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ANONYMISED MANUSCRIPT 37 
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Highlights: 41 

• Ensembles of models are used for other disciplines but not ecosystem services 42 

• How best to combine ecosystem service models into an ensemble is unknown 43 

• We test ten contrasting ensemble approaches 44 

• Ensembles had up to 27% higher accuracy than a randomly selected individual model 45 

• Weighted ensembles provided better predictions  46 
 47 

Abstract: (150 words) 48 

Over the last decade many ecosystem service (ES) models have been developed to inform sustainable land 49 
and water use planning. However, uncertainty in the predictions of any single model in any specific situation 50 
can undermine their utility for decision-making. One solution is creating ensemble predictions, which 51 
potentially increase accuracy, but how best to create ES ensembles to reduce uncertainty is unknown and 52 
untested. Using ten models for carbon storage and nine for water supply, we tested a series of ensemble 53 
approaches against measured validation data in the UK. Ensembles had at minimum a 5-17% higher 54 
accuracy than a randomly selected individual model and, in general, ensembles weighted for among model 55 
consensus provided better predictions than unweighted ensembles. To support robust decision-making for 56 
sustainable development and reducing uncertainty around these decisions, our analysis suggests various 57 
ensemble methods should be applied depending on data quality, for example if validation data are available.  58 
 59 

Graphical Abstract:  60 

 61 
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1. Introduction 67 

If the United Nations’ sustainable development goals (SDG) are to be achieved worldwide (Griggs et al. 68 
2013), it is vital to understand and manage “nature’s contributions to people” (termed ecosystem services; 69 
ES; Pascual et al. 2017). The empirical data needed to quantify ES are sparse in many parts of the world 70 
(Suich et al. 2015; Willcock et al. 2016), which is problematic as ES need to be accurately assessed and 71 
mapped to be incorporated in policy making and planning decisions (UKNEA 2011; de Groot et al. 2012). 72 
Such decisions require assessment of multiple ES, and the synergies and trade-offs among these ES, in order 73 
to estimate potential effects of land/water use change or other impacts (Willcock et al. 2016). Spatially-74 
explicit models produce maps of estimated ES – typically based on globally available datasets of land cover 75 
combined with other predictor variables – and so can provide credible information of the spatial distributions 76 
of multiple ES, particularly where empirical data are lacking (Malinga et al. 2015; Costanza et al. 2017).  77 
 78 
Over the last 10 years, many ES models have been developed, by different teams, often using dissimilar 79 
approaches, and with little reference to the other models (Bagstad et al. 2013; Ochoa & Urbina-Cardona 80 
2017). For example, carbon stocks for climate change mitigation can be modelled by ‘look-up tables’ 81 
relating land cover to stocks, by deterministic statistical inference, or by simulating complex processes 82 
(Willcock et al. 2019). However, most applications of ES models rely on only a single model for each ES 83 
(Englund et al. 2017; Bryant et al. 2018). Furthermore, while models can only approximate reality, few 84 
applications explicitly validate ES models against independent datasets (Chaplin-Kramer et al. 2019), 85 
although there are notable exceptions (Redhead et al. 2016; Sharps et al. 2017; Willcock et al. 2019). This 86 
is a particular issue as the results of location-specific validation (e.g. that performed during model 87 
development) may not be transferable to new locations (Redhead et al. 2016), or up-scalable to the regional 88 
and national extents over which ES model outputs are required to achieve the SDG (Willcock et al. 2016; 89 
Willcock et al. 2019). From a user and stakeholder perspective, not knowing the accuracy of the available 90 
ES models for the region of interest typically leads to either selection of a single suboptimal model – at 91 
worst leading to perverse decision-making – or a reluctance to use ES models altogether, causing an 92 
implementation gap between research, incorporation into policy and subsequent decision-making (Wong et 93 
al. 2014; Willcock et al. 2016).  94 
 95 
Despite claims for predictive superiority of certain modelling techniques and platforms, independent 96 
evaluations have been unable to demonstrate the pre-eminence of any single approach. In fact, while more 97 
complex models on average perform better in terms of fit to validation data, the best-fit model varies 98 
regionally and often according to the validation data used (Sharps et al. 2017; Willcock et al. 2019; Willcock 99 
et al. 2020). So, if no single ES model is always the most accurate, how should a suitable approach be 100 
selected?  101 
 102 
Across the sciences, one solution to address uncertainty surrounding the accuracy of any single model is to 103 
use an ensemble of models (Araújo & New 2007; Willcock et al. 2020) – using individual models as 104 
replicates with different input parameters and boundary conditions (Araújo & New 2007; Dormann et al. 105 
2018). Variation among models in their assumptions and formats can result in large differences in 106 
predictions, in terms of predicted values and how they vary over space, especially when there is uncertainty 107 
as to the state and processes of the system being modelled (van Soesbergen & Mulligan 2018; Willcock et 108 
al. 2019). Ensembles of models are hypothesised to have enhanced accuracy over individual models due to 109 
fewer overall errors in prediction by reducing the influence of idiosyncratic outcomes from single models 110 
(Araújo & New 2007; Dormann et al. 2018). Individual models rarely capture all potentially relevant 111 
processes or are often tuned to particular ecosystem characteristics. A combination of models might provide 112 
a more comprehensive coverage of processes and their forms, and avoids the chance of (unknowingly) 113 
selecting a model with a high prediction error at the location and scale of interest for a particular study 114 
(Willcock et al. 2020).  115 
 116 



