/869801/natural-capital-enca-guidance_2_March.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/869801/natural-capital-enca-guidance_2_March.pdf
https://web.archive.org/web/20090731142326/http://www.defra.gov.uk/environment/statistics/inlwater/iwabstraction.htm
https://web.archive.org/web/20090731142326/http://www.defra.gov.uk/environment/statistics/inlwater/iwabstraction.htm
https://web.archive.org/web/20090731142326/http://www.defra.gov.uk/environment/statistics/inlwater/iwabstraction.htm
http://www.gov.uk/government/publications
http://www.gov.uk/government/publications
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/914427/abstraction-reform-report.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/914427/abstraction-reform-report.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/914427/abstraction-reform-report.pdf
https://www.gov.uk/government/publications/managing-water-abstraction/managing-water-abstraction
https://www.gov.uk/government/publications/managing-water-abstraction/managing-water-abstraction
https://www.gov.uk/government/publications/managing-water-abstraction/managing-water-abstraction
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030404009216
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030404009216


A.S. Gosal et al. Science of the Total Environment 833 (2022) 155042
Environment Agency, 2017. Water abstraction plan [WWW document]. URL https://www.
gov.uk/government/publications/water-abstraction-plan-2017/water-abstraction-plan.

EUROSTAT, 2020. Annual freshwater abstraction by source and sector [WWW document].
URL http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_wat_abs.

Everard, M., Moggridge, H.L., 2012. Rediscovering the value of urban rivers. Urban Ecosyst.
15, 293–314. https://doi.org/10.1007/s11252-011-0174-7.

Farrant, A.R., Cooper, A.H., 2008. Karst geohazards in the UK: the use of digital data for haz-
ard management. Q. J. Eng. Geol. Hydrogeol. 41, 339–356. https://doi.org/10.1144/
1470-9236/07-201.

Firoz, A.B.M., Nauditt, A., Fink, M., Ribbe, L., 2018. Quantifying human impacts on hydrolog-
ical drought using a combined modelling approach in a tropical river basin in Central
Vietnam. Hydrol. Earth Syst. Sci. https://doi.org/10.5194/hess-22-547-2018.

Ford, D., Williams, P., 2013. Karst Hydrogeology and Geomorphology, Karst Hydrogeology
and Geomorphology. https://doi.org/10.1002/9781118684986.

Fox, J., Weisberg, S., 2019. An {R} Companion to Applied Regression. Third. ed. Sage, Thou-
sand Oaks {CA}.

Gleick, P.H., 2018. Transitions to freshwater sustainability. Proc. Natl. Acad. Sci. U. S. A.
https://doi.org/10.1073/pnas.1808893115.

Gorenflo, L.J., Romaine, S., Mittermeier, R.A., Walker-Painemilla, K., 2012. Co-occurrence of
linguistic and biological diversity in biodiversity hotspots and high biodiversity wilder-
ness areas. Proc. Natl. Acad. Sci. 109, 8032–8037. https://doi.org/10.1073/pnas.
1117511109.

GRDC, 2020. GRDC data portal [WWW document]. Available (archived) [WWW Document].
URL https://portal.grdc.bafg.de/.

Grizzetti, A.B., Lanzanova, D., Liquete, C., Reynaud, A., 2015. Cook-book for Water Ecosystem
Service Assessment and Valuation.

Guerry, A.D., Polasky, S., Lubchenco, J., Chaplin-Kramer, R., Daily, G.C., Griffin, R.,
Ruckelshaus, M., Bateman, I.J., Duraiappah, A., Elmqvist, T., Feldman, M.W., Folke, C.,
Hoekstra, J., Kareiva, P.M., Keeler, B.L., Li, S., McKenzie, E., Ouyang, Z., Reyers, B.,
Ricketts, T.H., Rockström, J., Tallis, H., Vira, B., 2015. Natural capital and ecosystem ser-
vices informing decisions: from promise to practice. Proc. Natl. Acad. Sci. U. S. A. 112,
7348–7355. https://doi.org/10.1073/pnas.1503751112.

