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A B S T R A C T   

In this paper, we implement and analyse an Attention U-Net deep network for semantic segmentation using 
Sentinel-2 satellite sensor imagery, for the purpose of detecting deforestation within two forest biomes in South 
America, the Amazon Rainforest and the Atlantic Forest. The performance of Attention U-Net is compared with 
U-Net, Residual U-Net, ResNet50-SegNet and FCN32-VGG16 across three different datasets (three-band Amazon, 
four-band Amazon and Atlantic Forest). Results indicate that Attention U-Net provides the best deforestation 
masks when tested on each dataset, achieving average pixel-wise F1-scores of 0.9550, 0.9769 and 0.9461 for 
each dataset, respectively. Mask reproductions from each classifier were also analysed, showing that compared to 
the ground reference Attention U-Net could detect non-forest polygons more accurately than U-Net and overall it 
provides the most accurate segmentation of forest/deforest compared with benchmark approaches despite its 
reduced complexity and training time, thus being the first application of an Attention U-Net to an important 
deforestation segmentation task. This paper concludes with a brief discussion on the ability of the attention 
mechanism to offset the reduced complexity of Attention U-Net, as well as ideas for further research into opti-
mising the architecture and applying attention mechanisms into other architectures for deforestation detection. 
Our code is available at https://github.com/davej23/attention-mechanism-unet.   

1. Introduction 

The Amazon Rainforest represents around 40% of the remaining 
tropical forests on Earth (Hubbell et al., 2008), and provides refuge for 
10% of the world’s species (WWF, 2020). Therefore, the enormous 
carbon sequestering capability of the Amazon Rainforest is pivotal to the 
regulation of the continental, and global climate, since it is estimated to 
store 76 billion tonnes of carbon in the form of 390 billion trees (Müller, 
2020). However, the region has seen large-scale deforestation for agri-
culture, raw materials, and for land to build housing due to rapid 
development of South America (Garcia-Ayllon, 2016). 

This destruction poses an existential threat to the Amazon Rainforest 
and threatens to further worsen the effects of global warming. It is 
estimated that the Amazon’s ability to act as a carbon sink will disappear 
in 2035 (Hubau et al., 2020), and is already showing signs of being close 
to this (Harris et al., 2021), thus resulting in extreme weather such as 
drought and forest fires locally and globally. 

In 2020, an average of 2309.5 hectares of forest per day was 
destroyed (MapBiomas, 2020); roughly equating to an area the size of 
Ottawa, the capital city of Canada every month (Statistics Canada, 
2011). As a result, it has become a global priority to minimise the rate of 
deforestation of the Amazon by designating protected areas, cam-
paigning against companies which produce products in illegally-cleared 
areas of the forest, as well as by regular monitoring (Tollefson, 2015). 
The latter has long been a problem as on-the-ground monitoring is 
infeasible due to the sheer surface area that the Amazon Rainforest 
covers (Gong et al., 1994). This paper looks to further the effort towards 
remotely-sensed deforestation detection/monitoring within the Amazon 
region, but also for use in other forest biomes, through the use of arti-
ficial intelligence (AI) in the form of an Attention U-Net deep neural 
network (Oktay et al., 2018). 
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1.1. Architecture fundamentals 

Attention U-Net is based upon the U-Net architecture (Ronneberger 
et al., 2015), which itself is a specific type of fully convolutional network 
(FCN); a family of neural networks characterised by an encoder-decoder, 
or contraction and expansion, structure. These are designed for semantic 
segmentation, also known as pixel-wise classification. 

U-Net builds upon the standard FCN architecture by introducing skip 
connections, meaning that blocks of layers within the contraction phase 
can pass their output directly to blocks within the expansion phase, 
which greatly improves the ability to extract high-level features from 
images. Previously, U-Net has been applied to deforestation segmenta-
tion of the Amazon Rainforest using Sentinel-2 satellite imagery with 
high success (Bragagnolo et al., 2021), and the aim of this paper is to 
explore the incorporation of an attention mechanism into U-Net to 
improve upon U-Net. 

An attention mechanism aims to replicate the human ability to direct 
focus, or to concentrate on, specific stimuli. In the domain of neural 
networks, this involves learning which parts of the input to focus 
attention on. Attention mechanisms are prominently used within the 
field of natural language processing (NLP), where they focus on sections 
of an input corpus, which is useful within tasks such as sentiment 
analysis (Galassi et al., 2020). 

