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Abstract: East Africa has experienced a number of devastating droughts in recent decades, including
the 2010/2011 drought. The National Drought Management Authority in Kenya relies on real-time
information from MODIS satellites to monitor and respond to emerging drought conditions in the arid
and semi-arid lands of Kenya. Providing accurate and timely information on vegetation conditions
and health—and its probable near-term future evolution—is essential for minimising the risk of
drought conditions evolving into disasters as the country’s herders directly rely on the conditions of
grasslands. Methods from the field of machine learning are increasingly being used in hydrology,
meteorology, and climatology. One particular method that has shown promise for rainfall-runoff
modelling is the Long Short Term Memory (LSTM) network. In this study, we seek to test two
LSTM architectures for vegetation health forecasting. We find that these models provide sufficiently
accurate forecasts to be useful for drought monitoring and forecasting purposes, showing competitive
performances with lower resolution ensemble methods and improved performances over a shallow
neural network and a persistence baseline.

Keywords: machine learning; deep learning; drought; vegetation health

1. Introduction

Drought is estimated to be one of the world’s most costly hazards, accounting for
22% of damage from natural disasters [1]. Droughts impact social and natural environ-
ments around the world [2,3]. For example, in the 21st century alone there have been
severe drought events on every continent, such as the 2010 Russian Drought [4], the 2011
Horn of Africa Drought [5], the 2013–2014 California drought [6], the 2015–2017 Southern
African Drought [7,8], the 2005 Amazon Drought [9], and the 2003 European Drought [10]).
The most recent IPCC report outlines that, globally, agricultural and ecological droughts
are expected to increase (low to medium confidence, Arias et al. [11]).

Vegetation health is a key drought indicator, and forms an important component of
many drought early warning systems (EWS), as reviewed in Rembold et al. [12]. The Euro-
pean ASAP system provides timely information about possible crop production anomalies
based on a time series of satellite-based biophysical indicators for food insecure areas [12].
The European Drought Observatory combines precipitation, soil moisture, and river flow
metrics with a measure of vegetation health anomaly, using the remotely sensed fraction of
photosynthetically active radiation (FAPAR) [13]. Similarly the African Flood and Drought
Monitor uses a 30-day moving average normalised difference vegetation index (NDVI)
to create a percent of normal index [14]. The Kenyan National Drought Management
Authority (NDMA) uses the remotely sensed Vegetation Condition Index (VCI), measuring
the NDVI anomaly, to distribute emergency funds to drought affected counties [15].
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Unlike key hydro-meteorological variables that are forecast using numerical weather
predictions, such as rainfall, temperature, and soil moisture, vegetation health is not rou-
tinely forecast as vegetation properties are poorly parameterised in numerical weather
prediction models. That being said, a range of mechanistic crop models do exist. For ex-
ample, STICS [16], or WOFOST [17]. These models were first developed in the 1960s and
continue to be improved today. However, they usually require detailed description of
species, management, site, and soil conditions, which is not always available in regions
where access to in situ data is problematic. Therefore, in this paper we consider the utility
of using machine learning methods for predicting vegetation health, derived from earth
observation (EO) data.

Artificial Neural Networks (ANN) have shown the ability to model complex and
highly nonlinear systems in situations where data are abundant. They have been used in
hydrology and meteorology since the 1990s [18,19]. Deep learning techniques have been
more readily applied to hydrological contexts in recent years, likely a result of increased
availability data and improved computational capacities [20,21].

In this paper, we combine earth observation data and globally available weather
simulation data (reanalysis data) with deep learning methods in order to explore the
efficacy of a neural network based drought forecasting tool. A similar approach using
gradient boosted regression trees was tested by Nay et al. [22]. They sought to predict the
enhanced vegetation index using spectral information from MODIS, land use information,
and autoregressive information.

In this paper, we test the Long Short Term Memory (LSTM) used elsewhere in hydro-
logical studies for rainfall-runoff modelling [23–26] driven by antecedent weather (derived
from reanalysis products), antecedent vegetation health conditions (derived from earth
observation products) and pixel-attributes (such as topography and land cover types) to
predict future vegetation health one month ahead. We demonstrate the performance of our
deep learning method using Kenya as our case study. Kenya is a climatologically diverse
country with geographically varying vegetation health contexts. Furthermore, agricultural
drought is a particularly pertinent issue in Kenya, where 80% of smallholder farmers rely
on rain-fed agriculture for subsistence [27], where herders in the arid and semi-arid lands
directly rely on grassland abundance, and recent decades in the wider East African region
have experienced severe drought events in recent decades [28].