Model ensembles are common in other disciplines – e.g. in niche modelling (Araújo & New 2007, 117 
Grenouillet et al. 2011), agroecology (Refsgaard et al. 2014), hydrology and water resources management 118 
(Wang et al. 2019; He et al. 2021), and climate and weather modelling (Knutti et al. 2013), as well as market 119 
forecasting (He et al. 2012). However, ensembles have been largely neglected in ES studies (Bryant et al. 120 
2018). The only current exception is the simplest ensemble approach (i.e. ‘committee averaging’ – taking 121 
the unweighted mean of a group of individual models per location –) which was applied to ES models in 122 
Sub-Saharan Africa, and gave higher accuracy in terms of fit to validation data (Willcock et al. 2020). 123 
Approaches that use more information might yield even more accurate estimates. Thus, here we explore the 124 
outstanding question of “what are the best ways to build ES model ensembles to realise the benefits such 125 
ensembles can bring to sustainability science?” 126 
 127 
Approaches to building model ensembles vary across disciplines, ranging from committee averaging 128 
(Marmion et al. 2009; Grenouillet et al. 2011) to complex Bayesian algorithms (Tebaldi & Knutti 2007). 129 
For example, species distribution models are generally deterministic statistical models; their fit to the data 130 
is often assessed with an accuracy metric and so ensembles are generally created using weighted averaging 131 
based on accuracy (Araújo & New 2007). By contrast, climate models are often treated as equal replicates 132 
with identical weights when making an ensemble (Tebaldi & Knutti 2007; Grenouillet et al. 2011) – we 133 
refer to such ensembles as ‘unweighted’. This difference may stem from the availability of suitable 134 
validation data, as well as different traditions. For example in species distribution models, biodiversity data 135 
are readily available and are used to train through cross-validation (Araújo & New 2007), whereas validation 136 
data on future climates obviously do not exist – although cross-validation against historic climate data is 137 
possible. 138 
 139 
As well as varying considerably in their underlying method, ES models often differ in the forms of their 140 
outputs, even when modelling the same ES (e.g. summed monetary value of the ES (de Groot et al. 2012) 141 
vs. specific biophysical predictions). By contrast, climate models generally have very similar forms of 142 
outputs. An important knowledge gap is therefore how to combine distinct ES model outputs as 143 
complementary inputs to provide a reliable ensemble. Outputs from different ES models can have different 144 
units and it is challenging to decide the relative weighting to place on each model. Models for a particular 145 
ES often have different structures, may include different processes, or may represent the same processes in 146 
different ways (Ochoa & Urbina-Cardona 2017). As a result, the different ES models will most likely not 147 
have equal accuracy, and so prediction errors (i.e. bias) may not be normally distributed among models 148 
(Dormann et al. 2018). If ES models had equal overall accuracies, unweighted averaging may provide a 149 
smoothing effect, reducing the impact of idiosyncratic outputs (e.g. at specific locations) of any particular 150 
model to reveal useful signals (Araújo & New 2007, Knutti et al. 2013; Diengdoh et al. 2020). In cases of 151 
varying overall accuracy, appropriate weighting of outputs based on model accuracy – i.e. models having 152 
unequal assigned weights – might re-adjust the distribution of prediction errors, and so improve the accuracy 153 
of the resulting ensemble (Refsgaard 2014; Dormann et al. 2018; Liu et al. 2020).   154 
 155 
However for ES, the lack of a priori validation data in many cases means that the distributions of accuracy 156 
among ES models are unknown. Furthermore, given that inferences about model accuracy at one location 157 
may not be transferable to others (Willcock et al. 2019), weighting using validation results from a separate 158 
study may not improve outcomes. Therefore where validation data are not available, the consensus among 159 
models could be used to weight their individual contribution to the ensemble value (Marmion et al. 2009; 160 
Grenouillet et al. 2011). This approach follows the logic that models whose output values are more different 161 
to those of the other models (i.e. are more distinct) are more likely to be incorrect. Therefore, weighting by 162 
consensus reduces the impact of outputs from more idiosyncratic models (i.e. those with extreme values, 163 
outliers or badly comparable processes) by comparison with the other models (Araújo & New 2007; 164 
Dormann et al. 2018), but does not exclude their information fully. The opposite may also be true – i.e. 165 
more distinct models are more accurate – for example in cases where more similar models have common 166 
inaccuracies. 167 
 168 



Here, we implement 10 alternative ensemble methods, restricting ourselves to methods feasible for a wide 169 
range of users, to evaluate whether weighting provides higher accuracy and if so which type of method 170 
produces the most accurate predictions against validation data. We focus on two services, water supply and 171 
carbon storage, in the United Kingdom. To support decision-making, we map the results for potential further 172 
use, which are available via https://doi.org/10.5285/a9ae773d-b742-4d42-ae42-2b594bae5d38. We use 173 
post-processing – specifically normalisation and per area correction – developed in earlier work (Willcock 174 
et al. 2019; Willcock et al. 2020) to make outputs among models comparable. 175 
 176 

2. Methods 177 

We developed and validated unweighted average and weighted average ensembles of models for a 178 
provisioning service (water supply; subsequently referred to as ‘water’) and a regulating service 179 
(aboveground carbon storage; subsequently referred to as ‘carbon’), for which there is both a variety of 180 
models available (Bagstad et al. 2013; Ochoa & Urbina-Cardona 2017; Willcock et al. 2019) and the 181 
presence of accessible validation data. We applied the models and ensemble methods in the United Kingdom 182 
(UK), for which there is a large quantity of reliable validation data; allowing us to assess ensemble 183 
accuracies. We compared accuracy (i.e. fit to validation data) of these individual models with those of the 184 
ensembles generated from them via multiple approaches, assessed if weighted ensembles were an 185 
improvement on the unweighted mean-averaged ensemble, and identified the methods of weighting 186 
ensembles that gave the highest accuracy.   187 
 188 
We modelled each ES at a 1 ha (100 × 100 m) resolution, and subsequently assessed performance of the 189 

different ensemble approaches using weighting approaches we organised into three categories (Table 1): 190 
deterministic consensus (i.e. always providing the same result), iterated consensus (i.e. using structured 191 
trial-and-error approaches) and attribute-based (e.g. spatial resolution or distinctiveness). Finally, we 192 
assessed the transferability of our UK results using independent data and models from a very different study 193 
area – Sub-Saharan Africa (Willcock et al. 2019). We depict our overall process in Figure 1 in 7-steps. Our 194 
calculations were performed using Matlab v7.14.0.739 and ArcMap 10.7.1, employing ArcPy coding for 195 
loops. Relevant codes can be found at github.com/EnsemblesTypes, with flow among codes explained in 196 
SI-1-3. 197 
 198 
Table 1. Approaches used to calculate accuracy (A) and ensembles (B). Ensemble approaches were 199 
applied to the outputs of ten models for carbon storage and nine for water supply (see Table 2). For weighted 200 
averaging, the procedure is described, and where applicable the Matlab tools used are mentioned; similar 201 
regression tools are available in most statistical packages (further explanation is provided in SI-1). Trained 202 
weighting (En-9 & En-10) uses validation data, whereas untrained weighting (En-3 to En-8) does not. En-1 203 
and En-2 are unweighted average ensemble approaches, and En-3 to En-10 are weighted average 204 
approaches; the latter comprising deterministic (En-3 & En-4), iterated (En-5, En-6 & En-10) and attribute 205 
weighted (En-7 to En-9) techniques. With ωi: weight for model i; E(x): the value of the ensemble; V(x): the 206 
normalised validation value; Yi(x) and Yj(x): the normalised value of model i or comparator j respectively, all 207 
for selected spatial point x; (y ≠ x) denoting a split dataset; C(i,j): the correlation coefficient between model 208 
i and j; with n the # models, m the # spatial data points; ng: the # models in distinctiveness group g (see SI-209 
1 for distinctiveness grouping). 210 
 211 