Attention U-Net is created by adding an attention gate to the skip 
connection within U-Net. Rather than concatenating each upscaled layer 
in the expansion phase with the appropriate contraction-phase layer, the 
upscaled layer is concatenated with the output from the attention 
mechanism, a function of the pre-upscaled layer and the aforementioned 
contraction-phase layer. 

1.2. Previous work 

Machine learning-based forest cover change monitoring of the 
Amazon has been ongoing for almost a decade (Souza et al., 2013), with 
deep learning (DL) methods being the current state-of-the-art. This has 
been demonstrated within comparisons of cutting-edge methods such as 
U-Net, ResUNet (Diakogiannis et al., 2020) and SharpMask (Pinheiro 
et al., 2016), using Landsat imagery of the Amazon Rainforest, versus 
less sophisticated methods such as the multi-layer perceptron (MLP) and 
random forests (de Bem et al., 2020). 

Previous segmentation work using U-Net, and involving Sentinel-2 
satellite data, has also been carried out, such as detecting change 
within Ukrainian forests (Isaienkov et al., 2021), as well as mapping 
irrigation systems (Graf, 2020). Desertification detection within Algeria, 
using Landsat ETM+ satellite data, with a variational autoencoder 
(VAE) (Verstraete, 1986) is another example of the wide variety of 
contexts and approaches that have been used with semantic segmenta-
tion. Importantly, previous applications of Attention U-Net have only 
been within medical contexts, such as brain tumour segmentation (Islam 
et al., 2021), liver computerised tomography (CT) scan segmentation (Li 
et al., 2020) and gland segmentation (Zhao et al., 2020). As a result, we 
believe that this paper represents the first, or one of the first, successful 
applications of Attention U-Net to a land cover segmentation problem. 

It is clear that much work has been undertaken within the realm of 
land cover segmentation, with recent work showcasing the superiority 
of U-Net over other state-of-the-art methods, however there are very few 
which look to test model generalisability or to evaluate performance 
over multiple locations and instead evaluate over a single data source/ 
location (Lee et al., 2020; Irvin et al., 2020). 

Within this paper, we will test Attention U-Net extensively, testing on 
two different biomes as well as testing its generalisability and trans-
ferability. Previous work in this area has not looked to show that a model 
performs well over multiple scenarios, nor has an attention-based 
network, the state-of-the-art in deep learning, been applied to land 
cover segmentation. Therefore, this paper represents the first time such 
work has been done. The advantage of Attention U-Net, as configured in 

this paper, is its much-reduced complexity compared to U-Net and other 
state-of-the-art models. Previous applications of Attention U-Net have 
shown that it outperforms U-Net and if the same were to be for land 
cover segmentation, Attention U-Net represents a state-of-the-art in 
terms of efficiency and performance for land cover segmentation. It is 
important to recognise that deforestation land cover segmentation is a 
hugely important application due to the threat posed by climate change, 
and a model with increased performance and efficiency, which also 
performs at that level over multiple scenarios, is extremely useful for 
researchers monitoring deforestation or measuring other land cover 
from satellite imagery. 

2. Methodology 

2.1. Datasets 

To evaluate Attention U-Net for deforestation segmentation, we used 
three datasets produced from images in the satellite imagery database 
SentinelHub (Sinergise, 2014). The number of images within these 
datasets, as well as forest and non-forest class balance, can be seen in 
Fig. 1. The first dataset, referred to as the 3-band or RGB dataset, is a 
collection of RGB-converted images and deforestation masks, where 0s 
and 1s represent non-forest and forest areas respectively, of the Amazon 
Rainforest (Bragagnolo et al., 2019). In order to have more unseen data 
to evaluate our models, we took five images from the training data and 
added them to the testing dataset. 

The other datasets, referred to as the 4-band datasets, are both 
composed of 4-band RGB + near-infrared imagery, one containing im-
ages from the Amazon Rainforest and the other from the Atlantic Forest 
(Mata Atlantica) (Bragagnolo et al., 2021). Fig. 1 shows the location of 
these biomes, as well as example images which highlight the fact that 
the images are highly concentrated within two geographically distinct 
regions. For training, we randomly selected 250 training images due to 
memory limitations. 