Our objectives for this research were twofold:

1. To test LSTM based models, used in other hydrological contexts, for predicting
vegetation health;

2. To explore the models and demonstrate they learn physically realistic patterns.

We focused on Kenya for three reasons: (1) environmental diversity, (2) previous work
completed with the national agency as a collaborative stakeholder, and (3) the prevalence
and strengths of droughts in the country. Due to the diverse climatic regimes and agro-
ecological regions in the country, there are different regimes in which to test our model.
From the arid and semi-arid North and North East to the humid shores of Lake Victoria in
the East. Secondly, because of the operational use of EO-based drought indicators (VCI)
by the National Drought Management Authority (NDMA) [15]. For timely reaction to
emerging drought conditions, the NDMA requests fast information with short lead times.
If we can give advance warning (i.e., information about future conditions) to decision
makers they can make their decisions in a more timely manner and ultimately we can help
improve outcomes for people experiencing droughts. Finally, it is a region of the world
that has experienced damaging droughts in previous decades. This also means that there
are drought conditions to test our results on. If we can demonstrate skill then these models
can be used in a region of the world where the benefit of the models can be most felt. We
demonstrate the usefulness of this approach in Kenya, however the datasets we use for
inputs and as our remotely-sensed target variable are globally available, and, therefore,
could be applied elsewhere.
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2. Materials and Methods
2.1. Study Area

We evaluate our approach in Kenya, for the region bounded by latitudes (−5.202,
6.002◦ N) and longitudes (33.501, 42.283◦ E). This covers an area of 580,367 km2 and contains
diverse hydro-climatic regimes. The arid and semi-arid lands cover 80% of the country’s
landmass and see on average less than 500 mm of rainfall per year [29]. The semi-humid
areas are mostly mid-elevation areas where productivity is highly variable with maize
being the dominant crop grown. The highly productive humid regions cover both sides of
the Rift Valley, the valley floor, the humid lowlands on the shores of Lake Victoria, and a
thin strip on the coastal areas in the South East of the country (Network [29]—see Figure 1b).
Some coastal areas receive over 500 mm and the Western and central areas receive over
700 mm of annual rainfall. The mean annual NDVI closely follows this pattern, showing a
thin strip of green areas along the coast, either side of the Rift Valley and around the shores
of Lake Victoria (see Figure 1a). In contrast, the dry Turkana Channel shows low mean
NDVI conditions.

Figure 1. Study region in Kenya shown in the raw spatial resolution of the underlying products,
before preprocessing. (a) Colour scale shows the annual average of the spectral vegetation index,
NDVI, calculated from MODIS Level 3 products, which is proportional to vegetation density. Lake
Turkana has been masked from the image (b) Mean Precipitation. Colour scale shows mean monthly
precipitation calculated from the CHIRPS dataset.

When we aggregate the conditions at a pixel level to different counties we can see
the diversity in conditions across the country. In Figure 2, we consider the seasonality of
precipitation and NDVI for four different counties. Marsabit is a dry county in the North
West of Kenya. Kiambu is a central county, adjacent and North of Nairobi. This is a highly
productive region of Kenya. Homa Bay is on the shores of Lake Victoria and the wettest of
the four counties we display below. Finally, Kwale is in the far South East corner of Kenya,
a coastal county.

2.2. Data
2.2.1. Target Variable: Vegetation Condition Index

Remotely sensed vegetation has been used in many studies as a proxy for the agri-
cultural drought conditions. The Normalised Difference Vegetation Index (NDVI) is a
spectrally derived indicator of vegetation biomass and is commonly used for measuring
agricultural drought conditions [13]. The NDVI product used by the NDMA is derived
from MOD13Q1 and MYD13Q1 NDVI collection 5 products and has been processed using
the methods described by Klisch and Atzberger [15]. These preprocessing steps involve
the application of a modified Whittaker smoother in order to provide consistent, denoised
images (removing clouds and poor atmospheric conditions) every 7 days. The data are
processed to a 1 km resolution and to a 250 m resolution. Since we downscale the data to a
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lower resolution of the precipitation product, we use the 1km product here. This dataset is
available from 2001 until today, for the analysis that follows we used 2001–2018.

Figure 2. (a) Mean NDVI conditions in four counties in Kenya (2002–2018). (b) Mean precipitation
conditions in four counties in Kenya (2002–2018). (c) Spatial context of the four counties, Marsabit,
Homa Bay, Kiambu, and Kwale overlain on a map of the regional topography.

The Vegetation Condition Index (VCI) is an anomaly index that ranks the observed
NDVI for that pixel-time, when compared to all historical NDVI observations. The highest
NDVI observation for that pixel-time in the historical dataset is given a VCI score of 100.
The lowest NDVI observation for that pixel time is given a VCI score of 0. It is computed
as in Kogan [30]. In this way we are linearly scaling the observed NDVI between the
minimum observed NDVI (0) and the maximum observed NDVI (100) for that pixel-time.

