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A B S T R A C T   

Monitoring wildlife populations is essential if global targets to reverse biodiversity declines are to be met. Recent 
analysis of data from the UK’s long-term National Bat Monitoring Programme (NBMP) suggests stable or 
increasing population trends for many bat species, and these statistics help inform progress towards national 
biodiversity targets. However, although based on robust citizen science survey designs, it is unknown how 
sensitive these trends are to spatial and environmental biases. Here we use Bayesian hierarchical modelling with 
integrated nested Laplace approximation (INLA), to examine the impact of these types of biases on the popu
lation trends using relative occupancy of four species monitored by the NBMP Field Survey in Great Britain (GB): 
Pipistrellus pipistrellus, P. pygmaeus, Nyctalus noctula and Eptesicus serotinus. Where possible, we also disaggregated 
trends to national levels using the best model per species to determine if national differences in trends remain 
once sampling biases are accounted for. Although we found evidence of spatial clustering in the NBMP Field 
Survey locations, the previously reported GB-wide population trends are broadly robust to spatial autocorrela
tion. In most species, accounting for spatial autocorrelation and species-environment relationships improved 
model fit. The nationally disaggregated models highlighted that GB-wide trends mask differences between En
gland and Scotland, consistent with previous analysis of these data, as well as illustrating large gaps in survey 
effort, especially in Wales. We suggest that although bat population trends were found to be broadly robust to 
sampling biases present in these data, small differences could propagate over time and this impact is likely to be 
more severe in less structured citizen science data. Therefore, ensuring trends are robust to sampling biases 
present in citizen science datasets is critical to effective monitoring of progress towards biodiversity targets, 
managing populations sustainably, and ultimately a reversal of global declines.   

1 Introduction 

Despite repeated international commitments to improve the status of 
biodiversity and ecosystems, average extinction risk continues to rise in 
many taxa, and the bulk of the Convention of Biological Diversity 2020 
Aichi targets have been missed (Convention on Biological Diversity, 
2019; Díaz et al., 2019; Mace et al., 2018). More ambitious action is 
needed, not only to halt biodiversity loss but to restore biodiversity and 
reverse declines (Mace et al., 2018). Measurable biodiversity indicators 
have a critical role to play to enable specific goals to be reached within a 
limited timeframe. Current important global indicator metrics, such as 

the Living Planet Index (Collen et al., 2009; McRae et al., 2017), depend 
on the collation of regional, national, and local scale biodiversity 
monitoring. Birds have been particularly well monitored with structured 
surveys, such as the North American Breeding Bird Survey (Sauer et al., 
2017) and the British Breeding Bird Survey (Freeman et al., 2007). These 
monitoring data have been important for evidencing the impact of 
anthropogenic environmental changes, such as agricultural intensifica
tion and climate change, on biodiversity (Burns et al., 2016; Eglington & 
Pearce-Higgins, 2012; McDermott Long et al., 2017). Non-structured 
datasets compiled of mainly opportunistic occurrence records have 
also been successfully used to produce trends in occupancy for insects, 
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adding important evidence to the insect decline debate (Outhwaite 
et al., 2020). 

Large-scale, long-term monitoring is often only possible if carried out 
by volunteer citizen scientists. However, relying on volunteers can 
generate spatial bias towards areas of higher human population density, 
more easily accessible sites, habitats favoured by volunteers or those 
perceived to be more likely to contain the target taxa (Isaac & Pocock, 
2015). Stratification of survey location, for instance based on habitat 
type, partly mediates the issue (Buckland & Johnston, 2017), still, vol
unteers cannot be compelled to monitor specific sites. An assessment of 
the data underpinning UK biodiversity indicators reported that survey 
sites for most schemes are not randomly distributed in space, nor be
tween individual countries in Great Britain (GB) or landcover types 
(Isaac et al., 2016). As data collected by these surveys are used to inform 
policy, post-survey statistical techniques that robustly control for spatial 
biases when modelling population trends are therefore essential (Isaac 
et al., 2014; Isaac & Pocock, 2015). Generalised additive models (GAMs) 
have been widely used to model non-linear population trends over time 
(Barlow et al., 2015; Collen et al., 2009; Eglington & Pearce-Higgins, 
2012) due to their implementation of splines that account for tempo
ral autocorrelation, where time points close to each other are likely to be 
more similar than those further away. However, these methods do not 
easily control for spatial clustering of survey locations and substantial 
spatial autocorrelation may remain between data points, meaning data 
from proximal sites are more likely to be similar. Furthermore, for 
mobile animals the typical movement range can be larger than the dis
tance between survey sites, so it is possible that individuals from one 
population might be recorded in multiple study sites leading to an 
inflation of the true sample size. 