Approach Description Details & Matlab Tool  

A. Accuracy approaches 

• Spearman ρ 
Correlation coefficient between ranked variables V 

and T. 

T is either Yi or E, 

depending on ensemble 

method 

• Inverse Deviance (D↓) 
𝐷↓ = 1 − (

1

𝑚
× ∑ |𝑋(𝑥) − 𝑇(𝑥)|𝑚

𝑥 )   
T(x) is either Yi(x) or E(x) 

B. Ensemble approaches  

Unweighted Averaging:   

En-1. Mean  𝐸(𝑥) = (𝑌�̅�)(𝑥)  

https://doi.org/10.5285/a9ae773d-b742-4d42-ae42-2b594bae5d38
https://github.com/EnsemblesTypes


En-2. Median 𝐸(𝑥) = (𝑌�̃�)(𝑥)
 

Hypothesised to perform 

better than mean for 

skewed distributions. 

Untrained Weighted Ensembles: 𝑬(𝒙) = ∑ (
𝝎𝒊

∑ 𝝎𝒊
𝒏
𝒊

× 𝒀𝒊)
𝒏
𝒊

(𝒙)
with 𝝎𝒊

𝝎𝒊≥𝟎
following: 

Deterministic 

consensus 

En-3. PCA ωi = loadings of first Principal Component axis  Princomp-tool 

En-4. Correlation 

coefficients 
𝜔𝑖 =

1

𝑛
× ∑

𝐶(𝑖,𝑗)

√𝐶(𝑖,𝑖)×𝐶(𝑗,𝑗)

𝑛
𝑗 , for all 𝑗 ∈ 𝑖 with  

𝐶(𝑖,𝑗) =  
1

𝑚−1
× ∑ ((𝑌𝑖(𝑥) − 𝑌�̅�) × (𝑌𝑗(𝑥) − 𝑌�̅�))𝑚

𝑥         

 

Iterated 

consensus 

En-5. Regression to the 

median 
𝑌(𝑥)̃~(∑ 𝜔𝑖𝑌𝑖

𝑛
𝑖 )(𝑥)   nlmefit-tool, maximising 

Log Likelihood 

En-6. Exhaustive leave-

one-out cross-

validation2 

𝑌𝑗(𝑥)~ ∑ 𝜔𝑖𝑗𝑌𝑖(𝑥)
𝑛
𝑖≠𝑗 , for all 𝑗 ∈ 𝑖  

subsequently:  𝜔𝑖 =
1

𝑛
× ∑ ((

1

𝑛−1
) × ∑ 𝜔𝑖𝑗

𝑛
𝑖≠𝑗 )𝑛

𝑖  

nlmefit-tool, maximising 

Log Likelihood 

Attribute-

based 

En-7. Upweighted finer 

spatial resolution 
𝜔𝑖 =

1

𝑙𝑜𝑔10(𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)
  Finer spatial resolution: 

smaller grid size in 1-

dimensional meters (e.g. 

25 m) 

En-8. Attribute 

weighting: 

distinctiveness   

𝜔𝑖 = (
𝑛𝑔

𝑛
) when upweighted with 𝑛𝑔 = 𝑖 ∈ 𝑔 

𝜔𝑖 = (
𝑛

𝑛𝑔
) when downweighted with 𝑛𝑔 = 𝑖 ∈ 𝑔 

 

Trained Weighted Ensembles: ω-transfer via jack-knife training  

Attribute-

based 

En-9. Accuracy-

weighted  
ωi = Ai, with 𝐴𝑖(𝑉(𝑦≠𝑥), 𝑌(𝑦≠𝑥)) With A, either Spearman ρ 

or D↓ accuracy 

Iterated 

consensus 

En-10. Log-likelihood 

regressions 
𝑉(𝑦≠𝑥)~(∑ 𝜔𝑖𝑌𝑖

𝑛
𝑖 )(𝑦≠𝑥)  Using nlmefit-tool, 

maximising Log 

Likelihood 

 212 

 213 
Figure 1.  Schematic representation of our ensemble analysis with arrows 214 
showing information flows. Numbers represent the steps with the method chapters 215 
indicated in italics, with respective detailing SIs; result figures are indicated. 216 
Parallelograms highlight the 10 ensembles approaches (Table 1), using models 217 
described in Table 2.   218 
 219 

2.1. Run and collate different models (step 1) 220 



We used outputs from 10 models for above ground carbon stocks based on per grid cell estimates, and 221 
outputs from nine models for annual water supply which provided accumulated flow estimates through 222 
specific pour points, either directly or through summation of run-off estimates per grid cell. We list these 223 
models in Table 2, including their output grid sizes (spatial resolution); we refer to SI-1-1 for full details, 224 
scales and supporting data. Acknowledging that model outputs have different units and sometimes model 225 
different constructs, we refer further to them in the general terms of carbon and water supply. Adhering to 226 
the aim of this paper, we do not compare individual model outputs, but focus on ensemble methods. All 227 
model outputs were set to the British National Grid transverse Mercator projection (EPSG 27700) with a 228 
0.9996 scale factor and units in metres. Not all models covered the whole of the UK, e.g. some excluded 229 
Northern Ireland or Scotland (see SI-1-1). Where applicable we corrected for this by using a standard error 230 

of means as (
𝜎(𝑥)