Haasnoot, M., Warren, A., Kwakkel, J.H., 2019. Dynamic adaptive policy pathways (DAPP).
In: Marchau, V.A.W.J., Walker, W.E., Bloemen, P.J.T.M., Popper, S. (Eds.), Decision Mak-
ing under Deep Uncertainty: From Theory to Practice. Springer Open, pp. 71–92.

Han, H., Dong, Y., 2017. Assessing and mapping of multiple ecosystem services in Guizhou
Province, China. Trop. Ecol. 58, 331–346.

Hasan, S., Shi, W., Zhu, X., 2020. Impact of land use land cover changes on ecosystem service
value - a case study of Guangdong, Hong Kong, and Macao in South China. PLoS One 15,
1–20. https://doi.org/10.1371/journal.pone.0231259.

Hassaballah, K., Mohamed, Y., Uhlenbrook, S., Biro, K., 2017. Analysis of streamflow response
to land use and land cover changes using satellite data and hydrological modelling: case
study of dinder and rahad tributaries of the Blue Nile (Ethiopia-Sudan). Hydrol. Earth
Syst. Sci. 21, 5217–5242. https://doi.org/10.5194/hess-21-5217-2017.

Hiederer, R., 2013a. Mapping Soil Properties for Europe - Spatial Representation of Soil Data-
base Attributes. EUR26082EN Scientific and Technical Research Series, JRC Technical
Reports.

Hiederer, R., 2013b. Mapping Soil Typologies-Spatial Decision Support Applied to the
European Soil Database. Publications Office of the European Union.

HM Government, 2019. A green future: our 25 year plan to improve the environment. R. Soc.
A Math. Phys. Eng. Sci. 363, 2891–2913.

Hollis, D., McCarthy, M., Kendon, M., Legg, T., Simpson, I., 2019. HadUK-Grid—A new UK
dataset of gridded climate observations. Geosci. Data J. 6, 151–159. https://doi.org/10.
1002/gdj3.78.

Hutchins, M.G., Qu, Y., Charlton, M.B., 2021. Successful modelling of river dissolved oxygen
dynamics requires knowledge of stream channel environments. J. Hydrol. 603, 126991.
https://doi.org/10.1016/j.jhydrol.2021.126991.

IPBES, 2019. Global Assessment Report on Biodiversity and Ecosystem Services of the Inter-
governmental Science-Policy Platform on Biodiversity and Ecosystem Services. Bonn,
Germany.

Jones, J., Börger, L., Tummers, J., Jones, P., Lucas, M., Kerr, J., Kemp, P., Bizzi, S., Consuegra,
S., Marcello, L., Vowles, A., Belletti, B., Verspoor, E., Van de Bund, W., Gough, P., Garcia
de Leaniz, C., 2019. A comprehensive assessment of stream fragmentation in Great Brit-
ain. Sci. Total Environ. 673, 756–762. https://doi.org/10.1016/j.scitotenv.2019.04.125.

Kay, A.L., 2021. Simulation of river flow in Britain under climate change: baseline perfor-
mance and future seasonal changes. Hydrol. Process. 35, 1–10. https://doi.org/10.
1002/hyp.14137.

Kuhn, M., 2020. caret: Classification and Regression Training.
La Notte, A., Vallecillo, S., Polce, C., Zulian, G., Maes, J., 2017. Implementing An EU System of

Accounting for Ecosystems and Their Services. Initial Proposals for The Implementation
of Ecosystem Services Accounts. https://doi.org/10.2760/214137.

Langanke, T., Steidl, M., Schleicher, C., Sannier, C., 2018. Copernicus Land Monitoring Ser-
vice - High Resolution Layer Imperviousness. Product Specifications Document.
European Environment Agency.

Larsen, M.A.D., Petrovic, S., Engström, R.E., Drews, M., Liersch, S., Karlsson, K.B., Howells,
M., 2019. Challenges of data availability: analysing the water-energy nexus in electricity
generation. Energy Strateg. Rev. 26. https://doi.org/10.1016/j.esr.2019.100426.