VCIi = 100 ∗ NDVIi − NDVImin,i

NDVImaxi − NDVImin,i
(1)

The VCI is calculated specifically for each pixel and each time. Therefore, the season-
ality is removed, such that the VCI value reflects the current condition relative to prior
conditions, scaled to between [0, 100]. One important thing to note is that values outside of
the [0–100] range can be found if the observed NDVI is greater/smaller than the previous
maximum/minimum value. We derived the VCI metrics, defining maximum and mini-
mum NDVI values, from the timesteps in the historical period (2002–2015). This ensures
consistency with the current approach used by NDMA.

To compare results with existing literature [31] we have chosen to predict both the
3 month rolling average VCI (VCI3M), as well as the monthly VCI (VCI1M) one month
ahead in time. The VCI3M metric reflects the most damaging agricultural droughts, those
occurring over an entire season. Therefore, VCI3M is the metric used for quantifying
agricultural drought by the National Drought Management Authority (NDMA).

2.2.2. Input Variables

In Table 1, we list the variables that were included as input to the models. These
variables are split into dynamic (X_dynamic) variables and static attributes for each pixel
(X_static). We thereby condition the response of vegetation health (VCI) (y) to hydro-
meteorological variables (X_dynamic) on static attributes (X_static) that do not change over
time but vary spatially. The latter attributes include soil type and altitude, as well as the
mean conditions for each dynamic variable (hydro-meteorological signatures). The idea
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is that we communicate to the model how different locations will respond differently
to dynamic forcings. Therefore, we are learning a mapping from the forcing variables
(X_dynamic) to the target variable—VCI (y), which varies conditional upon the pixel
attributes (X_static). These pixel attributes could, in principle, be measured anywhere
globally, since the datasets that they are derived from are globally available. These input
features were normalised by removing the mean and dividing by the standard deviation
calculated in the training period for each pixel. In order to describe the changing conditions
elsewhere we took a naive approach. We provided the model with a spatial mean of each
variable at that timestep. For example, there is one value describing the mean precipitation
for each timestep across every pixel (spatial_mean_precip).

Table 1. Variables included in the model. Note that we include 11 features for the month of the year,
since including 12 would create features with perfect collinearity.

Raw Spatial Resolution
(Prior to Resmapling) Feature Model Usage Source

Precipitation X_dynamic CHIRPS [32] 5 km2

Potential Evaporation
(pev) X_dynamic ERA5 [33] 30 km2

Evaporation (e) X_dynamic ERA5 [33] 30 km2

Soil Moisture (4 Levels)
(swvl {1, . . . , 4} X_dynamic ERA5 [33] 30 km2

Altitude X_static NASA SRTM [34] 0.03 km2

Month of Year X_dynamic — —

Vegetation Condition
Index (VCI {1, . . . , 3}) X_dynamic, y MODIS Reflectances processed according to [15] 1 km2

2.2.3. ERA5 Reanalysis

ERA5 is ECMWF’s most recent reanalysis product. Reanalysis data combine models
and observations using data assimilation to provide the best estimate of hydro-meteorological
variables over the Earth [33]. ERA5 has global spatial coverage for 1979 till present at
137 pressure levels (vertical resolution) on an hourly time step. The spatial resolution is
0.31 deg [33]. For this study we use the spatial fields for Potential Evaporation, Evaporation,
and Soil Moisture (Level 1–4).

As far as we are aware, ERA5 variables have not yet been validated over Kenya.
ERA Interim, the precursor to ERA5 soil moisture has been shown to reproduce observed
surface variability, however it overestimated soil moisture, especially in drylands [35]. ERA
Interim Soil Moisture has been used by other studies in the region [36]. Tall et al. [37]
validated precipitation and incoming short-wave radiation in Burkina Faso using in situ
measurements. They found that ERA5 was better able to reproduce observations of both
precipitation and incoming short-wave radiation than ERA Interim.

2.2.4. CHIRPS Precipitation

Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) is the
precipitation product we used for our experiments [32]. CHIRPS is a quasi-global (50◦S—
50◦N) daily precipitation product produced at 0.05 deg spatial resolution. The data combine
in situ station observations and satellite precipitation estimates based on Cold Cloud
Duration (CCD). The data have been validated against in situ measurements and other
gridded data products [32]. Furthermore, it has been used extensively in drought-related
studies in the region [38–40].

2.2.5. NASA SRTM

We used the 1-arc second Shuttle Radar Topography Mission (SRTM) digital elevation
model (DEM) to derive altitude as a static predictor variable in our experiments [34].
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2.3. Models

To forecast VCI, we utilise deep learning techniques often used by hydrologists for rainfall-
runoff modelling, namely the Long Short Term Memory Network (LSTM) [24,25,41–43]. These
models can be considered data-driven state-space models [44], updating an internal state
vector through time by incorporating new information at each timestep. The state vector is
then used to make a prediction of the target variable at that time step.

