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Abstract 

Any disturbance of the ionosphere may affect operational activities based on HF communication. The electron 
density is a critical parameter that controls levels of HF-signal absorption. A significant part of the HF absorption takes 
place in the D-layer. The increase of X radiations during solar flares generates noticeable perturbations of the elec-
tron density of the D-layer. However, the ionosphere reacts with some delay to the solar forcing. Several studies have 
addressed this question of ionospheric sluggishness from the time delay between VLF narrow-band transmissions 
and soft X-ray emissions during solar flares. Our study initially considers the interpretation of the VLF amplitude time 
profile. In particular, we show that the maximum of X-ray emission can be associated with a reversal in the VLF ampli-
tude variation with time, i.e. exhibiting a peak or a trough. Then, building on this insight, we perform estimates of the 
time delay between VLF and soft X-rays during 67 events between 2017 and 2021, thus including the major flares of 
2017. We show that the time delay can become negative for flares above X2, proving that soft X-rays are not the initial 
source of ionization in the case of major flares. From a careful analysis of RHESSI data for some events of September 
2017, we demonstrate that radiation above 40 keV (i.e. hard X-rays) is an important forcing source of the ionosphere. 
This is of crucial interest in the frame of space weather forecasting since the hard X-rays are produced several minutes 
before the peak of soft X-rays.
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Introduction
High-frequency (HF, 3–30 MHz) emissions are crucial 
for many communication operators, like aviation, over 
the horizon radars, shipping, broadcasting or security 
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services. The long distance communication HF signal 
relies on reflection by the ionosphere. Thus, any distur-
bance of the ionosphere may affect operational activi-
ties based on HF communication. The electron density 
is a critical parameter that controls levels of HF-signal 
absorption (also called short-wave fadeout when it con-
cerns the 3–30 MHz range) and signal phase-shift (Dop-
pler flash) (Dellinger 1935; Ellison 1950; Siskind et  al. 
2017; Chakraborty et al. 2018; Tao et al. 2020, and refer-
ences therein). The D-layer is the lowest layer of the Earth 
ionosphere ( ∼ 60–90 km). HF signals pass through this 
layer to reach altitudes where they reflected back to the 
ground (crossing the D-layer a second time). The largest 
part of the HF absorption takes place in the D-layer. Thus 
an accurate understanding of electron density variations 
in space and time are necessary.

The D-region electron density depends on several 
parameters, from a complicated chemistry involving 
many neutral species (Verronen et  al. 2016), ionization 
from particle precipitation from the magnetosphere and 
solar energetic radiation. In the following, we concen-
trate only this last parameter. During daytime, the solar 
UV and EUV radiation, in particular Lyman-α ( � = 121.6 
nm), are the main source of ionization of the ionosphere. 
During nighttime, the Lα radiation is drastically reduced 
to the diffusion on the hydrogen geocorona and cosmic 
rays become the main source of ionization. The D-layer 
is thus strongly diminished at night. Other transient phe-
nomena influence the ionization of the D-layer: solar 
flares, by their increase X-radiation (Deshpande et  al. 
1972; McRae and Thomson 2004), Transient luminous 
events (TLE, like sprites, elves of TGF) associated with 
thunderstorm regions (Haldoupis et  al. 2004; NaitAmor 
et  al. 2010; Haldoupis et  al. 2012), and meteorites ( De 
et al. 2011).

The D-layer covers an altitude range both too high for 
balloons and too low for satellites. Only rare and short-
during rocket explorations have provided in situ measure-
ments of the plasma parameters (for example Rose et al. 
1972; Hall 1973). An efficient way to remotely diagnose 
the electron density of the D-layer consists of measur-
ing the time evolution of VLF/LF waves (3–300 kHz) that 
propagate in the waveguide formed by the Earth and the 
ionosphere. For short VLF paths (typically below 2200 
km), the received signal is the sum of a ground wave, i.e. 
the signal propagating directly to the receiver, and a single 
sky-wave, i.e. a wave bounced back to the Earth from the 
D-layer. This indirect method of monitoring the D-region 
has proven to be robust since the 1950s. In particular, it 
has been widely used to study the response of the D-layer 
to the X-ray insulation during solar flares.