Approaches to deal with spatial autocorrelation include thinning the 
data, geographically weighting certain regions (Kupfer & Farris, 2007) 
or grouping points close together into regions and fitting these as 
random effects with separate intercepts. Other approaches include 
incorporating an effect for preferential sampling where the stratified 
sampling design was not followed (Conn et al., 2017). More recent ap
proaches use Bayesian techniques such as using Markov chain Monte 
Carlo (MCMC) or Integrated Nested Laplace Approximation (INLA) to 
extend generalised additive techniques to include spatial dependency 
(Fahrmeir et al., 2004; Fahrmeir & Lang, 2001; Rodhouse et al., 2011). 
Whilst flexible, MCMC methods commonly have a long computational 
time (Fahrmeir et al., 2004) limiting the feasibility of the approach for 
large datasets. INLA is a deterministic algorithm for Bayesian inference 
designed for latent Gaussian models able to accommodate linear and 
nonlinear effects, including nonlinear temporal trends and spatial 
random effects. The use of approximation and integration drastically 
reduces typical Bayesian computational times (Beguin et al., 2012; Rue 
et al., 2009). To date, the INLA modelling method has not been widely 
applied to population models. These spatially explicit methods open-up 
the possibility of accounting more robustly for the spatial structure of 
sampling sites, resulting in more accurate estimates of population 
trends. 

Bats are considered valuable bioindicators (Jones et al., 2009; Russo 
& Jones, 2015), and in the UK are monitored by the Bat Conservation 
Trust’s (BCT) National Bat Monitoring Programme (NBMP) in accor
dance with both national and, until recently, European Union law. The 
NBMP consists of three volunteer-led survey methods, winter hiber
nacula counts, summer roost emergence counts, and summer acoustic 
surveys. Analysis of these data suggest stable or recovering population 
trends for 11 species, however, rarer and more habitat-specialised bat 
species are not currently monitored (Bat Conservation Trust, 2021). The 
NBMP Field Survey is a structured summer acoustic survey and a key 
contributor to British bat population trend estimates for four species: 
Pipistrellus pipistrellus, Pipistrellus pygmaeus, Nyctalus noctula and Eptesi
cus serotinus. Volunteers survey 1 km2 sites randomly stratified based on 
the Institute of Terrestrial Ecology landcover classes (Bat Conservation 
Trust, 2021). GAMs are used to model population trends across the UK 

and within each of the four countries where data allow (Bat Conserva
tion Trust, 2021). GB data are weighted to allow for the different sam
pling rates in England, Scotland, and Wales by weighting each site in 
proportion to the ratio of non-upland area to number of sites surveyed 
for the relevant country. Weighting is not applied to E. serotinus, as this 
has a restricted range within Britain. However, the NBMP Field Survey is 
still affected by spatial biases within countries (Isaac et al., 2016). For 
example, clusters of surveys are conducted in areas of higher human 
population densities, such as in the southeast of England, and the current 
analytical approaches may not adequately remove spatial autocorrela
tion or account for sampling biases within each nation (Kupfer & Farris, 
2007). 

Other sources of bias in the data may also be impacting the estimated 
bat population trends. Factors affecting species-specific detection, such 
as temperature during the survey, are already included as covariates in 
the GAMs and a site effect partially controls for inter-site variation in 
habitat, assuming these remain over time (Barlow et al., 2015). Site 
occupancy is affected by environmental factors, such as the percentage 
of woodland and urban landcover, and climatic conditions (Boughey 
et al., 2011; Dietz et al., 2009; Lintott et al., 2016; Santini et al., 2018). 
Due to uneven sampling across GB, some landcover classes and climatic 
conditions are under or over-represented in the NBMP Field Survey data, 
such as the proportion of urban landcover. If populations are increasing 
more at sites with a greater proportion of urban landcover the estimated 
trends will be misrepresentative of the true GB trends. Accounting for 
the landcover type or configuration, and mean climatic conditions 
annually is therefore important in ensuring population trend estimates 
are nationally representative. Spatial autocorrelation is also unlikely to 
be uniform across GB, with possible regional or local differences in the 
impact of environmental factors on occupancy. Although population 
trends are currently reported at UK, GB, and country-level, where data 
availability allows (Bat Conservation Trust, 2021), assessing whether 
sampling location and environmental heterogeneity are impacting the 
trends at national scales has important implications for national con
servation policy decision-making. 