√𝑛(𝑥)
), instead of standard deviation (σ), with n the number of models per grid cell x. We 231 

collated models for this study according to their availability and to reflect different approaches to modelling 232 
ES.233 



Table. 2. Models and existing outputs used. Full details, input data, post processing descriptions, and coverage are provided in SI-1-1. Model names are 234 
shown as acronyms and in full.    235 

236 

†Output generated for this work; ‡online tool; §existing dataset; 1Kareiva et al. (2011); 2Smith et al. (2014); 3Ahlström et al. (2015); 4Thomas et al. (2020); 5de Groot et al. 237 
(2012); 6Costanza et al. (2014); 7Gassert et al. (2015) 8Martínez-López et al. (2019); 9land.copernicus.eu/tree-cover-density/ status-maps/2015; 10Coxon et al. (2019a; 2019b); 238 

Model Description 
Grid size ( spatial 

resolution) 
Model Type16 

InVest v3.7.01† 

(Integrated Valuation of Ecosystem Services 

and Trade-offs) 

Carbon module: above ground stocks 
25 × 25 meters 

Look-up table 

Water yield module: run-off per cell Process  

LPJ-GUESS2,3† 

(Lund-Potsdam-Jena General Ecosystem 

Simulator) 

Vegetation biomass stocks per cell, mean for years 

2009-2018 0.5° (≈ 46 × 46 km) Process  

Water run-off per cell, mean for years 2009-2018 

LUCI4† 

(Land Utilisation Capability Indicator) 

Above ground carbon stocks 10 × 10 meters Look-up table 

Accumulated water run-off 5   ×  5  meters Process  

$-benefit transfer using The Economics of 

Ecosystems and Biodiversity database5,6† 

Above ground carbon stock as monetary value 
25 × 25 meters Look-up table 

Water run-off as monetary value per cell 

Aqueduct v2.1 Total Blue Water7§ Accumulated water run-off 138 flow areas Deterministic  

ARIES k-Explorer8‡ 

(Artificial Intelligence for Environment & 

Sustainability) 

Joined above and below ground carbon stocks 1-hectare Look-up table 

Barredo et al. (2012)§ A European map of above ground biomass stocks 1 km2 Look-up table 

Copernicus, Tree Cover Density9§ 
Proxy for carbon: tree Cover Density 2015 from MODIS 

satellite imagery. 
20 × 20 meters Deterministic  

DECIPHeR10§ 

(Dynamic fluxEs and ConnectIvity for 

Predictions of HydRology) 

Accumulated water run-off through NRFA delineated 

catchment outlets, mean for years 1995-2015 

387 catchments in 

common with validation 
Process  

Grid-to-Grid11§ Accumulated water run-off, mean for years 1995-2015 1 km2 Process  

Henrys et al. (2016)§ Above ground carbon stocks 1 km2 Look-up table  

Kindermann et al. (2008)§ A global map of above ground forest biomass stocks 1 hectare Deterministic  

National Forest Inventory (2018)12† 
Woodland Land Cover Map15 with above ground carbon 

stocks based on added Look-up table (Table. SI-1-4) 
20 × 20 meters Look-up table 

Scholes Growth Days13,14† 
Proxy for water run off per cell: # Days precipitation 

exceeds evapotranspiration 
1 km2 Deterministic  

WaterWorld v215‡ Accumulated water run-off 0.0083° (≈ 1 km2) Process  

https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-density/status-maps/2015


11Bell et al. (2018a; 2018b); 12Forestry Commission (2018); 13Scholes (1998); 14Willcock et al. (2019); 15Mulligan (2013); 16following Ding & Bullock (2018), Willcock et al. 239 
(2019).  240 

241 



2.2. Validation datasets (step 2) 242 
Our carbon stock validation dataset was provided by Forest Research and comprises species inventories in 243 
all forest estates in England and Scotland in 2019 (data-forestry.opendata.arcgis.com/; density shown in 244 
Figure 3; locations in Figure SI-1-2). In 201,143 forest compartments of varying size (mean: 4.4 hectares. 245 
median 1.6 hectares, ± 22.1), tree species, stand age and thinning regime were recorded for three vegetation 246 
layers. For each compartment and layer therein, the unique combination of stand age, thinning regime and 247 
tree species of the inventory data was searched in the UK Carbon Code tables (woodlandcarboncod.org.uk) 248 
and life-time accumulated biomass was converted to total standing carbon per hectare estimates per 249 
compartment, with the layers summed per compartment (SI-1-2). Subsequently, compartments were 250 
spatially joined into 2078 polygons of ‘forest’ that were separated if more than 25 meters distance from each 251 
other. 252 
 253 
Our water supply validation dataset comprised 519 hydrometric gauging stations from the National River 254 
Flow Archive of the UK (NRFA; nrfa.ceh.ac.uk), with associated catchments representing a variety of sizes 255 
distributed across the whole of the UK (Figure 3). From the 1598 potential catchments in NRFA, we selected 256 
those that were >100 km2 to get a robust mean run-off from the catchments. In cases where multiple gauging 257 
stations were found along the same river, based on name, only the largest was chosen to avoid 258 
pseudoreplication. An additional set of 41 Welsh catchments was included which did not meet this size 259 
criterion. Wales contains mainly small catchments due its geography – mountain ranges close to the sea – 260 
and so we selected catchments >25 km2 to avoid this part of the UK being underrepresented. The data were 261 
polygons encompassing these catchments. Details are provided in SI-1-2. 262 
 263 