The standard LSTM architecture was introduced by Hochreiter [45], and has been
described in a number of other hydrological contexts [42,46,47]. For the purposes of this
paper we refer the reader to these references rather than repeating the standard LSTM
conception here.

We also seek to test the Entity-Aware LSTM (EA LSTM) developed by [23], which fixes
the input gate in time, only using static attributes (pixel specific properties) to determine
which information flows from input data to the state-vector. This reduces the number of
weights in the model and, therefore, should be considered a regularisation technique.

To contextualise and benchmark the LSTM based performances, we compare against
a single hidden layer multi-layer perceptron (a fully connected neural network). This
network is made up of an input layer, a hidden layer and an output layer. The hidden layer
has a ReLU activation function and outputs a vector equal in size to the hidden size of the
LSTMs (i.e., 64 values). We compare against this model as a simpler model architecture
that does not take into account the inductive bias towards time-series data exhibited by the
LSTM [45].

We also compare model performances against a persistence baseline. This baseline
predicts that the target month VCI (yt) will be the same as the previous month VCI (yt−1).
This logic can be summarised as ‘predict no change from the previous timestep’. We
compare the models using both RMSE and R2 for the monthly data in the hold-out test
period (2016–2018).

2.4. Experimental Setup

All data have been spatially regridded to the same spatial resolution as the ERA5
product (30 km2) using bilinear interpolation. The data are also temporally resampled
to a monthly resolution. Therefore, we have one value for each variable, each pixel at
each month. The analysis is conducted on monthly resolution data in order to account for
the varying update frequencies of the input data and to ensure reasonable run times for
Kenya-wide experiments.

We use the previous three months of dynamic data as input to our models. We use
information from times t− 3, t− 2, t− 1 as input to predict VCI at time t (one time-step
ahead forecasting). We found that information prior to three months before the target time
could be dropped without penalising performance, thereby speeding up training time and
reducing the number of input features.

Models were trained using the smooth L1 loss function. The smooth L1 loss function,
also known as the Huber loss function, was used with δ = 1. The smooth L1 loss is
less sensitive to outliers than the mean squared error loss. This is because the error is
linear when greater than δ, but squared between [−1, 1]. This has been shown to speed up
training times and to prevent exploding gradients [48]. Models were trained for a maximum
of 100 epochs with a stopping criterion of 10 consecutive epochs without performance
improvement (measured by the smooth L1 loss on the validation data).

loss(x, y) =
1
n ∑

i
zi (2)

where zi is given by:

zi =

{
0.5(xi − yi)

2, if |xi − yi| < 1
|xi − yi| − 0.5, otherwise

(3)
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All models were trained on the period 2002–2015 and tested on the period 2016–2018.
We split the training data into training and validation sets. We trained a single LSTM or
EA LSTM model using data from all pixels. Therefore, we learn a single model for all of
Kenya, testing the ability of these models to make predictions across diverse contexts. This
is in contrast to other models that have sought to predict VCI in different regions of Kenya,
which have traditionally refit each model to each location [31].

2.5. Interpreting the Models

To provide a physical interpretation of model structure and results we took two
approaches, detailed below. The first approach is similar to that taken by Kratzert et al. [23].
Using cluster analysis we interpret how the model has learned to utilise the static features—
those features that vary over space but not time (Table 1)—to group together similar
vegetation health responses to the dynamic forcings. The second approach estimates the
contribution of each input feature to the prediction for a given observation (x–y pair). This
method is translated from game-theoretic approaches to machine learning [49] and gives a
measure of feature importance with respect to a particular prediction.

2.5.1. Clustering Analysis of the Static Embedding Layer

The Entity Aware LSTM learns a mapping of the x_static data (R14) to the learned,
higher-dimensional space (R64) (the “embedding”) for each pixel (the column vectors of the
matrix seen in Figure 3). This reflects how the model prediction of VCI (y) is conditioned
on the pixel attributes (xstatic). The result is a set of weights (valued [0, 1]) controlling
how much information is passed from the dynamic data to the cell memory (C[t]) passing
through each cell of the LSTM sequence.

Figure 3. The output of the static embedding from the EA LSTM input gate. Each pixel is represented
as a column vector where the values ([0, 1]) describe how the model treats new information for that
pixel. The schematic on the right shows a single EA LSTM cell and highlights the location in the
model at which the static embedding is created. Schematic motivated by Olah [47].

What the model is learning, therefore, is how the xstatic data alters the response of veg-
etation health (VCI) to the dynamic data. This extends [23] by applying their methodology
but in a different hydrological context. Rather than reflecting the grouping of hydrological
catchments, we are grouping pixels to produce a data-driven classification of vegetation
health regimes. These clusters highlight areas of similar vegetation health responses to
dynamic forcing (e.g., precipitation).