Solar flares are eruptive phenomena taking place 
in the solar chromosphere and corona. They are 

characterized by a huge increase of the X-radiation and 
the emission of very energetic electrons in the inter-
planetary medium that can reach the Earth in a few 
hours. Our study focuses on the impacts of the X-ray 
on the D-layer. During flares, X-ray fluxes (0.1–10 nm) 
increase by several orders of magnitude within a few 
minutes and decays within several tens of minutes. This 
radiation is energetic enough to reach the deepest lay-
ers of the Earth atmosphere. It can cause significant 
ionization increases either through a direct ionization 
of the molecular species, in particular nitric oxide NO, 
or through the generation of secondary electrons. The 
reflected VLF signal amplitude and phase are affected 
as a result of the change of the D-layer conductivity 
induced by the electron density growth.

The electron loss processes (attachment, recombina-
tion) delay the ionosphere response to a change in the 
ionization. It is termed as sluggishness of the iono-
sphere or relaxation time �t . Resolving the continuity 
equation and assuming an electron sink term as αN 2

e  , 
with α the recombination rate and Ne the electron den-
sity, Appleton (1953) showed that �t can be expressed 
as:

Estimation of �t is thus an efficient and easy way to 
determine the electron density variation and/or the 
effective recombination factor. Recently, Chakraborty 
et  al. (2021) provided a new definition of time delay, 
based on solar irradiance and ionospheric response 
through HF absorption. We however, conserve the 
original definition as it provides information on the 
electron density at the maximum of ionization. Elli-
son (1950, 1953) noted that the maximum of “Sudden 
Enhancements of Atmospherics” (S.E.A) occurred sev-
eral minutes ( ≈ 6 min in their records) after the maxi-
mum flux of solar flares, as observed in H α (see also, 
Křivský 1962). Owing to the development of rocket 
measurements, the contribution of the X-ray domain 
to D-region ionization was identified (Deshpande et al. 
1972). As a result, Zigman et al. (2007) reconsidered the 
time delay between the soft X-ray maximum and the 
VLF peak time in order to determine the electron-den-
sity time variation during flare development. Basak and 
Chakrabarti (2013), following the same definition of �t , 
showed that the time delay decreases with increasing 
flare flux (see also Tan et al. 2014; Palit et al. 2015). This 
trend is in agreement with the fact that the recombina-
tion factor increases as the reflection layer of the VLF 
wave decreases in altitude, due to the increase of col-
lisions with neutrals. In this study, we follow the same 
procedure but take the opportunity of the September 

(1)�t =

(

1

2αNe
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2017 flares to check if the �t trend is still valid for very 
powerful X-flares. We thus show that for such strong 
flares, hard X-rays plays a significant role, i.e. not only 
soft X-rays as considered in most of studies.

The paper is organized as follows: “Instrumentation 
and data reduction” section describes the experimental 
setup and details the event selection and data analysis 
procedures. “Analysis” section presents the analysis 
of the data, with a specific focus on the role of hard 
X-rays. “Conclusion” section provides the concluding 
remarks.

Instrumentation and data reduction
VLF antenna characteristics
VLF amplitudes are recorded from a SUPERSID instru-
ment Scherrer et al. (2008) located at the Meudon site of 
the Paris Observatory, France ( 02◦13′40′′ East, 48◦48′36′′ 
North, Altitude: 162 m). The magnetic-loop antenna 
is 2m in size. A spectrum is computed between 10 and 
70 kHz, integrating the signal over 1 s. The maximum 
amplitude is conserved for six frequencies (100-Hz band-
width), corresponding to six ground-based transmitters, 
with a period of 5 s. Only amplitude is measured. Four 
stations have been continuously recorded since Janu-
ary 1st, 2017. The two last channels were used for tests 
and finally tuned to selected transmitters at the end of 
2017. Table 1 displays the characteristics of the transmit-
ters regularly followed. All paths (except NAA-Meudon) 
are short enough in distance to Meudon to propagate 
through a single-hop reflection on the ionosphere (as 
checked from the single minimum observed during 
night/day transition). Three transmitters are used in par-
ticular for the present study: GQD, NRK, and NSY. Three 
reasons for this transmitter’s choice. First, as can be 
appreciated from Fig.  1, they are almost aligned, which 
enables to optimize the antenna orientation. Then, they 
have been continuously followed since January 1st, 2017 
and finally they are oriented almost North–South, which 

Table 1 Characteristics of the followed transmitters, ordered by 
frequency increase

The first two columns give the station name and the transmission frequency, 
the third column indicates the distance to Meudon along a Great Circle Path, the 
fourth column gives the azimuth angle of the transmitter to Meudon. The fifth 
column indicates the location of the sub-reflection (SR) area