Here, we use data collected on common bat species P. pipistrellus, P. 
pygmaeus, N. noctula and E. serotinus by the NBMP Field Survey between 
1998 and 2016 in GB to examine whether accounting for spatial auto
correlation, or environmental factors impact the direction or magnitude 
of the British or nationally disaggregated population trends. We use a 
non-spatial Bayesian hierarchical framework with INLA to first create a 
base model for each species using a similar structure to the GAMs re
ported in Barlow et al. (2015) and then compare these to a series of 
subsequent models that use the Bayesian framework to account for 
spatial and environmental biases in the NBMP Field Survey data. Using 
the best performing model per species, trends are then disaggregated to 
country-level to determine if national differences in trends remain once 
biases are accounted for. 

2 Methods 
2.1 Data 

2.1.1 NBMP Field survey data 

We used data collected by NBMP Field Survey volunteers between 
1998 and 2016 (number of surveys = 5163) in GB (Fig. 1). Field Surveys 
were carried out during July - September using heterodyne bat de
tectors, which were tuned to specific sound frequencies. Trained vol
unteers were randomly allocated a 1 km2 grid square close to where they 
lived, based on a random stratification of UK landcover classes (Bat 
Conservation Trust, 2021). Volunteers walked a 3 km transect on two 
separate nights, separated by at least five days, starting 20 min after 
sunset. Surveys were not carried out during weather conditions known 
to adversely affect bat activity, such as temperatures below 7 ◦C at 
sunset, heavy rain, and strong winds. The transect was split into 12 
parts; volunteers made 12-point counts at intervals along the transect 
counting the number of P. pipistrellus and P. pygmaeus passes whilst the 
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detector was tuned to 50 kHz as the echolocation call peak frequencies 
of these species are 45 kHz and 55 kHz, respectively. N. noctula and 
E. serotinus were monitored during the 12-walks in between point counts 
whilst the detector was tuned to 25 kHz as the echolocation call peak 
frequencies of these species are 25 kHz and 25–30 kHz, respectively 
E. serotinus were not surveyed in Scotland as this is a southerly restricted 
species in GB (Bat Conservation Trust, 2021). The data were analysed as 
a series of 12 presence-absences per transect, per species and we 
assumed no false-negatives or mis-identifications were present. In most 
cases survey metadata were also recorded by the volunteer, including 
detector type (Table SI.1), temperature, wind speed and survey duration 
(Table SI.2). 

2.1.2 Environmental data 

We collected the following environmental variables for the UK 
(Table 1) at a yearly resolution to reflect change over time, selected 
based on prior knowledge of bat species’ environmental requirements 
(Boughey et al., 2011; Catto et al., 1996; Davidson-Watts et al., 2006; 
Dietz et al., 2009; Lintott et al., 2016): (1) Annual percentage landcover 
type at 1 km2 for broadleaved and mixed woodland, needle-leaved 
woodland, freshwater, grassland, agriculture/cropland and urban were 
calculated from the 300 m2 European Space Agency Climate Change 
Initiative Land Cover (ESA CCI-LC) project (ESA, 2017). The groupings 
of ESA CCI-LC classes used to aggregate to broad categories used in these 
analyses is available in Appendix B Table SI.3; (2) Annual mean spring 
precipitation (March-May) (ml/day); (3) Annual mean summer surface 
air temperature (March-May) (◦C); (4) Annual mean winter surface air 
temperature (December – February) (◦C). We used climatic variables 
from Climate, Hydrology and Ecology research Support System and we 
calculated annual mean seasonal values from monthly data at a 1 km2 

resolution (Robinson et al., 2017). We calculated the total percentage 

coverage or overall mean of each environmental variable across GB and 
at NBMP Field Survey sites highlighting the over-representation of some 
variables, such as urban landcover, in the data (Table 1). 

Fig. 1. Locations and number of National Bat Monitoring Programme Field Surveys carried out per country per year. A map of Great Britain shows the locations of 
the NBMP Field survey sites (n = 552), indicated by black dots (A). The histogram shows the total number of NBMP Field Surveys per country per year (Great Britain 
n = 5932; England n = 5141; Scotland n = 565; Wales n = 226) (B). 

Table 1 
Environmental variables included per species in the Base model + SPDE +
environment. The percentage coverage or mean and standard deviation (sd) of 
each variable across Great Britain (GB) and at the National Bat Monitoring 
Programme Field Survey (NBMP FS) sites are shown.  