2.3. Model predictions, normalisation (step 3) and validation of model accuracy (step 4) 264 
For each individual model, predictions were obtained for each polygon in the validation dataset using the 265 
ArcGIS spatial analyst Zonal tool with a forced 2.5 m grid size environmental setting to minimise edge 266 

effects; i.e. all predicted values were obtained by resampling into 2.5 × 2.5 m grid cells. In most cases the 267 
modelled value per polygon was obtained by taking the sum of all constituent grid cell values, corrected for 268 
both actual grid size and the resampling to 2.5 m. In the case of accumulated flow models, we corrected for 269 
potential small scale differences in flow routing among these models by taking the maximum flow value 270 
within both a 2 km range of the NRFA reported location of the gauging station and the polygon associated 271 
with that gauging station.  272 
 273 
To ensure comparability among model outputs, we standardised by normalising among the outputs for each 274 
individual model and for the validation data-sets. Prior to this step all outputs were area corrected as either 275 
mean carbon stock – or proxy thereof – per hectare or water supply per hectare of catchment (with 276 
accumulated run-off estimates post-processed to give net run-off per cell; SI-1-1). This normalisation 277 
followed Willcock et al. (2019), and allowed us to address differences in units among models (such as 278 
monetary benefit transfer vs. satellite-based tree cover densities or run-off, and equalised carbon and 279 
biomass). To avoid impacts of extreme values without eliminating such data-points, we employed a double-280 
sided Winsorising protocol for normalisation (Willcock et al. 2019; Verhagen et al. 2017), using the values 281 
associated to the 2.5% and 97.5% percentiles of number of datapoints to define the 0 and 1 values (values 282 
below or above these percentiles became 0 or 1 respectively). This winsorising normalisation protocol 283 
assumes outlier data are valid, but skewed values, in our case mainly by per area averaging, and corrects for 284 
this by compressing the variance tails rather than trimming them (Keselman et al. 2008; Erceg & Mirosevich 285 
2008). Hence, we trade-off an even data distribution over the full 0-1 normalised range against the chance 286 
of having a true far outlier maximum (see SI-5 for a full investigation into the impact of the Winsorising 287 
protocol over standard normalisation for the validation data distribution). For each model, normalisation 288 
was done prior to creating ensembles. 289 
 290 
For validation, we employed two accuracy measures (Willock et al. 2019; Willock et al. 2020), which are 291 
related to different aims in modelling ES (Table 1): 292 
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1) Comparing the rank order of predicted and validation data using Spearman ρ. This is relevant where 293 
modelling is used to discover, for example, the most important locations for delivering an ES, or 294 
conversely, those areas whose development may have least impact on ES delivery.  295 

2) Ascertaining the absolute difference of each modelled value from its validation value using the inverse 296 
of the deviance (D↓). This is relevant where modelled values are important, e.g. when testing where ES 297 
levels exceed a minimum threshold. We used the inverse of the deviance so that, like ρ, a higher value 298 
indicated greater accuracy. 299 

 300 
2.4. Generate ensembles (step 5) and compare accuracy among ensemble types (step 6) 301 

We tested whether model ensembles were more accurate than the individual constituent models and which 302 
approaches for creating ensembles were the most accurate in terms of fit to validation data. We created 303 
ensembles using a range of methods, from the simplest calculation of an average value of the models at each 304 
location (‘unweighted averaged ensembles’, e.g. Marmion et al. 2009, Grenouillet et al. 2011) to ensembles 305 
with the contributions from different models weighted unequally (‘weighted ensembles’), following 306 
Dormann et al. (2018) (Table 1; further explanation and a model flow are provided in SI-1-3). We used 307 
relatively straightforward approaches that would be feasible for a wide community of scientists and 308 
decision-makers, and avoided more complex mathematical and/or statistical techniques such as Bayesian 309 
networks (Bryant et al. 2018), which would require detailed specialist knowledge. Weights over all models 310 
were normalised to sum to 1. Together with normalisation of the ensemble outputs (see above), this assured 311 
equal scaling among all models and ensembles. 312 
 313 
For unweighted average ensembles, we calculated both the mean and the median of modelled values at each 314 
location as alternative measures of the central tendency which are differently affected by skew in the data 315 
(Table 1, En-1 & En-2).  316 
 317 
For weighted ensembles we calculated:  318 

𝐸(𝑥) = ∑ (
𝜔𝑖

∑ 𝜔𝑖
𝑛
𝑖

× 𝑌𝑖)𝑛
𝑖

(𝑥)
with positive weights ωi for model i of validation polygon x, weights ωi are 319 

normalised to sum to 1, Y the modelled values for i per polygon (step 3), and n the total number 320 
of models per service.  321 

 322 
To determine ωi, the weighting value for each model i, we employed a range of methods that can be broadly 323 
categorised as two main types of ensemble approach (untrained and trained), with further subdivision as: 324 
deterministic consensus, iterated consensus, and attribute-based. The ensembles are listed as equations in 325 
Table 1 (see SI-1-3 for further details). 326 
1) Untrained ensembles (En-3 to En-8) represent a situation in which there is no validation data. To generate 327 

uncertainty estimates allowing statistical comparison with the models and among ensembles we jack-328 
knifed (Araújo & New 2007; Refsgaard et al. 2014) with 50% of the spatial data polygons for 250 runs, 329 
i.e. every run contained a new selection of half the dataset. We tested three approaches to produce the 330 
ensembles: 331 
- Deterministic consensus among models can be calculated using several approaches, including the fit 332 

to a common consensus axis such as from a Principal Components Analysis (Marmion et al. 2009; 333 
Grenouillet et al. 2011) or weighting by correlation coefficients (En-3 & En-4; ensemble numbering 334 
follows Table 1). 335 

- Iterative approaches might more accurately quantify consensus among models through using 336 
structured trial-and-error (Dormann et al. 2018; Tebaldi & Knutti 2007). We use two regression 337 
techniques: between the individual models and the median (En-5) and leave-one-out cross-validation 338 
(En-6) following the suggestion in Dormann et al. (2018).  339 

- One might a priori place value on a particular model attribute and use this to create weights (Englund 340 
et al. 2017; Willcock et al. 2019; Brun et al. 2020; En-7, En-8 & En-9). For example, one could up- 341 
or down-weight more distinct model types through a binary matrix of differences (En-8 & En-9; S1-342 



1-4) in land cover map used, grid-size, measured or modelled climate, model extent, presence of 343 
time-series, time step-size and model type (i.e. look-up table, deterministic or process based). 344 
Alternatively models that run at coarser spatial resolutions are penalised (En-7): smaller grid sizes 345 
are deemed more useful for decision-making (Willcock et al. 2016). 346 