Station Freq. (kHz) Distance (km) Angle (◦) SR location

GQD 19.58 777 330.9 51N01E

ICV 20.28 1057 146.1 45N06E

GVT 22.10 746 331.9 51N00E

NAA 24.00 5132 265.0 51N15W

NRK 37.50 2234 318.2 56N07W

NSY 45.90 1632 142.7 43N08E

Fig. 1 Great Circle Path (GCP) between the VLF/LF stations used in the analysis and Meudon (France). Violet points indicate the sub-reflection area 
on the ionosphere. Blue circles indicate the transmitter location. Note that NRK, GVT (Skelton, Cumbria), GQD (Anthorn), ICV and NSY are almost 
aligned. The antenna is orientated to optimize their reception
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limits the day–night terminator effects (Clilverd et  al. 
1999). Their sub-reflection areas cover a rather large lati-
tudinal extension, from 43◦ to 56◦.

The antenna is located in a historical castle, well iso-
lated from electromagnetic contamination. This EM-
clean environment limits the noise level to below 0.3dB at 
all frequencies, as determined when the transmitters are 
off. We have empirically estimated that flares above C3.0 
(i.e. 3.10−6 W/m2 ) are reliably detected. A Savitzky–
Golay filter is however also applied to smooth the VLF 
data to increase the accuracy of the analysis.

The time profiles of the VLF measurements will be 
compared to those of GOES, in particular the soft X-rays 
(hereafter SXR) XL channel ( � = 0.1−0.8 nm), and hard 
X-rays (hereafter HXR) from RHESSI (Smith 2002; Lin 
2002). The analysis is also supplemented by RHESSI 
spectra. RHESSI instrument is particularly interesting 
for its broad spectral coverage at high spectral resolution 
and continuous observations during sunlight phase of the 
orbit. The data were calibrated following the standard 
procedure of the RHESSI-GUI package and modelized 
following the Ospex package.

Flare events selection
Only flares above C3.0 class are considered for analy-
sis, in accordance with the antenna detection limit. We 
also restrict to those flares with a solar zenith angle at 
the ionospheric reflection-point above 88◦ to keep only 
events occurring during daytime and remove those too 
close from to day–night transition period. As a result, 70 
flares remained since 2017: 43 C-class, 20 M-class and 
7 X-class. However, due to temporary shut-down of the 
transmitter or very unclear signal, the number of events 
studied from each transmitter varies. We finally analysed 
53 events from GQD and NRK and 47 from NSY. The 
selected flare characteristics are listed in Table 2.

All except one of the X-class flares occurred between 
September 5 and September 10, 2017. During this period, 
an active region, NOAA 12673, was located on the West-
ern side of the solar surface. It produced the strongest 
flares since 2005, an X9.3 on September 6 followed by an 
X8.2 flare on September 10. Those events induced strong 
space weather effects on GNSS and HF propagation 
(Yasyukevich et al. 2018; Redmon et al. 2018), and notice-
able disturbances of the ionosphere and thermosphere 
(see for example Li et al. (2018); Bagiya et al. (2018); Qian 
et al. (2019)).

Time delay computation
Following former works (Zigman et  al. 2007; Basak and 
Chakrabarti 2013; Tan et  al. 2014; Palit et  al. 2015), we 
define �t as the difference between the time of the SXR 

maximum ( TSXR ) and the time of the D-layer ionization-
maximum ( TVLF):

When the SXR emission peak occurs before the maxi-
mum of the VLF signal ( TVLF ), �t is positive. With the 
assumption that the maximum of ionization occurs when 
the VLF amplitude reaches its extrema value, �t can 
lead to an estimate of the effective recombination rate, 
knowing the electron density (Eq. 1). The determination 
of TVLF deserves a short discussion since it can corre-
spond either to a maximum or a minimum perturbation 
amplitude.

Figure 2 displays the VLF time profile for several flares 
of increasing strength and the three transmitters (NRK 
on the top row, GQS in the middle row and NSY on the 
bottom row). Quiet time reference height is highest at 
highest latitudes. Also the lowest altitude a flare would 
reach would be lower at lower latitudes. And this is indi-
cated in the panels.