Environmental 
variable 

GB total 
coverage/mean 
(sd) 

NBMP FS sites total 
coverage/mean (sd) 

Species 
models 

Broadleaved 
woodland cover (%) 

2.57 6.10 P. pipistrellus 
P. pygmaeus 
N. noctula 

Needle-leaved 
woodland cover (%) 

6.00 3.34 P. pygmaeus 

Grassland cover (%) 39.92 34.35 P. pipistrellus 
P. pygmaeus 
N. noctula 
E. serotinus 

Agriculture/cropland 
cover (%) 

25.7 27.24 P. pipistrellus 
P. pygmaeus 
N. noctula 
E. serotinus 

Urban landcover (%) 6.06 25.67 P. pipistrellus 
P. pygmaeus 

Mean summer 
temperature (◦C) 

13.29 (sd1.83) 14.59 (sd 1.28) P. pipistrellus 
P. pygmaeus 
E. serotinus 

Mean winter 
temperature (◦C) 

3.23 (sd1.61) 3.80 (sd 1.32) P. pygmaeus 

Mean spring 
precipitation (ml/ 
day) 

2.47 (sd 1.40) 1.88 (sd 0.90) P. pipistrellus 
P. pygmaeus  
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2.2 Statistical analysis 

All analyses were carried out in R (R Core Team, 2020). 

2.2.1 Impact of spatial and environmental bias on relative occupancy 

We conducted Bayesian hierarchical modelling using the R-INLA 
package (Rue, Martino, & Chopin, 2009; Lindgren & Rue, 2015). Our 
formulation was broadly similar to a traditional occupancy detection 
model, (MacKenzie & Bailey, 2004). However, we did not hierarchically 
model the detection probabilities per site as we were interested in 
relative change over time, rather than predicting occupancy at non- 
surveyed locations. Three models were constructed to estimate an 
index of relative occupancy using the number of points/walks per survey 
where a species was recorded as present (presence-absence at points/ 
walks, n = 12), ypa. A binomial distribution was assumed, and a logit link 
function applied. The probability of a species’ occupancy and the 
number of points/walks with an occurrence per survey, i, are denoted by 
pi, and ni, respectively: 

ypa Binom
(
pi, ni

)
(1) 

First, we constructed a model for each species with the same struc
ture as currently used for GAMs to report the population trends, 
including weighting the observations by the proportion of non-upland 
area per number of sites per country (Barlow et al., 2015; Bat Conser
vation Trust, 2021); referred to as the “Base model”. Under the Base 
model pi is modelled as a function of survey specific covariates and 
random effects, 

logit(pi) =α0 +Xiβ+ ti + δi (2)  

where the model intercept is α0; β is the vector of regression parameters 
and Xi is a matrix of the survey specific covariates, with a vector of linear 
coefficients (Table SI.2). Continuous variables were standardised to the 
variation around the mean (mean = 0, sd = 1). A second-order random 
walk was used as a smooth term for the random effect of count year (ti). 
Site was modelled as an independent and identically distributed random 
effect (δi). We confirmed that the resulting trends from the Base model 
are broadly consistent with reported GAM trends for each species 
(Fig. SI.1) (Bat Conservation Trust, 2021). This Base model was used to 
assess the impact of accounting for spatial bias and then environmental 
bias on the resulting population trends, overall model fit and predictive 
accuracy. See Text SI.1 for details of the priors used on random effects. 

We confirmed spatial autocorrelation occurred between sites using 
the Moran’s Index between sites (p ≤ 0.01, observed = 0.01, expected =
− 0.00). We constructed an INLA model (referred to as “Base model +
SPDE”) that included a spatial random effect to model dependency 
among neighbouring sites using the stochastic partial differential 
equation (SPDE) approach (Lindgren & Rue, 2015). Using a penalised 
complexity prior for the SPDE model (Fuglstad et al., 2019), we set the 
prior probability that the median range was greater than 50 km2 to 0.5 
and the prior probability that the marginal standard deviation was 
greater than one to 0.5 (Text SI.1). The spatial relationship between sites 
was defined by creating a weights matrix, derived from a mesh bounded 
by the coastline of GB, and the unique locations of all surveys conducted 
between 1998 and 2016. The model was specified as above (Eq. (2)), 
with the addition of the spatially structured random effect at survey i, 
denoted by Si: 

logit(pi) =α0 +Xiβ+ ti + δi +Si (3) 

We then specified a third INLA model, including environmental 
variables known to influence occupancy; referred to as the “Base model 
+ SPDE + environment”. Per species, the impact of including each 
environmental covariate on the model was assessed using Watanabe- 
Akaike information criterion (WAIC). We also explored fitting the 
models with interaction terms between landcovers and the year effects 

but found no improvements to the models, according to WAIC. Ulti
mately, model selection resulted in a different set of environmental 
covariates per species (Table 1). All variables were scaled around their 
respective means before inclusion in the models (mean = 0, sd = 1). 
Environmental covariates were included with the survey specific cova
riates in the matrix Xi (Eq. (3)). 