By clustering the output of the static embedding layer (R64) we can visualise the areas
where vegetation health responds similarly to inputs. These can be inspected visually to
determine whether the spatial patterns that the model represents are qualitatively similar
to known physical distributions of agro-ecological zones.

We test the hypothesis that the EA LSTM model is able to group together similar
pixels. We expect that pixels with similar vegetation health responses use similar parts of
the network.
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2.5.2. Determining Feature Importance

We also estimate the relative importance of different catchment attributes. We calculate
Shapley values [50], which reflect the instance-wise contribution of each input feature to a
specific prediction.

We first calculate the difference between the prediction for the specific instance we
want to explain and a baseline prediction (the δy, or payout).

δy = ŷ− ŷbaseline (4)

We want to assign the δy to each of the input features (our dynamic and static in-
put features). The output values can contribute both positively and negatively to the
model’s prediction.

We calculate Shapley values using the DeepLIFT method [51] implemented using the
SHAP library [49]. Three inputs are needed to calculate the Shapley values:

1. A baseline output to compare our predictions to;
2. Our model prediction we want to explain;
3. The values for the features that we want to assign importance to.

For our baseline output we follow Lundberg and Lee [49], and use the average of
100 sampled model outputs from the training dataset, as baseline model. Intuitively, we are
asking: what would the model predict with no information, and how would the specific
features in a datapoint change the model’s prediction from the no-information prediction?
For our analysis, a global sensitivity measure is calculated for each feature and each pixel
by taking the average absolute Shapley value.

3. Results
3.1. Model Performances

Results comparing the LSTM approaches, our persistence baseline and a simple fully-
connected feed-forward neural network are summarised in Figure 4 and Table 2. This
shows the cumulative density functions of the models and the persistence baseline (BLINE).
All three models were trained on the same input data and their performance evaluated on
the hold-out test set, using all months from 2016–2018.

1. The LSTM and EA LSTM performances are extremely similar;
2. Both the EA LSTM and LSTM significantly outperform the persistence baseline;
3. The simple feed-forward neural network performs very similarly to the persistence

baseline;
4. All models predict the temporally smoother VCI3M better than VCI1M.

The cumulative distribution functions (Figure 4a) show the performance of the model
RMSEs when predicting VCI3M. We can see that the LSTM models significantly outperform
both the persistence baseline and the simple feed-forward neural network. Interestingly,
the simple neural network seems to perform worse than the persistence baseline. This is
shown by the long tail of model performances. The same is observed for R2 (Figure 4b).

Table 2. Average performance metric for each pixel in the domain and for each time in the hold-out
test period (2016–2018). The best in class results are highlighted in bold.

Error Metric Persistence
(BLINE)

Neural
Network (LN) LSTM EA LSTM

VCI3M RMSE 10.20 9.81 6.46 5.88
R2 0.86 0.88 0.95 0.95

VCI1M RMSE 18.84 25.68 13.23 13.23
R2 0.66 0.14 0.83 0.82
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Figure 4. Cumulative density functions of the VCI3M RMSE (a) and R2 (b) for the LSTM (blue),
EA LSTM (orange), fully-connected neural network (LN—red), and the baseline persistence model
(BLINE—green).

From the scatter plots shown in Figure 5, one can see that the predictions of the EA
LSTM group are closely scattered around the one-to-one line, whereas both the LSTM and
the simple neural network show some bias at low or high VCI values.

Figure 5. Scatterplots of the observed VCI values against the predicted values (tested on hold out data
from 2016–2018). The dashed line shows the 1:1 line. (a) shows the persistence baseline performances
(green), (b) shows the linear network performances (red), (c) shows the LSTM performances (blue),
(d) shows the EA LSTM performances (orange).
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3.1.1. Spatial Distribution of Model Results

When we compare spatial performances against the persistence based model in
Figure 6 we can see that the EA LSTM performs well across Kenya. However, the baseline
model fails in the highly productive regions, since the vegetation condition varies rapidly
in time, such that the previous month is not as good a predictor of the following month
in the more productive regions of Central Kenya, surrounding Nairobi, and near to Lake
Victoria. Overall, the patterns show that the EA LSTM is able to significantly outperform
the persistence baseline across Kenya.

Figure 6. (a) EA LSTM RMSE and (b) EA LSTM R2 averaged over each district in Kenya. (c) Persis-
tence baseline RMSE and (d) Persistence baseline R2 averaged over each district in Kenya. Darker
colours represent better performances. Note that LSTM errors are shown in the Appendices, but fol-
low a very similar pattern to the EA LSTM errors.

In Figure 7 we show model predictions for June 2018. What is interesting about June
2018 is that the persistence model significantly underpredicts the VCI. In contrast, with the
information from the hydro-meteorological inputs, the LSTM based models were able to
more accurately predict the degree of greening. The period starting in June 2018 was an
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extremely wet month across much of the country, with associated positive vegetation health
anomalies [52].