2) Trained ensembles (En-9 & En-10), as often used for species distribution models (e.g. Refsgaard et al. 347 
2014; Elith et al. 2011), represent a situation in which validation data are available from a similar region 348 
or part of the study area and so cannot be used to directly validate or substitute for the models in the 349 
study area, but can be used to weight these models. Here, ωi was trained with the validation data on a 350 
jack-knifed 50% of the dataset to achieve maximum accuracy (En-10) and subsequently ωi was 351 
transferred to the other half of the dataset. We used 250 such jack-knife runs (see above), with the same 352 
selections as above. Moreover, we included weighting by individual model accuracy (Marmion et al. 353 
2009; Liu et al. 2020)  using the same jack-knife approach (En-9) .  354 

 355 
After creating the ensembles, their accuracy was assessed following step 4 using the two measures (see 2.3): 356 
Spearman ρ and the inverse of the deviance (D↓). We assessed any improvement over the unweighted mean-357 
averaged ensemble as the reference with pairwise t-tests against the null hypothesis of equal accuracy 358 
(Matlab ttest-tool). A similar analysis against the median-averaged ensemble as reference can be found in 359 
SI-2. To avoid spurious findings of significance through having a large number of replicates, we assessed 360 
improvement using bootstrapped tranches of 50 runs each with 250 replicates, and averaging the P-values. 361 
Since we used the same statistical test 12-times per service per accuracy estimate, we employed a full 362 
conservative Bonferroni correction; (α = 0.05/12) on the resulting average P-values. To compare the 363 
ensembles with the individual models we calculated per replicate the mean difference in accuracy among 364 

all models (Ai) against accuracy of an ensemble (AE) following: ((∑ (
𝐴𝐸

𝐴𝑖
− 1)𝑛

𝑖 ) ×
1

𝑛
), with n the number 365 

models and i an individual model. 366 
 367 
Steps 5 and 6 were repeated using independent data and models from a different study area (sub-Saharan 368 
Africa; Willcock et al. 2019) to investigate the transferability of the results presented here (Figure SI-2-2). 369 
 370 

2.5. Spatial representation of ensembles and uncertainty (step 7) 371 
To better support decision-making, we mapped our ES ensembles for the UK. For all the water ensembles, 372 
the mean normalised value across jack-knifed ensemble predictions per ensemble method were mapped as 373 
catchment polygons (step 5, N = 519). For all carbon ensembles we mapped as 1 km2 grid cells. Here, for 374 
each ensemble approach, the estimated weights as calculated for the validation polygons – mean averaged 375 
among jack-knife runs– were transferred to the full area, with the result aggregated to a 1 km2 resolution 376 
based on the mean value among 1 hectare grid cells. In total, this carbon dataset has 253,802 cells that 377 
(partially) contain non-sea land cover. We transferred the weights calculated for the forests since running 378 
cross-validation approaches on over 250K data points would extremely time consuming to compute. 379 
However, since our validation data are only from forests/woodlands, we are aware of introducing a potential 380 
bias that could skew non-forested areas to lower values. Furthermore, we generated UK-scale maps of 381 
spatial variation in the differences among the untrained ensemble approaches, by calculating the standard 382 
error of the mean (SEM) among these spatial outputs. These maps are freely available online 383 
(https://doi.org/10.5285/a9ae773d-b742-4d42-ae42-2b594bae5d38), and spatial patterns of uncertainty are 384 
discussed in SI-4.  385 

 386 

3. Results 387 

 388 

3.1. Ensembles are more accurate than individual models 389 
The average accuracy of individual models, represented by the mean of accuracy values taken across all 390 
models, was lower than that for any of the ensembles we created. The accuracy of the unweighted averaged 391 
ensembles (of modelled values at each location, e.g. ‘mean ensemble’) was appreciably higher than the 392 

https://doi.org/10.5285/a9ae773d-b742-4d42-ae42-2b594bae5d38


mean value for accuracy of the individual models for both carbon and water: 19% ±1.1% [sd] for ρ and 393 
12.1% ±0.5% for D↓ improvement in fit to the validation data for carbon and 5.7% ±0.4% for ρ and 9.5% 394 
±1.7% for D↓ for water (Figure 2). Untrained weighted ensembles showed large improvements – for most, 395 
larger than the unweighted ensembles – over the mean accuracy of the individual models of 17% to 27% 396 
(ρ) and 7.6% to 15% (D↓) for carbon (Figure 2A and B), and 5.3% to 6.5% (ρ) and 7.7% to 18% (D↓) for 397 
water (Figure 2C and D). In all cases, pairwise t-tests indicated highly significant differences between each 398 
ensemble and the mean value of accuracy of individual models (all P<1E-10). Thus, creating an ensemble 399 
improves prediction accuracy against a randomly chosen individual model irrespective of the ensemble 400 
approach chosen.401 



 402 
Figure 2. Accuracy of above ground carbon stock ensembles (10 models; A and B), and of water supply ensembles (9 models; C and D) against validation 403 
data. The mean of accuracy values across the containing models – i.e. a randomly chosen model– is provided for comparison. For detail on the different ensemble 404 
types see Table 1 and SI-1-3. We show the average accuracy of 250 bootstrap runs with 50% of the dataset. The vertical dashed line indicates the reference 405 
unweighted mean-averaged ensemble (black dot, ‘mean ensemble’). Error bars indicate the standard deviation among runs in terms of proportional difference 406 
to the mean ensemble, calculated per bootstrap run as the difference in accuracy to the mean ensemble divided by the accuracy of the mean ensemble. The 407 
coefficient of variation among bootstraps for the mean carbon ensemble was 4% and 1%, for ρ and D↓ respectively, and 1 % and 2% for water (not shown). Blue 408 
coloured ensemble accuracies are significantly higher than the unweighted mean ensemble (Bonferroni corrected α = (0.05/12)); Red coloured bars are 409 
significantly lower; Black dashed bars are not significantly different to the mean ensemble. 410 