Lehner, B., Liermann, C.R., Revenga, C., Vörömsmarty, C., Fekete, B., Crouzet, P., Döll, P.,
Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J.C., Rödel, R., Sindorf,
N., Wisser, D., 2011. High-resolution mapping of the world’s reservoirs and dams for sus-
tainable river-flow management. Front. Ecol. Environ. 9, 494–502. https://doi.org/10.
1890/100125.

Lempert, R.J., 2019. Robust decision making (RDM). In: Marchau, V.A.W.J., Walker, W.E.,
Bloemen, P.J.T.M., Popper, S. (Eds.), Decision Making Under Deep Uncertainty: From
Theory to Practice. Springer Open, pp. 23–51.
11
López-Moreno, J.I., Vicente-Serrano, S.M., Moran-Tejeda, E., Zabalza, J., Lorenzo-Lacruz, J.,
García-Ruiz, J.M., 2011. Hydrology and earth system sciences impact of climate evolu-
tion and land use changes on water yield in the Ebro basin. Hydrol. Earth Syst. Sci. 15,
311–322. https://doi.org/10.5194/hess-15-311-2011.

Lv, Y., Jiang, Y., Hu, W., Cao, M., Mao, Y., 2020. A review of the effects of tunnel excavation
on the hydrology, ecology, and environment in karst areas: current status, challenges, and
perspectives. J. Hydrol. 586, 124891. https://doi.org/10.1016/j.jhydrol.2020.124891.

Maetens, W., Vanmaercke, M., Poesen, J., Jankauskas, B., Jankauskiene, G., Ionita, I., 2012.
Effects of land use on annual runoff and soil loss in Europe and the Mediterranean: a
meta-analysis of plot data. Prog. Phys. Geogr. 36, 599–653. https://doi.org/10.1177/
0309133312451303.

MEA, 2005. Millennium Ecosystem Assessment, Ecosystems and Human Wellbeing: A Frame-
work for Assessment.

Met Office, 2020. UK and regional series [WWW document]. URL https://www.
metoffice.gov.uk/research/climate/maps-and-data/uk-and-regional-series (accessed
9.6.20).

Muhar, S., Januschke, K., Kail, J., Poppe, M., Schmutz, S., Hering, D., Buijse, A.D., 2016. Eval-
uating good-practice cases for river restoration across Europe: context, methodological
framework, selected results and recommendations. Hydrobiologia 769, 3–19. https://
doi.org/10.1007/s10750-016-2652-7.

OECD, 2013. Water Security for Better Lives, OECD Studies onWater. OECD Publishing, Paris
https://doi.org/10.1787/9789264202405-en.

O’Connell, E., Ewen, J., O’Donnell, G., Quinn, P., 2007. Is there a link between agricultural
land-use management and flooding? Hydrol. Earth Syst. Sci. 11, 96–107. https://doi.
org/10.5194/hess-11-96-2007.

Ordnance Survey, 2019. OS Terrain® 50 [WWW document]. URL https://osdatahub.os.uk/
downloads/open/Terrain50 (accessed 11.13.20).

Pascual, U., Balvanera, P., Diaz, S., Pataki, G., Roth, E., Stenseke, M., Watson, R., Dessane, E.,
Breslow, S., Islar, M., Kelemen, E., Keune, H., Maris, V., Pengue, W., Quaas, M.,
Subramanian, S., Wittmer, H., Mohamed, A., Al-Hafedh, Y., Asah, S., Berry, P., Bilgin,
E., Bullock, C., Cáceres, D., Golden, C., Gómez-Baggethun, E., González-Jiménez, D.,
Houdet, J., Kumar, R., May, P., Mead, A., O’Farrell, P., Pacheco-Balanza, D., Pandit, R.,
Pichis-Madruga, R., Popa, F., Preston, S., Saarikoski, H., Strassburg, B., Verma, M.,
Yagi, N., Ahn, S., Amankwah, E., Daly-Hassen, H., Figueroa, E., Ma, K., van den Belt,
M., Wickson, F., 2017. Valuing nature’s contributions to people: the IPBES approach.
Curr. Opin. Environ. Sustain. 26, 7–16. https://doi.org/10.1016/j.cosust.2016.12.006.