We report the estimated trends as an index of relative occupancy, like 
the current format of the reported GAM trends (Bat Conservation Trust, 
2021). For all models per species, posterior estimates for each year were 
rescaled so that 1999 was the baseline year, assuming 100% relative 
abundance. The posterior estimates were sampled 10,000 times to 
calculate to posterior predictive distribution. The 95% credible intervals 
around the mean posterior estimates per year were calculated from the 
posterior predictive distribution and were rescaled so that the credible 
intervals in the baseline year were zero. 

2.2.2 Model comparisons 

To quantify the impact of including the SPDE and the environmental 
covariates on model performance per species, WAIC and model mean 
absolute error (MAE) were used. To assess the impact of including the 
SPDE and environment on the change in the index of relative occupancy 
between the baseline and final year of the time series, the distribution of 
the posterior estimates for the final year of the time series (2016) were 
compared between models. We also conducted k-fold cross validation to 
assess the fit of each model to the data. The data were split based on 11 
British regions (Table SI.4), or 10 regions for the E. serotinus models. 
When implementing INLA using the R-INLA package predictions on 
missing values were automatic, and per model, per species, data from 
each of the 11 or 10 regions were replaced with missing values. We 
evaluated the impact of removing each region on the estimated popu
lation trends. 

2.2.3 Comparing disaggregated trends 

We separately fitted models for Scotland (number of surveys = 565) 
and England (number of surveys = 5141) for P. pipistrellus and 
P. pygmaeus. Due to the small number of surveys conducted in Wales 
(number of surveys = 226), it was not possible to construct stable 
models for this country alone. We excluded N. noctula and E. serotinus 
from the Scottish analysis, as the data were highly zero inflated for these 
species and they are rare or absent in Scotland. We used the best model 
per species according to WAIC and MAE, and the certainty in the pos
terior estimates. The posterior distributions of the disaggregated trends 
were compared to the GB trends. 

3 Results 
3.1 Impact of spatial and environmental bias on relative 
occupancy 

Trends in relative occupancy indicate in 2016 the populations of 
P. pipistrellus, P. pygmaeus and N. noctula increased in GB since 1999, 
whereas there was no change in the population of E. serotinus. Ac
counting for spatial bias in sampling resulted in small changes to the 
Pipistrellus spp. trends and improved the model fit for all but E. serotinus. 
The same pattern was found when both spatial and environmental biases 
were included compared to the Base model. Under the Base model, the 
increase in the index of relative occupancy was greatest for P. pipistrellus 
(160.6%, 95% CI 151.1–171.0%). The increases in the index of relative 
occupancy of the other three species were lower, with larger 95% 
credible intervals P. pygmaeus (117.6%, 95% CI 108.3–128.4%), 
N. noctula (11.9%, 95% CI 12.5–123.1%%), and E. serotinus (102.96%, 
95% CI 88.46–120.2%) (Fig. 2; Table SI.5-8). 

Accounting for spatial autocorrelation in the data, using the Base 
model + SDPE resulted in marginal changes to the trends of each species 
when compared with the Base model trends. The shapes of the trends 
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were broadly the same (Fig. 2). The magnitude of increase in relative 
occupancy between 1999 and 2016 was slightly greater for all species 
when estimated using the Base model + SPDE. For instance, the pop
ulations of P. pipistrellus and P. pygmaeus increased by 163.0% (95% CI 
152.2.6–174.4%) and 18.9% (195% CI 109.0–130.3%), respectively. 
The joint posterior estimates for 2016 were largely overlapping for both 
Pipistrellus spp. indicating the estimates from the Base models and Base 
models + SPDE were virtually identical; there was an 0.58 probability 
that the estimate for P. pipistrellus was greater using the Base model +
SPDE compared to the Base model, and 0.55 for P. pygmaeus (Table SI.9). 
Over time the estimated trends were also generally higher than those 
produced using the Base model (Fig. 2; Table SI.5-8). Including envi
ronmental covariates (i.e., Base model + SPDE + environment) resulted 
in similar estimated changes in relative occupancy between 1999 and 
2016 to the Base model for P. pipistrellus (159.8%, 95% CI 148.2 – 
172.2%) and P. pygmaeus (116.3%, 95% CI 106.6 – 128.0%) (Table SI.5 
& 6). The joint posterior estimates per species for 2016 using the Base 
model + SPDE + environment were largely identical to the Base model 
and Base model + SPDE estimates (Fig. 2; Table SI.9). 