Each image is of shape (512,512,N), where N refers to the number of 
bands. Each deforestation mask is of shape (512, 512, 1). In order to 
produce the images and masks found within each dataset, the author of 
the dataset split a large satellite image into sub-images and produced 
masks using a modified version of the k-means classification algorithm 
with the GRASS-GIS 7.6.1 software suite (GRASS Development Team, 
2020). Images were repeatedly re-classified until the corresponding 
masks had ’a satisfactory rating’. 

2.1.1. Difference between U-Net and attention U-Net 
The architecture of U-Net is similar to that of Attention U-Net, shown 

in Fig. 3, except the number of filters used within each convolutional 
layer, in each respective block, are 64, 128, 256, and 512, with 1024 
filters used in the bottleneck layers, and there are no attention mecha-
nisms. We chose to use 16,32,64, and 128 filters, with 256 filters in the 
bottleneck layers for Attention U-Net through experimentation. When 
keeping the number of filters the same, Attention U-Net has more pa-
rameters and a greater training time than U-Net, but with fewer filters 

Table 1 
Number of images within each dataset, as well as the forest (F) and non-forest 
(NF) class balance within each dataset. Numbers in brackets indicate when 
the number of images used in experimentation differs to the original total.  

Dataset Number of Images & F-NF Class Balance 

Training Testing Validation 

3-band (RGB) Amazon 30 (25) 15 (20) N/A 
51.2% - 48.8% 52.1% - 47.9% N/A 

4-band Amazon 499 (250) 20 100 
50.0% - 50.0% 49.8% - 50.2% 47.8% - 52.2% 

4-band Atlantic Forest 485 (250) 20 100 
33.3% - 66.7% 31.5% - 68.5% 33.8% - 66.2%  
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Fig. 1. Map of the Amazon Rainforest and Atlantic Forest biomes within South America, including images from the 4-band datasets.  

Fig. 2. A network architecture diagram for the Attention Mechanism. The AG marker signifies the location of the attention gate, or attention mechanism.  
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the architecture becomes much less complex in turn causing reduced 
training time. The reason for this is that the attention mechanism, seen 
in Fig. 2, adds complexity in the form of additional parameters. 

In order to evaluate the performance of Attention U-Net, four other 
models were also tested: U-Net, Residual U-Net, ResNet50 (He et al., 
2015) with a SegNet backbone (Badrinarayanan et al., 2016), and 
FCN32 with a VGG16 backbone (Simonyan and Zisserman, 2015). Each 
of the models were trained from scratch, including the backbone ar-
chitecture, in order to provide a fair comparison. 

2.1.2. Training and testing procedure 
The number of epochs and the learning rate used for each network 

can be found in Table 2. These values were found to be the values which 
gave maximal validation accuracy through experimentation. Models 
were trained using different learning rates and epochs until the highest 
validation accuracy was obtained. Once the optimal hyperparameters 
were found, models were not re-trained due to usage limits within the 
Google Colab environment. However, our results cover multiple datasets 
and each show Attention U-Net to be the stronger performer, therefore 
reducing the likelihood of the results being down to weight initialisation 
alone. Also, data augmentation was used on the RGB dataset, including 
rotation, reflection, zooming and shearing, in order to facilitate the need 
for a greater amount of training data. Finally, each image was normal-
ised, such that each pixel channel value was in the interval [0,1]. The 
Adam optimiser (Kingma and Ba, 2017) was used as it provided the 
greatest peak validation accuracy compared to the stochastic gradient 
descent (SGD) optimiser. The Binary Crossentropy (BCE) loss function 
was used as it has been shown to work well within binary semantic 
segmentation tasks (Jadon, 2020). 

After training, each of the models were evaluated on the validation 
data from the dataset they were trained on, and the models trained on 
the 4-band datasets were tested on the test dataset also. Each 4-band 
model was also evaluated on the data from the opposite location, for 
instance the models trained on the 4-band Amazon data were also tested 
on the Atlantic Forest data, and vice versa. This gives us the ability to 
test how transferable each model is to imagery from a different location, 
which could show whether our model could be used successfully for 
deforestation segmentation within other regions globally. The evalua-
tion process of a model involves generating mask reproductions for each 

unseen image by passing an image I into it, obtaining a 512 × 512 × 1 
output with values being in the range [0,1]. These values are rounded to 
the nearest integer to create a binary mask. The performance of a model 
is then evaluated by computing the pixel-wise differences between these 
masks and the original ground truth masks. 