Pessacg, N., Flaherty, S., Brandizi, L., Solman, S., Pascual, M., 2015. Getting water right: a case
study in water yield modelling based on precipitation data. Sci. Total Environ. 537,
225–234. https://doi.org/10.1016/j.scitotenv.2015.07.148.

Pokhrel, Y.N., Koirala, S., Yeh, P.J.F., Hanasaki, N., Longuevergne, L., Kanae, S., Oki, T., 2015.
Incorporation of groundwater pumping in a global land surface model with the represen-
tation of human impacts. Water Resour. Res. 51, 78–96. https://doi.org/10.1002/
2014WR015602.

Polasky, S., Tallis, H., Reyers, B., 2015. Setting the bar: standards for ecosystem services. Proc.
Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.1406490112.

QGIS Development Team, 2021. QGIS Geographic Information System.
R Core Team, 2020. R: A Language and Environment for Statistical Computing.
Redhead, J.W., Stratford, C., Sharps, K., Jones, L., Ziv, G., Clarke, D., Oliver, T.H., Bullock,

J.M., 2016. Empirical validation of the InVEST water yield ecosystem service model at
a national scale. Sci. Total Environ. 569–570, 1418–1426. https://doi.org/10.1016/j.
scitotenv.2016.06.227.

Rieb, J.T., Chaplin-Kramer, R., Daily, G.C., Armsworth, P.R., Böhning-Gaese, K., Bonn, A.,
Cumming, G.S., Eigenbrod, F., Grimm, V., Jackson, B.M., Marques, A., Pattanayak, S.K.,
Pereira, H.M., Peterson, G.D., Ricketts, T.H., Robinson, B.E., Schröter, M., Schulte, L.A.,
Seppelt, R., Turner, M.G., Bennett, E.M., 2017. When, where, and how nature matters
for ecosystem services: challenges for the next generation of ecosystem service models.
Bioscience 67, 820–833. https://doi.org/10.1093/biosci/bix075.

Robinson, E.L., Blyth, E.M., Clark, D.B., Comyn-Platt, E., Rudd, A.C., 2020. Climate Hydrology
and Ecology Research Support System Potential Evapotranspiration Dataset for Great
Britain (1961-2017) [CHESS-PE]. https://doi.org/10.5285/9116e565-2c0a-455b-9c68-
558fdd9179ad.

Rodell, M., Famiglietti, J.S., Wiese, D.N., Reager, J.T., Beaudoing, H.K., Landerer, F.W., Lo,
M.-H., 2018. Emerging trends in global freshwater availability. Nature https://doi.org/
10.1038/s41586-018-0123-1.

Rowland, C.S., Marston, C.G., Morton, R.D., O’Neil, A.W., 2020. Land Cover Map 1990 (25m
raster, GB) v2. https://doi.org/10.5285/1be1912a-916e-42c0-98cc-16460fac00e8.

Rowland, C.S., Morton, R.D., Carrasco, L., McShane, G., O’Neil, A.W., Wood, C.M., 2017. Land
Cover Map 2015 (25m Raster, GB). https://doi.org/10.5285/bb15e200-9349-403c-
bda9-b430093807c7.

Ruckelshaus, M., McKenzie, E., Tallis, H., Guerry, A., Daily, G., Kareiva, P., Polasky, S.,
Ricketts, T., Bhagabati, N., Wood, S.A., Bernhardt, J., 2015. Notes from the field: lessons
learned from using ecosystem service approaches to inform real-world decisions. Ecol.
Econ. 115, 11–21. https://doi.org/10.1016/j.ecolecon.2013.07.009.