Figure 7. Example VCI3M predictions on a pixel level for (a) and July 2016 a developing drought
and (b) June 2018, showing rapid wetting and the associated vegetation response. All models were
trained on identical data from 2001–2015.
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3.1.2. Performance on Drought Classes

The models are trained as regression models, to predict the VCI as a continuous
variable. However, when the VCI is used in operation by the NDMA and other drought
agencies, the agencies are often interested in specific drought classes, such as “extreme” or
“severe” drought [53]. Drought classes and thresholds are also used in index insurances,
where the correct modeling of the worst conditions matters most [54]. To test the model
performance across these drought classes we present the confusion matrix below, where we
use the drought classes described by Klisch and Atzberger [15], which are also used by the
Kenyan NDMA. What we find is that the LSTM models are able to predict well across the
distribution for VCI3M. The EA LSTM predicts the correct drought class with an accuracy
of 78.3% and errors only occur between two adjacent classes. In the analysis that follows,
we only show the EA LSTM model performances.

The confusion matrix in Figure 8 shows the EA LSTM performance across all drought
classes. Overall, the EA LSTM is capable of detecting drought conditions one month
ahead. Interestingly, the most critical drought class (“extreme”) is predicted with higher
accuracy compared to the other drought classes, except the class 5. This demonstrates the
possibility of using the LSTM to monitor and predict negative anomalies, even in those
circumstances where the VCI score is less than 10 (see Table 3). We can see that 74% of
the values were correctly classified, and 25% of values were incorrectly classified on these
negative anomalies.

Table 3. The Vegetation Deficit Index classes defined by Klisch and Atzberger [15].

VCI3M Limits Description Value

x < 10 Extreme Vegetation Deficit 1
10 <= x < 20 Severe Vegetation Deficit 2
20 <= x < 35 Moderate Vegetation Deficit 3
35 <= x < 50 Normal Vegetation Conditions 4

x <= 50 Above normal Vegetation
Condition 5

Figure 8. Confusion matrix using data for the hold-out test set (2016–2018) showing the proportion
of instances the EA LSTM predicts the VCI3M is within the bounds defined in Table 3.
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3.1.3. Comparison with State of the Art

In addition to comparing against a persistence baseline, we compared our models to
the NDMA model, developed by researchers at the NDMA [31]. These published results
were chosen as a useful comparison because we are directly predicting the same target
variable, and because we are interested in the application of these methods to operational
drought monitoring scenarios. Using indices derived from temperature, vegetation health,
evapotranspiration, potential evapotranspiration, and precipitation, the NDMA model con-
sists of an ensemble of 111 fully-connected neural networks and support vector regressions.

Our results are presented in Table 4. The only reported test results of R2 are from
2016–2017, and therefore, we only used those years and recalculated our VCI3M R2 scores.
In addition, the NDMA model predicts a single VCI3M value per district and is trained
on that district. To compare their model with ours, we took a district-wide mean of our
pixel-wise predictions.

Our models are competitive with the NDMA ensemble model, but produce much
more spatially granular predictions. This is particularly encouraging because during the
2016–2017 period being compared, significant droughts were recorded in Wajir [55] and in
Turkana and Marsabit Uhe et al. [40]. These conditions represent the conditions in which
we most want the models to perform well.

It is important to emphasise the differences between these models. The first is that
Adede et al. [31] train an ensemble of models, whereas we train one model. This offers
the potential to provide confidence intervals, however the reported results show only the
ensemble mean prediction. The second is that the spatial granularity of our predictions
are much higher than the NDMA model, where predictions are produced at a district level.
We, therefore, adapted our results to compare directly with the published results. Finally,
our model is applicable across the whole country, rather than being specifically trained for
each of these four counties.

Table 4. Performance (measured using R2) over selected arid and semi arid land districts (following
Adede et al. [31]) for the period 2016–2017. Best in class highlighted in bold. The underlying
timeseries from which these results are calculated can be seen in Figure 9.

District Adede et al. [31] Persistence LSTM EA LSTM

Mandera 0.94 0.66 0.95 0.96
Marsabit 0.94 0.74 0.95 0.96
Turkana 0.91 0.74 0.98 0.98

Wajir 0.96 0.84 0.93 0.94

3.2. Interpreting the Static Embedding

One appealing and unique feature of the EA LSTM is the static embedding layer. We
learn a unique input-gate vector for each pixel in the data. These are the columns in the
matrix in Figure 3. Yellow colours indicate values close to 1 indicating that the cell is
activated and all of the information from the dynamic data corresponding to this cell is
contributing to the prediction of this pixel’s VCI. These values are a function of the pixel’s
static data.