2.1.3. Quantifying results 
To quantify our results, the weighted Precision, Recall, F1-score and 

Jaccard Index, also known as the Intersection over Union (IoU) score, 
were used. The IoU score was selected as it is describes the similarity of 
the predicted deforestation polygons to the ground truth, which is a 
better measure within image segmentation compared to pixel accuracy 
which only measures the number of accurate pixel predictions. 
Weighted metrics were used as they account for class imbalance be-
tween forest and non-forest pixels (Tague-Sutcliffe, 1992). For refer-
ence, the positive class refers to the forest pixels. 

Another essential piece of the analysis of a model is determining its 
computational efficiency; a factor which determines whether it is viable 
for real-world use. If the training time is too high, it may be more 
suitable to opt for a less performant model with lower training time. 
Furthermore, models with large parameter spaces are more likely to 
overfit and have worse generalisability than less complex models (Ying, 
2019). Therefore, to evaluate the efficiency of each model in this paper 
we compare the number of learnable parameters and the total training 
time on each dataset. 

To carry out our experimentation, we used the Google Colaboratory 
Python environment (Google, 2017) with an NVIDIA Tesla P100 16 GB 
GPU and 12 GB of RAM. Models were written with the Keras (Chollet 
et al., 2015) Application Programming Interface (API) of the TensorFlow 
machine learning framework (Abadi et al., 2015). 

3. Experimental results 

3.1. RGB dataset 

When testing the models on the RGB validation data, Attention U-Net 
achieved the highest results overall, as can be seen in Table 5. This is 
evidenced in Fig. 4a where the mask prediction from Attention U-Net is 
markedly more accurate than those produced by the other classifiers. 
There is a reduced tendency to incorrectly classify forest as non-forest, 
false-positives, in contrast to U-Net, which appears to often exaggerate 
the non-forest polygons. The exception to this is the upper red circle 
within the upper Attention U-Net reconstructed mask, where the other 
classifiers fail to identify the extent of the forested polygon being 
highlighted. 

3.2. 4-band Datasets 

3.2.1. Amazon dataset 
A similar result is seen with the validation and test metrics for the 4- 

Fig. 3. A network architecture diagram for Attention U-Net.  

Table 2 
Number of Training Epochs and Learning Rate Used for Training Each Classifier 
on RGB and 4-band Datasets; Values Chosen Through Trial and Improvement.  

Classifier Learning Rate Epochs 

RGB 4-band 

Attention U-Net 0.0005 50 60 
U-Net 0.0001 30 20 
ResNet50-SegNet 0.0001 40 20 
FCN32-VGG16 0.0001 50 50 
Residual U-Net 0.0001 40 20  
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band Amazon data. Table 3 shows that Attention U-Net outperforms 
each of the other classifiers, with a 0.5% improvement in F1-score over 
the standard U-Net. We can see this within Fig. 4b where Attention U- 
Net produces deforestation polygons with greater detail than U-Net and 
gives less false-positives than ResNet50-SegNet. 

3.2.2. Atlantic forest dataset 
Following on from this, Attention U-Net once again outperforms 

other models on the Atlantic Forest data. In particular, Fig. 4 shows that 
the F1-score produced by Attention U-Net is significantly greater than 
for the other models. This difference can be witnessed within Fig. 4c 
where Attention U-Net is again able to identify more complex polygons 
when compared to U-Net. Although ResNet50-SegNet can also accu-
rately identify the same polygons, it also produces more false-positives 
than Attention U-Net. 

3.3. Testing on non-local imagery 

When testing the Amazon-trained models on the Atlantic Forest data, 
in Table 6, we see that Attention U-Net is the most performant overall, 
except for the recall score in which it is bested by U-Net, however more 

importantly it has a higher F1-score and IoU score meaning that the 
reproduced mask is more similar to the ground truth and has a greater 
precision and recall overall. When we look at the results from the 
opposite scenario, the difference in performance between Attention U- 
Net and the other models is much greater suggesting that Attention U- 
Net provides greater transferability to data from a different location than 
the other methods. 

3.4. Computational efficiency 

Fig. 7 shows that Attention U-Net is the most efficient model, con-
taining both the fewest number of parameters, as well as the lowest 
training time for each of the datasets; it is also vastly more efficient, 
training between 20% to 56% faster than other models. The training 
time of both ’4-band’ models was identical, due to being trained over the 
same number of epochs with the same learning rate. 