Sharp, R., Douglass, J., Wolny, S., Arkema, K., Bernhardt, J., Bierbower, W., Chaumont, N.,
Denu, D., Fisher, D., Glowinski, K., Griffin, R., Guannel, G., Guerry, A., Johnson, J.,
Hamel, P., Kennedy, C., Kim, C.K., Lacayo, M., Lonsdorf, E., Mandle, L., Rogers, L., Silver,
J., Toft, J., Verutes, G., Vogl, A.L., Wood, S., Wyatt, K., 2020. InVEST User’s Guide.

Sharp, R., Tallis, H.T., Ricketts, T., Guerry, A.D., Wood, S.A., Chaplin-Kramer, R., Nelson, E.,
Ennaanay, D., Wolny, S., Olwero, N., Vigerstol, K., Pennington, D., Mendoza, G.,
Aukema, J., Foster, J., Forrest, J., Cameron, D., Arkema, K., Lonsdorf, E., Kennedy, C.,
Verutes, G., Kim, C.K., Guannel, G., Papenfus, M., Toft, J., Marsik, M., Bernhardt, J., Grif-
fin, R., Glowinski, K., Chaumont, N., Perelman, A., Lacayo, M., Mandle, L., Hamel, P.,
Vogl, A.L., Rogers, L., W, B., Denu, D., Douglass, J., 2018. InVEST User Guide—InVEST
3. 7. 0 Documentation. The Natural Capital Project, Stanford University, University of
Minnesota, The Nature Conservancy, and World Wildlife Fund.

https://www.gov.uk/government/publications/water-abstraction-plan-2017/water-abstraction-plan
https://www.gov.uk/government/publications/water-abstraction-plan-2017/water-abstraction-plan
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_wat_abs
https://doi.org/10.1007/s11252-011-0174-7
https://doi.org/10.1144/1470-9236/07-201
https://doi.org/10.1144/1470-9236/07-201
https://doi.org/10.5194/hess-22-547-2018
https://doi.org/10.1002/9781118684986
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030354295779
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030354295779
https://doi.org/10.1073/pnas.1808893115
https://doi.org/10.1073/pnas.1117511109
https://doi.org/10.1073/pnas.1117511109
https://portal.grdc.bafg.de/
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030404485740
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030404485740
https://doi.org/10.1073/pnas.1503751112
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030354323857
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030354323857
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030354323857
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030354395209
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030354395209
https://doi.org/10.1371/journal.pone.0231259
https://doi.org/10.5194/hess-21-5217-2017
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030355091361
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030355091361
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030355091361
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030355260253
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030355260253
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030416466317
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030416466317
https://doi.org/10.1002/gdj3.78
https://doi.org/10.1002/gdj3.78
https://doi.org/10.1016/j.jhydrol.2021.126991
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030355552450
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030355552450
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030355552450
https://doi.org/10.1016/j.scitotenv.2019.04.125
https://doi.org/10.1002/hyp.14137
https://doi.org/10.1002/hyp.14137
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030416563688
https://doi.org/10.2760/214137
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030356160127
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030356160127
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030356160127
https://doi.org/10.1016/j.esr.2019.100426
https://doi.org/10.1890/100125
https://doi.org/10.1890/100125
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030356307558
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030356307558
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030356307558
https://doi.org/10.5194/hess-15-311-2011
https://doi.org/10.1016/j.jhydrol.2020.124891
https://doi.org/10.1177/0309133312451303
https://doi.org/10.1177/0309133312451303
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030356399340
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030356399340
https://www.metoffice.gov.uk/research/climate/maps-and-data/uk-and-regional-series
https://www.metoffice.gov.uk/research/climate/maps-and-data/uk-and-regional-series
https://doi.org/10.1007/s10750-016-2652-7
https://doi.org/10.1007/s10750-016-2652-7
https://doi.org/10.1787/9789264202405-en
https://doi.org/10.5194/hess-11-96-2007
https://doi.org/10.5194/hess-11-96-2007
https://osdatahub.os.uk/downloads/open/Terrain50
https://osdatahub.os.uk/downloads/open/Terrain50
https://doi.org/10.1016/j.cosust.2016.12.006
https://doi.org/10.1016/j.scitotenv.2015.07.148
https://doi.org/10.1002/2014WR015602
https://doi.org/10.1002/2014WR015602
https://doi.org/10.1073/pnas.1406490112
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030417083221
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030358558598
https://doi.org/10.1016/j.scitotenv.2016.06.227
https://doi.org/10.1016/j.scitotenv.2016.06.227
https://doi.org/10.1093/biosci/bix075
https://doi.org/10.5285/9116e565-2c0a-455b-9c68-558fdd9179ad
https://doi.org/10.5285/9116e565-2c0a-455b-9c68-558fdd9179ad
https://doi.org/10.1038/s41586-018-0123-1
https://doi.org/10.1038/s41586-018-0123-1
https://doi.org/10.5285/1be1912a-916e-42c0-98cc-16460fac00e8
https://doi.org/10.5285/bb15e200-9349-403c-bda9-b430093807c7
https://doi.org/10.5285/bb15e200-9349-403c-bda9-b430093807c7
https://doi.org/10.1016/j.ecolecon.2013.07.009
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030417450553
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030418179074
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030418179074
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030418179074