The static embedding permits us to test whether the model was learning physically
realistic groupings of the pixels, based on their vegetation health response (VCI) to changes
in hydro-meteorological variables. We do this by clustering the matrix in Figure 3 using
k-means clustering with a Euclidean distance criterion. This reduces the dimensionality of
the R64 embeddings for each pixel to a lower dimensional representation. We chose k = 4
because there are roughly four (4) major bioclimatic zones in Kenya (Figure 11 of Livelihood
Zones p. 15 or Figure 5 of Agro-Ecological Zones p. 10 [29]). To test whether these groupings
are physically realistic we plotted the pixel clusters geographically (Figure 10).

In Figure 10, we plot the output of the clustering of the learned model embedding.
These clusters represent broad hydro-ecological zones in Kenya. The Turkana Channel
region (shown in purple) is very arid and hot.
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Figure 9. Time series of VCI3M predictions for 2016–2017 in the four arid counties of (a) Marsabit,
(b) Mandera, (c) Turkana, and (d) Wajir. Observed values in black, the green line is the LSTM
predictions, the orange line the EA LSTM predictions. Predictions were made one timesetep (one
month) ahead.

This method offers the opportunity to derive data-driven vegetation health regimes,
showing the diversity of different vegetation responses to hydro-meteorological drivers.
This analysis could be used to better understand the diversity of vegetation health re-
sponses in diverse hydro-climatic regimes in Kenya, and also help to identify areas that
behave differently.

What this analysis offers most importantly, however, is evidence that the model
is learning physically realistic groupings of vegetation health regimes. This offers an
understanding that the model is not only an accurate predictor, but that it is making
predictions for physically-plausible reasons that we can interrogate by visualising this
learned matrix [21].

3.3. Measuring the Contribution of Dynamic Features

We calculated the mean absolute Shapley value [49] to give an estimate of the global
feature importance. This allows us to identify which features are significantly contributing
to the predictions.

The autoregressive component is extremely important for the models (Figure 11). This
reflects the behaviour of 3 month moving average vegetation health anomalies (VCI3M).
They tend to persist from month to month, exhibiting a high degree of autocorrelation.
However, the model significantly outperforms the persistence based model by incorporat-
ing new information from the other hydro-meteorological input features (X_dynamic), as
shown in Figure 4.

Figure 11 shows that other dynamic features also contribute to the predictions, albeit
a smaller absolute contribution than the autoregressive component. Precipitation and
evaporation features offer additional information to the model beyond this autoregressive
component. This makes sense, since the model will need to learn a rudimentary approxima-
tion of the water balance, using the precipitation to describe water entering the land surface
and evaporation describing water leaving the land surface. This learned water balance
is useful for the EA LSTM to estimate vegetation health. It is also interesting that soil
water volume—level 2 (swvl2) is the most informative soil water volume metric. Level 2
corresponds with water between 7 and 28 cm.
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Figure 10. The output of clustering the static embeddings from the Entity Aware LSTM (using
k-means, where k = 4), plotted geographically. The colour of the pixel corresponds with the cluster
that the pixel has been assigned to. The map is relatively insensitive to the choice of k; there remain
four broad clusters, and when k = 3 the coastal and Turkana region are grouped.

Ultimately, these figures give us faith that the model is learning physically realistic
signals, incorporating information from precipitation and evaporation to calculate the
contribution of available water to the vegetation health.

Figure 11. The mean absolute shap value for each input feature, over all of the input times, t− 3, t− 2,
t− 1. Shap values can be positive and negative, and, therefore, we use the absolute value to determine
the overall contribution of that feature. The lagged target feature (VCI3M) is the autoregressive
component in the model. The soil water volumes have been abbreviated to swvl {1, . . . , 4}. The spatial
mean features describe the mean value for all pixels in the training data at that timestep. In order
to show all features on the same axis, and to compare the contribution from the non-autoregressive
dynamic features, we have separated the autoregressive feature with a separate axis.
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4. Discussion and Conclusions

In this study, we have explored the efficacy of two LSTM-based architectures for
vegetation health forecasting. We find that these recurrent neural network architectures
outperform a shallow neural network and the persistence baseline. The most likely explana-
tion for the improved performance of the LSTM compared with the shallow neural network
is the inductive bias towards modelling time-series [45]. The LSTMs are competitive with
the published results for the ensemble of models developed by the NDMA [31], while also
having significantly greater spatial resolution. Although there are difficulties in directly
comparing between different methods, because of differences in input datasets, training
periods and experimental designs, it is important to place these results in the broader
context of previously completed research. We test our models across the whole of Kenya,
and demonstrate the LSTM models are able to make accurate predictions across the country,
despite the diversity of environmental conditions.The forecasts are also robust across the
distribution of VCI values. We tested the model’s ability to predict the VCI classes defined
by Klisch and Atzberger [15]. We are able to perform well across the distribution and also
for the most relevant drought classes “severe” and “extreme vegetation deficit” that trigger
payouts under NDMA’s Disaster Contingency Funds and the Human Safety Net Program.