3.5. Attention U-Net versus U-Net 

Finally, we compare the ground truth masks to the predictions made 
by Attention U-Net and U-Net. Fig. 5 shows that Attention U-Net 

Fig. 4. Comparison of ground truth deforestation masks versus classifier-generated mask predictions. Deforested areas appear in black, and forested areas in white. 
Notable differences are highlighted with red circles. 

Table 3 
Quantitative Evaluation of the Performance of Four Classifiers at Classifying Forest and Non-Forest Areas Within the 4-band Amazon Test and Validation Satellite 
Imagery. Bold Text Identifies the Best Result.  

Classifier Dataset 

Validation Test 

IoU Precision Recall F1-score IoU Precision Recall F1-score 

Attention U-Net 0.9581 0.9790 0.9779 0.9785 0.9516 0.9758 0.9748 0.9753 
U-Net 0.9530 0.9766 0.9752 0.9759 0.9473 0.9738 0.9724 0.9731 
Residual U-Net 0.9432 0.9723 0.9696 0.9720 0.9429 0.9715 0.9703 0.9709 
ResNet50-SegNet 0.9467 0.9733 0.9717 0.9725 0.9416 0.9707 0.9694 0.9701 
FCN32-VGG16 0.8592 0.9210 0.9214 0.9212 0.8557 0.9212 0.9205 0.9208  
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correctly identifies a greater percentage of forest pixels compared to U- 
Net on both the RGB and Atlantic Forest datasets, by 2.47% and 3.06% 
respectively and produces 2.47% and 3.16% fewer false-positives, 
respectively. On the 4-band Amazon dataset, Attention U-Net pro-
duces fewer misclassifications as well as a greater proportion of correct 
predictions overall compared to U-Net; this is highlighted by the fact 
that only 2.21% of pixels are mis-classified. When taking into account 
the correctly identified pixels within each dataset, Attention U-Net 
identifies 1.03%, 0.274% and 1.73% more pixels correctly on the 
respective datasets. When using a model to determine deforested regions 
in satellite imagery in order to estimate total deforested area, false- 
positives are more desirable than false-negatives as deforested area 
being underestimated can potentially caused new deforestation within 
an area to go undetected. However, in this case, as Attention U-Net more 
accurately identifies a greater number of pixels than U-Net the greater 
number of false-negatives is not an issue. 

4. Discussion 

4.1. General comments 

Throughout our analysis, Attention U-Net outperforms the other 
models on forest/deforest segmentation. Despite the Residual U-Net 
providing better results in some cases, Attention U-Net consistently 
provides the best results. The improvement of Attention U-Net upon U- 
Net is likely due to the attention mechanism being able to distinguish 
high levels of detail in complex polygons, resulting in fewer errors 
within mask predictions. It was also shown within our experimentation 

that the 4-band Attention U-Net models are transferable to images from 
a different region, and this could be further confirmed by testing on a 
similar dataset from a different forest. We also found that Attention U- 
Net is more efficient than U-Net, where the training time was up to 30% 
lower yet had noticeably improved performance. In regards to the 
datasets themselves, we can see in Fig. 5 that the Atlantic Forest dataset 
has a large class imbalance in favour of non-forest pixels, which 
accounted for two-thirds of the total number of pixels. This is likely the 
reason why the Atlantic Forest models performed very well when 
evaluated on Amazon data. 

4.2. Limitations 

We conjecture that the performance of classifiers is limited by the 
quality of the ground truth masks, as they were produced using an 
imperfect classification method. It was noted in the dataset author’s 
paper (Bragagnolo et al., 2021) that some model mask predictions 
identify deforested polygons which were not picked up within ground 
truth masks; an example can be seen in Fig. 6. As a result, it could be 
useful for future work to update the ground truth masks by adding in the 
polygons found by our Attention U-Net model and further increasing the 
quality of ground truth masks. 

4.3. Future work 

To build upon the work from this paper, other loss functions such as 
Jaccard loss (Bertels et al., 2019), Dice loss (Sudre et al., 2017), or 

Table 4 
Quantitative Evaluation of the Performance of Four Classifiers at Classifying Forest and Non-Forest Areas Within the 4-band Atlantic Forest Test and Validation 
Satellite Imagery. Bold Text Identifies the Best Result.  