A.S. Gosal et al. Science of the Total Environment 833 (2022) 155042
Sivapalan, M., Konar, M., Srinivasan, V., Chhatre, A., Wutich, A., Scott, C.A., Wescoat, J.L.,
Rodríguez-Iturbe, I., 2014. Socio-hydrology: use-inspired water sustainability science for
the anthropocene. Earth’s Futur. 2, 225–230. https://doi.org/10.1002/2013ef000164.

Smith, K.A., Barker, L.J., Tanguy, M., Parry, S., Harrigan, S., Legg, T.P., Prudhomme, C.,
Hannaford, J., 2019. A multi-objective ensemble approach to hydrological modelling in
the UK: an application to historic drought reconstruction. Hydrol. Earth Syst. Sci. 23,
3247–3268. https://doi.org/10.5194/hess-23-3247-2019.

Sol, J., 2019. Economics in the anthropocene: species extinction or steady state economics.
Ecol. Econ. 165. https://doi.org/10.1016/j.ecolecon.2019.106392.

Strayer, D.L., Dudgeon, D., 2010. Freshwater biodiversity conservation: recent progress and
future challenges. J. N. Am. Benthol. Soc. 29, 344–358. https://doi.org/10.1899/08-
171.1.

Sun, S., Sun, G., Caldwell, P., McNulty, S., Cohen, E., Xiao, J., Zhang, Y., 2015. Drought im-
pacts on ecosystem functions of the U.S. National Forests and grasslands: part II assess-
ment results and management implications. For. Ecol. Manag. 353, 269–279. https://
doi.org/10.1016/j.foreco.2015.04.002.

Taylor, C., Blair, D., Keith, H., Lindenmayer, D., 2019. Modelling water yields in response to
logging and representative climate futures. Sci. Total Environ. 688, 890–902. https://doi.
org/10.1016/j.scitotenv.2019.06.298.

Tijdeman, E., Hannaford, J., Stahl, K., 2018. Human influences on streamflow drought char-
acteristics in England andWales. Hydrol. Earth Syst. Sci. 22, 1051–1064. https://doi.org/
10.5194/hess-22-1051-2018.

Trisurat, Y., Aekakkararungroj, A., Ma, H.Ok, Johnston, J.M., 2018. Basin-wide impacts of cli-
mate change on ecosystem services in the Lower Mekong Basin. Ecol. Res. 33, 73–86.
https://doi.org/10.1007/s11284-017-1510-z.

United Nations et al., 2021. System of Environmental-Economic Accounting—Ecosystem Ac-
counting (SEEA EA). United Nations. https://seea.un.org/ecosystem-accounting.
12
Venables, W.N., Ripley, B.D., 2002. Modern Applied Statistics With S. Fourth. ed. Springer,
New York.

Vogl, A.L., Wolny, S., Calvache, A., Tallis, H., Benitez, S., 2015. Science-based investment
targeting for the water for life and sustainability fund, Colombia 2. The Water for Life
and Sustainability Fund, pp. 1–19.