Responses to environmental covariates included per species varied, 
we defined responses as strong where the 95% credible intervals did not 
cross zero and the posterior probability was within 5% of zero (negative 
impact) or one (positive impact). Effects were considered moderate if 
the posterior probability was within 10% of zero or one. P. pipistrellus 
was strongly negatively impacted by greater mean spring precipitation. 
P. pygmaeus was strongly positively impacted by greater mean summer 
temperatures and mean spring precipitation, but strongly negatively 

impacted by greater mean winter temperatures. The relative occupancy 
of P. pipistrellus and P. pygmaeus were strongly negatively impacted by 
higher percentages of grassland, agriculture/cropland and urban land
cover. P. pipistrellus was also strongly negatively impacted by higher 
broadleaved woodland cover and greater needle-leaved woodland cover 
moderately negatively impacted P. pygmaeus relative occupancy (Fig. 3; 
Table SI.10 & 11). Higher percentage cover of broadleaved woodland 
and grassland moderately negatively impacted the relative occupancy of 
N. noctula (Fig. 3; Table SI.10 & 11). 

3.2 Model comparisons 

According to WAIC, the models for all species, except E. serotinus, 
were improved by including the SPDE and environmental covariates 
(Table 2; Fig. SI.2). The most competitive model was the Base model +
SPDE + environment for P. pipistrellus and P. pygmaeus. The Base model 
+ SPDE and Base model + SPDE + environment were comparably 
competitive for N. noctula, whereas the Base model was the most 
competitive for E. serotinus (Table 2; Fig. SI.2). The MAEs were 
marginally lower for the Base model + SPDE + environment for the 
Pipistrellus spp. and for N. noctula it was equal to the Base model + SPDE. 
The MAE of the Base model was lower than the models including the 
SPDE and environmental covariates for E. serotinus (Table SI.12). K-fold 
cross validation across models indicated no model was over-fitting to the 
data. For all species the population trends varied slightly 

3.3 Comparing disaggregated trends 

Fig. 2. Trends in relative occupancy over time of P. pipistrellus, P. pygmaeus, N. noctula and E. serotinus. The change in an index of relative occupancy is from a 
baseline (1999 = 100; horizontal dotted line) produced using presence/absence at 12 points/walks per survey for A) P. pipistrellus, B) P. pygmaeus, C) N. noctula and 
C) E. serotinus. Three modelled trends are shown per species, estimated using a Base model (black line), including the stochastic partial differential equation (SPDE) 
(red line) and including the SPDE and environmental variables (blue line). The solid lines show the mean estimated trend and the dashed lines the upper and lower 
95% credible intervals around the estimates for each year. 

E. Browning et al.                                                                                                                                                                                                                               



Ecological Indicators 136 (2022) 108719

6

Disaggregating trends to country level indicated that the GB trends 
were primarily representative of the English trend, as is also seen for the 
country-level GAM trends published by the NBMP (Bat Conservation 
Trust, 2021). The index of relative occupancy since 1999 in 2016 in 
England indicated increases for P. pipistrellus (160.1%, 95% CI 
150.1–170.54%) and P. pygmaeus (+107.5%, 95% CI 96.2–119.7%) 
respectively (Fig. 4, Table SI.13), similar to the British estimates (Fig. 2). 
Although, the 95% credible intervals of P. pygmaeus for 2016 crossed 
100 and the probability that the index of relative occupancy was greater 
in 2016 in GB than in England was 0.78 (Table SI.14). Trends in Scotland 