Classifier Dataset 

Validation Test 

IoU Precision Recall F1-score IoU Precision Recall F1-score 

Attention U-Net 0.9120 0.9563 0.9520 0.9541 0.9199 0.9591 0.9571 0.9581 
U-Net 0.8818 0.9387 0.9346 0.9366 0.8883 0.9424 0.9373 0.9399 
Residual U-Net 0.9102 0.9544 0.9514 0.9512 0.9073 0.9542 0.9493 0.9517 
ResNet50-SegNet 0.9043 0.9514 0.9480 0.9497 0.9026 0.9510 0.9466 0.9488 
FCN32-VGG16 0.7182 0.8319 0.8290 0.8304 0.6902 0.8186 0.8077 0.8131  

Table 5 
Quantitative Evaluation of the Performance of Four Classifiers at Classifying 
Forested/Deforested Areas Within the RGB Amazon Validation Set Satellite 
Imagery. Bold Text Identifies the Best Result.  

Classifier IoU Precision Recall F1-score 

Attention U-Net 0.9028 0.9574 0.9526 0.9550 
U-Net 0.8888 0.9571 0.9473 0.9522 
Residual U-Net 0.9127 0.9539 0.9505 0.9493 
ResNet50-SegNet 0.9025 0.9519 0.9470 0.9495 
FCN32-VGG16 0.8198 0.8988 0.8978 0.8983  

Table 6 
Quantitative Evaluation of the Performance of Four Classifiers at Classifying Forest and Non-Forest Areas Within Imagery from the Dataset from the Other Location. 
Bold Text Identifies the Best Result.  

Classifier Training Data Location - Testing Data Location 

Amazon - Atlantic Forest Atlantic Forest - Amazon 

IoU Precision Recall F1-score IoU Precision Recall F1-score 

Attention U-Net 0.8143 0.9222 0.8829 0.9021 0.8722 0.9445 0.9266 0.9355 
U-Net 0.8134 0.9169 0.8847 0.9005 0.8254 0.9323 0.8915 0.9115 
Residual U-Net 0.7707 0.9164 0.8508 0.8824 0.8709 0.9440 0.9256 0.9347 
ResNet50-SegNet 0.7921 0.9156 0.8670 0.8906 0.8453 0.9355 0.9088 0.9220 
FCN32-VGG16 0.6797 0.8246 0.7930 0.8085 0.7913 0.8985 0.8750 0.8866  

Table 7 
Comparison of the Computational Efficiency of Four Classifiers, in Terms of the 
Number of Parameters and Training Time Per Step/Image. Bold Text Identifies 
the Best Result.  

Classifier Parameters (× 106)  Training time (s) 

RGB 4-band 

Attention U-Net 2.01 365 465 
U-Net 31.03 366 650 
Residual U-Net 31.3 744 975 
ResNet50-SegNet 72.27 1092 1475 
FCN32-VGG16 134.3 650 2300  
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derivatives such as DiceTopK and DiceFocal, could be tested as they 
have been successfully used within other segmentation tasks (Ma et al., 
2021). Also, the addition of regularisation layers such as Dropout and 
Batch Normalisation could reduce overfitting and validation loss. These 
were not tested in our experimentation, but have been shown to provide 
improvements to deep learning models in multiple scenarios. 

Since the addition of the attention mechanism allows Attention U- 
Net to perform to such a degree despite having very few parameters, we 
believe that others may have success implementing attention mecha-
nisms into less complex versions of other models to a similar effect. One 
such possibility is the use of a Residual Attention U-Net which would 
contain more parameters than Attention U-Net, and perhaps longer 
training time, but may improve upon the Residual U-Net. 

Finally, we suggest that transfer learning could be used with either of 
the 4-band Attention U-Net models by training on both 4-band training 
datasets. This could allow for greater transferability to images from a 
wider set of locations. It was shown in Section 3.3 that the models 
trained on a single location were transferable, so it is sensible to suggest 
that transfer learning would further improve this and allow for suc-
cessful applicability to forest imagery from around the world. 

5. Conclusion 

In this paper, we have carried out a quantitative analysis of the 
performance of Attention U-Net at the detecting deforestation in South 
American tropical rainforest imagery. We found that the addition of an 

attention mechanism to a less complex version of U-Net provides greater 
performance than the standard U-Net architecture, as well as several 
other state-of-the-art methods. The attention mechanism enables the 
network to retain high levels of spatial information despite containing 
layers of much lower dimensionality than U-Net. Due to the successful 
application of an attention mechanism to a deep neural network for this 
task, we can recommend the use of an Attention U-Net for other land 
cover segmentation tasks in the field. 
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