3.2. Weighted ensembles are more accurate than unweighted ensembles  411 
All weighted ensembles, whether trained or untrained, significantly outperformed the reference unweighted 412 
mean ensemble (Figure 2), with the exception of D↓ for carbon. In all cases, pairwise t-tests indicated these 413 
differences were highly significant (P<1E-10; see Figure SI-2-1 for similar analyses against the median-414 
averaged ensemble).  415 
 416 
For untrained weighted ensembles, prediction accuracy was elevated by up to 4.8% ±0.6% for carbon ρ 417 
(best: regression to median; Figure 2), with no improvement for carbon D↓, and 0.8% ±0.3% and 7.5% 418 
±1.1% for water supply ρ and D↓ respectively (regression to median; Figure 2). Conclusions as to the best 419 
model attributes to use for untrained weighting were dependent on the accuracy metric used (ρ or D↓). By 420 
comparison to the unweighted mean ensembles, upweighting model outputs with finer spatial resolution 421 
improved ρ by up to 6.6% ±0.5% and 0.2% ±0.1% for carbon and water respectively but contrastingly 422 
decreased D↓. Upweighting more distinctive models was positive for D↓ with 2.5% ±0.4% and 1.3% ±0.3% 423 
greater accuracy compared to the unweighted mean ensemble for carbon and water supply respectively, but 424 
was negative for ρ. In summary, creating untrained weighted ensembles through iterative approaches was 425 
overall the most robust – particularly regression to the median (Table 1: En-5), showing greater accuracy 426 
than the unweighted mean-averaged ensembles in 3 out of 4 of our tests, and lower accuracy in 1 (Figure 427 
2).  428 
  429 
For trained weighting ensembles, using an iterative log-likelihood regression approach (Table 1: En-10) to 430 
establish weights elevated prediction accuracy compared to the unweighted mean ensemble by up to 14.5% 431 
±2.6% for carbon ρ (no improvement for carbon D↓) and 0.8% ±0.7% and 11.1% ±3.4% for water supply ρ 432 
and D↓ respectively (Figure 2). Compared to such regressions, upweighting models with higher accuracy in 433 
the training set (accuracy-weighted ensembles; En-9; Figure 2) gave less improvement over the unweighted 434 
mean ensemble. Iteratively creating trained weighted ensembles using a log-likelihood regression approach 435 
(Table 1: En-10) was most robust – showing greater accuracy than the unweighted mean-averaged 436 
ensembles in 3 out of 4 of our tests, and is no worse in 1 (Figure 2). 437 
 438 
The reference unweighted mean ensembles for carbon and water are mapped for the UK in Figure 3. Maps 439 
for all other ensembles can be found in SI-3 and uncertainty among models and ensembles in SI-4. In 440 
accordance with a priori predictions, the uncertainty associated with selecting a single model was several 441 
times greater than that associated with selecting any single ensemble method for both ES. For carbon, the 442 
standard error of the means (SEM) among individual models per 1 km2 grid cell (SEM = 9.0% ±2.8%, SI-443 
4) was ca. 3.5-times larger than among ensembles (SEM = 2.5% ±1.1%). Similarly, the SEM among 444 
individual water models per watershed (SEM = 7.8% ±3.4%, SI-4) was substantially greater than among 445 
ensembles (SEM = 1.3% ±0.7%). In SI-4 we investigate spatial drivers for this uncertainty, discussing these 446 
patterns at length.  447 
 448 
We validated the robustness of our results using independent data and models from a different area (Sub-449 
Saharan Africa; Willcock et al. 2019), which gave similar results of weighted ensembles outperforming the 450 
reference mean ensemble (Figure SI-2-2). 451 
 452 



 453 
Figure 3. Spatial distribution of validation points and the reference mean ecosystem service value. A 454 
the Distribution of 2078 carbon validation forests as coverage of 10 × 10 km cells – many individual forest 455 

fragments would be too small to be clear at this scale, see SI SI-1-2 –, white cells are empty. B the reference 456 
unweighted mean ensemble of carbon across 10 models, normalised on scale 0-1. C the 519 catchments 457 
used for water validation and ensemble calculations coloured by their size – smaller watersheds that overlap 458 
larger ones are displayed on top; lines show underlying largest catchment level. D the reference unweighted 459 
mean ensemble of water supply across 9 models, normalised on scale 0-1. All maps here, in SI-3 (all 460 
ensembles) and SI-4 (uncertainty) could support landscape decisions in the UK and are available via 461 
https://doi.org/10.5285/a9ae773d-b742-4d42-ae42-2b594bae5d38. 462 