Irrespective of the flare strength, VLF profiles from 
GQD always display an amplitude increase during the 
flare rise phase. A similar behaviour is observed from 
NRK, except for the very strong X9.3 flare when a sud-
den drop follows the first increase. However, the ampli-
tude from NSY only displays an increase up to M6 flare 
levels, but for stronger flares a decrease is observed 
after an initial increase. Rozhnoi et  al. (2019) presented 
a similar time profile for GQD-Birr path, i.e. UK–Ireland 
path (their Fig. 3). To understand which part of the VLF 
behaviour corresponds to the maximum of ionization 
(flare maximum), we need to compute the interference 
pattern for each path.

The VLF amplitude results from the interference of 
a ground and a sky wave, i.e. a wave propagating on the 
ground following the curvature of the Earth and a wave 
reflected in the ionosphere. The cosine of the path dif-
ference ǫ between the waves gives the signal ampli-
tude modulation. For the fundamental mode (as can be 
expected from the short distance between the selected 
transmitters and receiver), the path difference is given by 
(Delcourt 2003):

with R the Earth radius, h the effective reflection-height, 
ds the distance transmitter–receiver along a Great Circle 
Path (GCP) and � the wavelength of the emitted signal. 
The term cos(2πǫ) modulates the signal amplitude. As 
an example, Fig. 3 presents this modulation function vs. 
the reflection height, for the three paths (NRK-Meudon, 

(2)�t = TVLF − TSXR.

(3)
ǫ =

2

√

2R[R+ h]

[

1− cos

(

ds
2R

)]

+ h2 − ds

�
,
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GQD-Meudon, NSY-Meudon). During X-class flares, 
the reflection height decreases by 10 to 15 km (Fig.  9 
of Thomson et  al. 2005). For illustration purpose, let us 
consider a lowering of 12 km. This range of altitude, indi-
cated by vertical dashed lines, and the arrow indicates 
the evolution of the cosine during the rise phase of the 
flare. During quiet periods, GQD emission reflects typi-
cally around 72±3 km (Grubor et al. 2008; Kolarski and 
Grubor 2015). The lowering of the reflection height dur-
ing the flare corresponds to an increase of the cosine, 
thus an increase of the amplitude. To explain the profiles 
from NRK (see discussion above), the quiet reflection 
height must stand around 81 km, which is compatible 
with a sub-reflective point located at high latitude (large 
solar zenith angle): quiet time daytime reference height 
is higher at higher latitudes (Thomson et al. 2017). Also 
the lowest altitude a flare would influence would be lower 
at lower latitudes, consistent with the reduction in alti-
tude of the left-hand vertical dashed line. During the 
rising phase of the flare, the cosine first increases then 
decreases if the height decrease is large enough (strong 

flare). For NSY, the decreases observed for rather weak 
flares lead us to consider a reflection height during quiet 
period around 71 km, which is also compatible with a 
sub-reflective point with small solar zenith angle. For 
a height lowering above 4 km (i.e. moderate flares), the 
cosine already decreases.

This simple analysis qualitatively explains the main fea-
tures of observed amplitude. It also shows that the char-
acteristic to consider for the computation of the time 
delay is either a maximum or a minimum not necessar-
ily the largest or the smallest amplitude, but a reversal 
of amplitude change, i.e. a peak or a trough as the flux 
starts to decrease. It also shows that this characteristic 
can change with flare strength. Finally, since the interfer-
ence pattern depends on the transmitter–receiver path, 
it must be computed for each situation. More complete 
computations (including all the modes) should indicate 
more accurately the height range to be considered: the 
values given above are just indicative. A short discussion 
of modal propagation can be found in Thomson and Clil-
verd (2001).

M1.0 - 2021-07-03 - NRK

16.5 17.0 17.5
0.71

1.02

1.33

1.65

A
m

pl
itu

de
 (

A
.U

)

M5.8 - 2017-04-03 - NRK

14.0 14.5 15.0
0.59

0.96

1.34

1.71
X1.1 - 2017-09-07 - NRK

9.5 10.0 10.5 11.0
0.063

0.477

0.891

1.305
X2.2 - 2017-09-06 - NRK

8.5 9.0 9.5
0.87

1.27

1.67

2.07
X8.9 - 2017-09-10 - NRK

15.5 16.0 16.5
1.03

1.44

1.86

2.28
X9.3 - 2017-09-06 - NRK

11.5 12.0 12.5
0.71

1.12

1.53

1.93

M1.0 - 2021-07-03 - GQD

16.5 17.0 17.5
0.75

1.25

1.74

2.24

A
m

pl
itu

de
 (

A
.U

)