diverged from the British and English trends, with a smaller magnitude 
of increase in P. pipistrellus (136.6%, 95% CI 101.7–178.4%) and a 
probability that the GB and English indexes were greater than the 
Scottish indexes in 2016 were 0.75 and 0.76, respectively (Table SI.14). 
In contrast, there was a greater magnitude of increase in P. pygmaeus 
between 1999 and 2016 (171.1%, 95% CI 131.47–218.7%; Fig. 4; 
Table SI.13 & 14). This reflected the Scottish NBMP GAM trends (Bat 
Conservation Trust, 2021), although the population trend for 
P. pygmaeus in Scotland showed greater fluctuation over time. The 95% 
credible intervals were wider for the Scottish estimated trends compared 
to the English and British trends, indicating less certainty (Fig. 4 & 
Table SI.13). N. noctula and E. serotinus trends in relative occupancy for 
England broadly followed the British or England-Wales trends. The 
magnitude of change over time was slightly lower for the English 
N. noctula trend (105.57%, 95% CI 96.75–115.77%) and the English 
E. serotinus trend was the same as the England-Wales trend (Fig. SI.4; 
Table SI.14). 

Broadly, the direction of impact of environmental covariates 
remained the same in disaggregated models as for the British wide 
models (Fig. 4; Fig. SI.4). The 95% credible intervals were generally 
larger for the Scottish P. pipistrellus and P. pygmaeus models (Fig. 4) and 
some differences in responses to environmental covariates were found. 
The relative occupancy of P. pipistrellus was strongly negatively 
impacted by a higher percentage of urban land in England, but strongly 
positively impacted in Scotland. P. pygmaeus relative occupancy was 
moderately negatively impacted by a higher percentage of needle- 
leaved woodland or grassland in England but no there was no impact 
in Scotland. In contrast, broadleaved woodland strongly positively 
impacted P. pygmaeus in Scotland but no impact was found in England. 
Climatic variables had no impact on either Pipistrellus spp. in Scotland 
(Fig. 4 & Table SI.15). 

Fig. 3. Effects of site level land-cover and climatic conditions on the relative occupancy of P. pipistrellus, P. pygmaeus, N. noctula and E. serotinus. Points show the 
mean posterior beta coefficients of environmental covariate fixed effects for models of relative occupancy for A) P. pipistrellus, B) P. pygmaeus, C) N. noctula and D) 
E. serotinus. Bars show the 95% credible intervals, where these do not cross zero (vertical dotted line) the effects are considered strong and indicated by asterisks. 

Table 2 
WAIC values for each species’ models. Best performing models where the WAIC 
was lowest are indicated by an asterisk (*). Models within five WAIC of each 
other were considered competitive.  

Species Model WAIC 

Pipistrellus pipistrellus Base model  22607.19 
Base model + SPDE  22596.06 
Base model + SPDE + environment  22565.06*  

Pipistrellus pygmaeus Base model  14821.31 
Base model + SPDE  14793.77 
Base model + SPDE + environment  14779.78*  

Nyctalus noctula Base model  13605.16 
Base model + SPDE  13543.96* 
Base model + SPDE + environment  13541.20*  

Eptesicus serotinus Base model  6945.56* 
Base model + SPDE  7176.73 
Base model + SPDE + environment  7262.90  
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4 Discussion 

Spatial biases are a common problem in many biodiversity datasets 
(Buckland & Johnston, 2017; Isaac & Pocock, 2015), particularly those 
collected by citizen scientists where participation is typically greater in 
densely human populated areas or where access to sites is easier. Ac
counting for these biases when modelling population trends is important 
to ensure trends are robust and representative, especially when trends 
are used to inform policy decisions at smaller scales than those of the 
reported trends. Here, we showed that whilst the population trends of 
four bat species, P. pipistrellus, P. pygmaeus, N. noctula and E. serotinus, 
were broadly robust to spatial autocorrelation in the data, model per
formance was improved by including a SPDE for all species, except 
E. serotinus. There were small changes in the magnitude of change over 
time when biases in sampling and environmental correlates of occu
pancy were included in the models. However, these small differences 
could propagate over time, resulting in very different estimates and 
ultimately impacting policy decision making. 

Nationally disaggregated trends are fitted for England and Scotland 
where possible from the NBMP Field Survey data by the Bat Conserva
tion Trust (Bat Conservation Trust, 2021). We found spatial biases due to 
sampling effort still exist in nationally disaggregated data and need to be 
properly accounted for. We found differences in nationally dis
aggregated trends compared to the British trends, which is consistent 
with previous modelling of these data (Bat Conservation Trust, 2021). 
English trends mostly followed the British trends, whereas Scottish 
trends showed differences in patterns over time. The magnitude of in
crease trend was greater for P. pygmaeus in Scotland, indicating this 

species may be doing better here than in the rest of GB, whereas the 
change in P. pipistrellus occupancy was lower. These results indicate the 
British trend masks substantial variation among countries, even when 
spatial and environmental biases in survey effort are accounted for. It 
was not possible to construct trends for Wales for any species due to a 
paucity of surveys in this country. This highlights the poor representa
tion this country has in the British overall trends and action to increase 
the number of surveys here is required. 