Wada, Y., Bierkens, M.F.P., De Roo, A., Dirmeyer, P.A., Famiglietti, J.S., Hanasaki, N., Konar,
M., Liu, J., Schmied, H.M., Oki, T., Pokhrel, Y., Sivapalan, M., Troy, T.J., Van Dijk,
A.I.J.M., Van Emmerik, T., Van Huijgevoort, M.H.J., Van Lanen, H.A.J., Vörösmarty,
C.J., Wanders, N., Wheater, H., 2017. Human-water interface in hydrological modelling:
current status and future directions. Hydrol. Earth Syst. Sci. 21, 4169–4193. https://doi.
org/10.5194/hess-21-4169-2017.

Walker, G., 2013. A critical examination of models and projections of demand in water utility
resource planning in England and Wales. Int. J. Water Resour. Dev. 29, 352–372. https://
doi.org/10.1080/07900627.2012.721679.

WAVES, 2015. Managing catchments for hydropower services [WWW document].
Willcock, S., Hooftman, D.A.P., Balbi, S., Blanchard, R., Dawson, T.P., O’Farrell, P.J., Hickler,

T., Hudson,M.D., Lindeskog, M., Martinez-Lopez, J., Mulligan, M., Reyers, B., Shackleton,
C., Sitas, N., Villa, F., Watts, S.M., Eigenbrod, F., Bullock, J.M., 2019. A continental-scale
validation of ecosystem service models. Ecosystems 22, 1902–1917. https://doi.org/10.
1007/s10021-019-00380-y.

Xin, Z., Li, Y., Zhang, L., Ding,W., Ye, L., Wu, J., Zhang, C., 2019. Quantifying the relative con-
tribution of climate and human impacts on seasonal streamflow. J. Hydrol. 574,
936–945. https://doi.org/10.1016/j.jhydrol.2019.04.095.

Zhou, G., Wei, X., Chen, X., Zhou, P., Liu, X., Xiao, Y., Sun, G., Scott, D.F., Zhou, S., Han, L., Su,
Y., 2015. Global pattern for the effect of climate and land cover on water yield. Nat.
Commun. 6. https://doi.org/10.1038/ncomms6918.

https://doi.org/10.1002/2013ef000164
https://doi.org/10.5194/hess-23-3247-2019
https://doi.org/10.1016/j.ecolecon.2019.106392
https://doi.org/10.1899/08-171.1
https://doi.org/10.1899/08-171.1
https://doi.org/10.1016/j.foreco.2015.04.002
https://doi.org/10.1016/j.foreco.2015.04.002
https://doi.org/10.1016/j.scitotenv.2019.06.298
https://doi.org/10.1016/j.scitotenv.2019.06.298
https://doi.org/10.5194/hess-22-1051-2018
https://doi.org/10.5194/hess-22-1051-2018
https://doi.org/10.1007/s11284-017-1510-z
https://seea.un.org/ecosystem-accounting
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030359551388
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030359551388
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030400181758
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030400181758
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030400181758
https://doi.org/10.5194/hess-21-4169-2017
https://doi.org/10.5194/hess-21-4169-2017
https://doi.org/10.1080/07900627.2012.721679
https://doi.org/10.1080/07900627.2012.721679
http://refhub.elsevier.com/S0048-9697(22)02135-0/rf202204030419498246
https://doi.org/10.1007/s10021-019-00380-y
https://doi.org/10.1007/s10021-019-00380-y
https://doi.org/10.1016/j.jhydrol.2019.04.095
https://doi.org/10.1038/ncomms6918

	Understanding the accuracy of modelled changes in freshwater provision over time
	1. Introduction
	2. Methods
	2.1. Study site and context
	2.2. Modelling water yield
	2.2.1. Model setup
	2.2.2. Validation

	2.3. Drivers of inaccuracy in modelled values

	3. Results
	4. Discussion
	5. Conclusion
	Declaration of competing interest
	Acknowledgements
	Appendix A. Supplementary data
	References