M5.8 - 2017-04-03 - GQD

14.0 14.5 15.0
1.37

4.70

8.04

11.37
X1.1 - 2017-09-07 - GQD

9.5 10.0 10.5 11.0
2.03

5.34

8.64

11.94
X2.2 - 2017-09-06 - GQD

8.5 9.0 9.5
1.94

7.65

13.36

19.07
X8.9 - 2017-09-10 - GQD

15.5 16.0 16.5
1.87

7.68

13.49

19.30
X9.3 - 2017-09-06 - GQD

11.5 12.0 12.5
2.46

8.35

14.25

20.14

M1.0 - 2021-07-03 - NSY

16.5 17.0 17.5

Time (UT)

1.15

1.59

2.03

2.47

A
m

pl
itu

de
 (

A
.U

)

M5.8 - 2017-04-03 - NSY

14.0 14.5 15.0

Time (UT)

1.1

2.0

2.9

3.8
X1.1 - 2017-09-07 - NSY

9.5 10.0 10.5 11.0

Time (UT)

1.69

2.34

2.99

3.64
X2.2 - 2017-09-06 - NSY

8.5 9.0 9.5

Time (UT)

0.37

1.18

2.00

2.82
X8.9 - 2017-09-10 - NSY

15.5 16.0 16.5

Time (UT)

1.73

2.52

3.31

4.11
X9.3 - 2017-09-06 - NSY

11.5 12.0 12.5

Time (UT)

0.356

1.829

3.303

4.776

Fig. 2 Time profiles for several flares of increasing strength (column) and GQD, NRK and NSY (from top to bottom row). Vertical dashed lines 
indicate the flare peak time (as given by the GOES daily reports). Amplitudes are given in arbitrary units. NRK was off-air for the X1.1 flare, while NSY 
was off-air during the X2.2 and X9.3
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Analysis
Time delay
Before computing the time delay for all the flares, it is 
worth discussing its solar zenith angle dependence. Basak 
and Chakrabarti (2013) concluded that the time delay 

increases with solar zenith angle. Our measurements 
extend the values towards larger zenith angles (due to 
the latitudinal distribution of the transmitters). Follow-
ing their study, we limit the sampling to C-class flares to 
avoid trends linked to flare strength (see below). Figure 4 
displays our results. The tabulated values of Basak and 
Chakrabarti (2013) and Tan et al. (2014) (hereafter BCT) 
have been added for comparison. To estimate the trend, 
we have defined the average time delay within bins of 10◦ . 
They are represented by black  triangles and the dashed 
line is a fit of the data. The time delay increases with solar 
zenith angle up to about 45◦ but remains constant above. 
This constant value serves as reference for the SZA cor-
rection of the data. Note however that the correction 
concerns only about 20% of our sampling.

The time delay is computed for three stations: GQD, 
NRK, and NSY (Fig.  5). As already noted by the above 
cited authors and Palit et  al. (2015), �t decreases with 
increasing flare strength. The new result is the presence 
of negative time delay for strong flares, i.e. >X2. (Tan 
et  al. 2014; Hayes et  al. 2021) also detected some nega-
tive time delays, but surprisingly also for flares as weak 
as C4.4. Figure  2 shows several examples of VLF early 
response for strong flares. The bottom panel of Fig. 5 dis-
plays the results of BCT, with the dashed blue line show-
ing the fit of the data. This fit is reported on the upper 
panel, which displays our results. The C-class flare are 
over-represented compared to other class flares. Each 
class of flare is thus split in nine bins and the average time 
delay is computed within each bin. Finally, those average 
points are fitted to define the general trend (in black). 
Apart from an offset value, the two fits are compatible. In 
our case, the sign change of �t occurs around X2 flares, 
while BCT results would indicate a change around M6.
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Fig. 3 Interference pattern for NRK (top panel) and GQD (middle 
panel) and NSY (bottom panel) vs. the reflection height. The 
sub-panels display the VLF time-profile for the X9.3 flare for NRK 
and GQD, and the X8.3 for NSY (since the transmitter was off for the 
biggest flare). Example of reflection height variation during the flare is 
indicated with the vertical dashed lines, while the arrow indicates the 
direction followed during the flare rise
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The presence of negative �t is puzzling since it implies 
that the D-layer maximum ionization is reached before 
the flare maximum as observed in SXR. This shows that 
during intense flares another ionization mechanism 
must precede the SXR radiation and ionize the D-layer. 
One possible mechanism is the emission of hard X-rays 
(HXR). In the thick-target model of flare development 
(Brown 1971), electrons accelerated at the reconnection 
site in the solar corona are directed downward to the 
denser chromosphere. Collisional bremsstrahlung from 
these non-thermal particles generates hard X-rays at the 
footpoints of the magnetic loops. The heated plasma then 

evaporates and emits thermal soft X-rays. Thus, HXR are 
expected to precede SXR by several minutes. In the fol-
lowing, we explore the HXR time and spectral evolution 
during flares of different classes.