The results of this study demonstrate that methods used elsewhere in hydrology offer
potential for vegetation health forecasting, and in turn offer opportunities for EO-based
drought early warning systems.

We have also demonstrated that deep learning models offer the potential to combine in-
formation from earth observation data with meteorological variables (such as precipitation
and temperature) from reanalysis data. These datasets are globally available, and demon-
strate the power of deep learning techniques for deriving accurate forecasts of variables of
interest (in our case vegetation health). This can be particularly valuable in cases where we
lack the physical intuition to accurately model these variables using process-based models,
as is the case for vegetation health. It is also valuable because it allows us to generate
accurate forecasts in regions of the world where in situ data are difficult to access or even
non-existent. Moreover, it is easy to envision including either numerical weather forecasts
or (user-defined) weather scenarios into our framework.

One of the key criticisms of deep learning methods is the fact that the models are often
uninterpretable [21]. We attempted to address this shortcoming by using two methods
to determine what the LSTM-based models were learning. The first was the clustering
methodology proposed by [23]. Using the learned representation of the pixel attributes,
we were able to produce spatial clusters of distinct vegetation health regimes. These
data-driven clusters of vegetation health regimes are qualitatively realistic and provide
evidence that the model is learning sensible relationships that can be interpreted physically.
Secondly, we used gradient based methods to estimate Shapley values [51], determining
the relative contribution of input features to a specific prediction. These show that the
autoregressive component contributed the largest amount of information to the EA LSTM.
It is clear that precipitation and evaporation also contributed, however, the importance of
these variables was small when compared with the previous month’s vegetation condition.
Further research should consider how the sensitivity to different features varies with
different lag-times and across space.

We were able to use the Shapley values to make practical decisions about our experi-
ments and model architecture. We experimented with feeding a longer time-series to the
model, but using the calculated Shapley values we determined that the LSTMs did not use
information from more than 3 months before the prediction date. Reducing the length of
the input time-series reduced training time without penalising performance.

Exploring methods for interpreting deep learning time-series models is an area of
active research [56]. In this study we have demonstrated two approaches that help us to
understand what the model is learning and there is good evidence that these relationships
are physically realistic. One might also want to determine the contribution of features over
time, to interpret the seasonal patterns, and the contribution over space, to interpret the
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spatial patterns. Moreover, alternative feature sensitivity metrics exist, such as integrated
gradients [57]. Future work should consider how robust feature importance scores are to
different calculation methods.

There are a number of avenues for further exploration. Firstly, as we are most inter-
ested in drought conditions (VCI < 35) we can experiment with weighting these observa-
tions more heavily, forcing the model to pay more attention to these observations when
performing the backward pass. Secondly, it would be interesting to explore the use of
hydro-meteorological forecasts (rainfall and temperature) as inputs to the model. The use
of (probabilistic or scenario-based) forecasts would potentially also offer the possibility of
extending the forecast horizon beyond the current one month limit. This offers two benefits,
firstly, it provides an estimate of model uncertainty for the one month forecasts. Secondly,
we are able to make forecasts over a longer time horizon.

This study has demonstrated the ability of recurrent deep learning models to predict a
widely used agricultural drought index (VCI) derived from earth observation data. This
confirms and extends other studies that show LSTM models are effective for hydrological
modelling [23,42,46] and for combining the information from earth observation datasets
with weather data [20]. We have explored two methods for interpreting these deep learning
models and find that the results suggest we are learning physically realistic signals. Kenya
has been struck by drought conditions in recent decades and it offers a location where
these techniques can add significant value to decision makers in operational settings.
However, the method and datasets we have evaluated exist globally, and it is the authors
opinion that this method can be generalised to other locations. In this manuscript, we have
presented evidence that our approach has the potential to provide useful information to
drought management authorities in a timely manner. Furthermore, because the method,
datasets and overall approach is location agnostic, there is the opportunity to test a similar
approach elsewhere.
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Abbreviations
The following abbreviations are used in this manuscript:

VCI Vegetation Condition Index
NDVI Normalised Difference Vegetation Index
LSTM Long Short Term Memory Network
EA LSTM Entity Aware LSTM
NDMA The National Drought Management Authority of Kenya

ERA5
European Centre for Medium range Weather Forecasting (ECMWF)
Re-Analysis Dataset

precip Precipitation
e Evaporation
pev Potential Evaporation

swvl{1, . . . , 4}
Soil Water Volume Level 1 (0 cm–7 cm), 2 (7 cm–29 cm), 3 (29 cm–100 cm),
4 (100 cm–289 cm)

RMSE Root Mean Squared Error
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