 463 

4. Discussion  464 

We have shown that predictions from ensembles of models have substantially higher accuracy than a 465 
randomly selected single ES model, and especially that weighting approaches increase ensemble accuracy. 466 
Finding increased performance through use of ensemble approaches is common in other fields. For example, 467 
the increased accuracy of ensemble species distribution models ranges from 1-2% (Crossman et al. 2012; 468 
Abrahms et al. 2019) to 12% (Grenouillet et al. 2011), although an increase is not universal (Hao et al. 469 
2020). Similarly, 2% accuracy increases were found for market forecasting ensembles (He et al. 2012), and 470 
neural network ensemble averaging resulted in up to 7% improvements in accuracy (Inoue & Narisha 2000).  471 
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 472 
Specific to ES, unweighted averaged ensembles have been shown to be 5.0–6.1% more accurate than 473 
individual models (Willcock et al. 2020). Our improvements with ES ensembles are at minimum 5%-17%, 474 
suggesting substantial differences among models in their adequacy (Dormann et al. 2018), but also that 475 
ensemble approaches that use more information offer greater increases in accuracy. We found that taking 476 
the median generally outperforms a mean ensemble, probably because the latter is more influenced by 477 
outliers. Our results provide evidence that weighted ES ensembles created using consensus techniques 478 
produce more accurate outputs than unweighted ensembles. This finding is supported by our additional 479 
analysis using independent models and data from Sub-Saharan Africa (in a biome with very different 480 
climatic and soil characteristics; SI-2), suggesting our findings may be generalisable, although investigating 481 
this specifically (e.g., for different ES, regions and validation datasets) is an important avenue for future 482 
research. 483 
 484 
Predictions from models, including those from ES models, are all potentially biased in direction and amount 485 
because of their underlying assumptions. These biases could differ among models due to their specific 486 
construction. Therefore, models are likely to differ in their accuracy when compared to reality (Dormann et 487 
al. 2018). The improvement in accuracy when using ensembles, as we have shown here, is referred to as a 488 
‘portfolio effect’ by which a (weighted) combination of replications of possible states of a system suppresses 489 
idiosyncratic differences and provides a more reliable average estimate (Thibaut & Connolly 2013; 490 
Dormann et al. 2018; Lewis et al. 2021). However, this effect is lessened if models share similar 491 
assumptions and, therefore, concomitant biases – highlighting the importance of including multiple model 492 
outputs (Ding & Bullock 2018) and, where data are available, model validation (Willcock et al. 2019). In 493 
particular, the use of models not usually packaged as ES models – such as LPJ-GUESS – might help with 494 
increasing the variety of inputs for ensembles. If some models systematically overestimate and other models 495 
underestimate, averaging delivers smaller prediction errors when models are weighted (Dormann et al. 496 
2018). Hence, the resulting weighted ensemble is more accurate than most individual models and 497 
unweighted approaches (Marmion et al. 2009, Grenouillet et al. 2011); see Dormann et al. (2018) for 498 
theoretical explorations.  499 
 500 
We have shown the general potential of weighting to re-balance the contribution of different ES models, 501 
but also find that some weighting approaches seem more suitable. Specifically, structured trial-and-error 502 
iterative approaches may more accurately maximise consensus among models than deterministic approaches 503 
(Dormann et al. 2018; Gobeyn et al. 2019). The PCA and correlation coefficient approaches (Table 1: En-504 
3 & En-4) deterministically assess consensus among individual models. By contrast, regression to the 505 
median, leave-one-out cross validation, and log-likelihood approaches (Table 1: En-5, En-6, En-10) are 506 
examples of iterative processes that optimise for the highest level of consensus in full parameter space 507 
(Dormann et al. 2018). Attribute-based approaches as used by Masson & Knutti (2011) and Willcock et al. 508 
(2019) (e.g. weighting by model distinctiveness or grid size; Table 1: En-7 and En-8) produce conflicting 509 
results. Model attributes such as these may not correctly describe why model outputs vary, or capture their 510 
complexity (Willcock et al. 2019; Brun et al. 2020) and so weighting by among-model agreement produces 511 
more accurate ensemble outputs. One might expect accuracy-weighted ensembles (Table 1: En-9) to 512 
perform best. However, model accuracy can be location specific and poorly transferable elsewhere – even 513 
with similar model accuracy, some grid cells may be well represented by some models and less by others 514 
(Graham et al. 2008; Marmion et al. 2009; Zulian et al. 2018). As a result accuracy-derived weights show 515 
high uncertainty in areas where training data were not available (i.e. non-forested areas; SI-4), likely because 516 
of over-fitting to areas with available data (i.e. forests/woodlands) producing correlative patterns that 517 
explain other areas less well. In SI-4, we investigated environmental and spatial drivers of uncertainty 518 
among predictions. Broadly, these supplementary results show that carbon models and ES ensembles are 519 
less accurate in urban areas. We also find that ensembles for water are less accurate in areas of high rainfall, 520 
seasonality and rugosity (see SI-4 for full details). That said, as uncertainty among ES ensembles is almost 521 
4-times lower than among individual models, this suggests less need to make the ‘right choice’ of method 522 



when selecting an ensemble approach. Thus, although there is some chance of picking a superior individual 523 
model (Willcock et al. 2018), the risk of a sub-optimal prediction is substantially lowered by applying any 524 
ensemble method and this risk is further reduced when a weighted ensemble is used.  525 
 526 
Our results should serve as a ‘call to arms’ for ES researchers and practitioners to increasingly use ensembles 527 
of models to support decision-making for sustainability. Using an individual ES model is fraught with 528 
concerns as a priori it is not known which is the most accurate and choosing only one model can, at worst, 529 
result in perverse decisions (Willcock et al. 2019). Deriving decisions from an ensemble of ES models 530 
provides an improvement over using one model for any location (which may be large or small, depending 531 
on the local context and the models used), but also more consistency over space, as model accuracy varies 532 
spatially (see results in SI-4). Therefore, using ensemble approaches, and especially weighted ensembles, 533 
would increase credibility and so help reduce the implementation gap between research and policy- and 534 
decision-making (Wong et al. 2014; Willcock et al. 2016). We acknowledge the lack of standardised metrics 535 
across models and limited computational and financial resources that could restrict the uptake of ensembles 536 
– indeed, many practitioners only run a single model. However, given the errors associated with single 537 
models (this paper; Willcock et al. 2020; Eigenbrod et al. 2010), we argue that a single model is inadequate, 538 
although more complex models are sometimes more accurate (Willcock et al. 2019). The most complex (a 539 
priori best) ES models require substantial inputs (i.e. data, computational power, subscription fees, and staff 540 
time), and so running multiple models – whilst requiring additional resources – results in a large gain per 541 
extra unit resource. For example, as even untrained weighted ensembles developed using iterative 542 
approaches (e.g. regression to the median, leave-one-out cross validation) enable a 3-fold reduction in 543 
variation, such an ensemble approach seems a reasonable minimum standard for ES modelling – striking 544 
the right balance between feasibility and robustness (Willcock et al. 2016). Whilst such ensembles will be 545 
outperformed by the best-performing individual models, these cannot be identified without running multiple 546 
models – a ‘Catch-22’ (Willcock et al. 2019). Thus, we recommend that multiple models be developed for 547 
ES where they are lacking (e.g. cultural services; Martínez-Harms and Balvanera, 2012; Wong et al. 2014), 548 
and that those with access to sufficient resources to run multiple models ensure the ensemble outputs are 549 
freely available, making the use of these ensembles more feasible and accessible for all (Willcock et al. 550 
2020). 551 
 552 

5. Conclusion 553 

We show that in situations with no a priori validation evidence guiding model selection, predictions from 554 
ensembles of models have a higher accuracy than selecting an individual model by chance. Weighted 555 
averaging further improves accuracy, supressing idiosyncratic differences through producing consensus 556 
(Araújo & New 2007; Dormann et al. 2018). Doing so not only elevates accuracy but substantially decreases 557 
uncertainty among ensemble approaches compared to uncertainty among models, a further indication of 558 
increased fit to reality (Chaplin-Kramer et al. 2019; Willcock et al. 2020). In summary, even if a less 559 
accurate ensemble weighting approach is used, one would on average have lower uncertainty than selecting 560 
an individual model by chance. Thus, particularly when validation data are not available, we recommend 561 
the use of weighted ensembles in ES research to substantially reduce uncertainty and to support robust 562 
decision-making for sustainable development.  563 

 564 
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