The inclusion of environmental variables generally improved the 
model fit, although did not impact the estimated trends in relative oc
cupancy. Broadly, we found responses to environmental variables sup
ported existing knowledge of habitat and climatic correlates of 
occupancy for the four species within GB (Andrews et al., 2016; 
Davidson-Watts et al., 2006; Dietz et al., 2009; Mackie & Racey, 2007). 
P. pipistrellus and P. pygmaeus relative occupancies were varying 
impacted by climatic conditions. Positive responses to higher annual 
mean summer temperatures were identified in England. Contrasting 
responses to high annual mean spring precipitation interspecifically and 
internationally and negative responses to higher winter temperatures 
suggesting projected future climate changes (Betts & Brown, 2021) may 
have complex effects on these species. Key risks are phenological mis
matches between bats and their prey or reduced prey availability due to 
climate change (Andrews et al., 2016; Froidevaux et al., 2017). Negative 
responses to a higher proportion of urban cover at the GB level by 
P. pipistrellus and P. pygmaeus indicate these species are not as urban 
tolerant as reported in some of the literature (Gili et al., 2020; Jung & 
Threlfall, 2018). Anticipated urban expansion within GB may cause the 
current positive trends in these species to be reversed (Sachanowicz 

Fig. 4. Nationally disaggregated population trends in relative occupancy and covariate impacts on occupancy. Comparison of trends in relative occupancy (A and B) 
and covariate beta coefficients (C and D) fit for Great Britain (orange) and disaggregated to country level, England (red) or Scotland (blue) for P. pipistrellus (A and C), 
and P. pygmaeus (B and D). Trends show a percentage change in an index of relative occupancy from the baseline year (1999 = 100; horizontal black dotted line). 
Solid lines show the mean estimated trend and the dashed lines the upper and lower 95% credible intervals. Covariate beta coefficient plots show the mean estimate 
(dot), 95 % credible intervals (vertical lines), where these do not cross zero (horizontal dotted line) the effects are considered significant. 
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et al., 2019). 
Differing responses to environmental variables between England and 

Scotland emphasised that country level analysis is important in under
standing impacts of environment on relative bat occupancy. However, 
beta coefficient credible intervals were generally large for the Scottish 
models due to the smaller sample size, which meant strong responses 
could not be identified. Including an interaction between country as a 
factor and the environmental covariates may enable country-level re
sponses to be identified. There were unexpected responses to some 
environmental variables and we suggest treating the responses with 
caution. For instance, the neutral or negative responses of P. pipistrellus, 
P. pygmaeus and N. noctula to broadleaved woodland, used by these 
species for foraging or roosting (Boughey et al., 2011; Mackie & Racey, 
2007), may due to the finer scale habitat detail, such as trees within 
hedgerows, being missed at the 300 m2 scale of the original landcover 
data (ESA, 2017). Improved understanding of the impact of local envi
ronment on bat occurrence may be achieved by using the exact locations 
of points or walks along the 3 km transect and finer scale habitat 
information. 

4.1 Conclusions 

Importantly, we show that spatial biases were impacting the esti
mated population trends of the species monitored here, although the 
impact was small. The NBMP Field Survey is a well-structured citizen 
science survey, but many others rely on more opportunistic data 
collection or volunteer chosen sites. Spatial biases are a common prob
lem in citizen science datasets (Buckland & Johnston, 2017; Isaac et al., 
2016), and the magnitude of impact on estimated population trends for 
many monitored groups is likely to be greater than the small effect sizes 
reported here. The models presented here would provide a robust way to 
ensure spatial biases are accounted for, ensuring representative popu
lation trend estimates. Including environmental correlates of occupancy 
in the models was also important in improving model fit for three spe
cies. Sizeable gaps in survey effort remain in areas of lower human 
population density, such as Wales and the north of England. Finally, 
whilst the positive or stable trends may be cause for hope, the baseline 
for these trends is relatively recent. The true extent of historic declines in 
bats in GB are unknown, but are thought to have been significant, and 
the populations of these species may still be far below their historic 
levels. Determining the extent of past declines would be an important 
step in understanding the significance of these trends. 
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