Hard X‑ray time and spectral evolution
Ten solar flares were observed both by RHESSI and our 
VLF antenna. The three strongest flares were selected for 
a complete analysis through the RHESSI reduction pipe-
line: the M5.8 of April 3, 2017, the X2.2 of September 
6, 2017 and the X8.2 of September 10, 2017. Due to its 
eclipse orbit, RHESSI missed the main phase of the X9.3.

The time profiles of several RHESSI energy bands for 
the three selected flares are shown in Fig.  6. For com-
parison, the time profiles of the two GOES SXR channels 
(XS and XL) are displayed on the bottom sub-panels. The 
non-thermal energy range (above 40 keV) gets stronger 
as the flare strength increases. The emission peak above 
40 keV occurs ≈ 90 s before the SXR peak (as seen by 
GOES) for the X2.2, while it reaches up to 7 min earlier 
for the X8.2. This implies that for M to low X-class flares, 
considering peak of SXR emission is satisfactory to com-
pute the �t , since HXR flux is too low or occurs with 
a time delay comparable to SXR. However, for strong 
flares like the X8.2, the intense non-thermal component 
becomes strong enough to start ionizing the ionosphere 
before the SXR starts playing a role. The VLF identifica-
tion of the timing of the peak emission occurs now after 
the non-thermal component peak-time (i.e. around 15:58 
for the 40 keV range and 16:00 for the VLF emission). 
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Fig. 5 �t vs. flare flux from three transmitter (top panel), and results 
from BCT (bottom panel). On the top panel, the red line displays the 
fit of our results, the dashed blue curve is the fit of the BCT data (also 
reproduced on the bottom panel)

Fig. 6 Time profiles for three flares, M5.8 (April 3, 2017), X2.2 (September 6, 2017) and X8.2 (September 10, 2017) from left to right. For each event, 
the top and middle panels display RHESSI profiles (respectively, in the energy band 6 to 40 kev and 40 to 100 keV) and the bottom panel displays 
the two energy bands of GOES. The black arrows indicate the peak time of SXR and the blue arrows the peak time of the 40 keV emission
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This means that the time delay remains positive if the 
peak radiation time is computed from the HXR instead 
of the SXR.

Figure  7 presents the spectra for the three events at 
the time of HXR maximum (top panels) and SXR maxi-
mum (bottom panel). Following the work of Ning (2009), 
they are modelized with a bi-thermal component (for 
the thermal component) and a broken power law (for the 
non-thermal part of the spectrum). An additional pileup 
correction is applied for the strong X8.2 flare (the standard 
pileup correction of the calibration step is conserved for 
the other events). The higher Chi-square of the X2.2 event 
results from the poor fitting when the energy reaches the 
background level above 60 keV. The non-thermal dis-
tribution is relatively flat for the M5.8 and X2.2, with an 
exponent at the HXR peak phase equal to 6.16 and 7.93, 
respectively. The exponent reaches 3.42 for the X8.2 flare 
indicating a much harder spectrum. The photon flux is 
also low or almost equal to the background level for the 
two first flares, while the X8.2 shows a photon flux about 
two orders of magnitude above the background at 40 keV. 
Thus, the non-thermal component, above 40 keV, is prob-
ably playing a major role during the strongest flare.

Conclusion
VLF emissions from ground-based transmitters provide 
powerful measurements to diagnose the ionospheric 
D-layer. A renewal of interest for this ionospheric layer 

has grown in the frame of space weather for its role on HF 
wave propagation and attenuation.

It has long been known that solar flares strongly disturb 
the ionization rate of the ionosphere. EUV and X-radia-
tion are at the origin of this increase in ionization.

As shown through the analysis of the interference pattern 
between a ground wave and a single-hop sky wave propagat-
ing on short paths between transmitter and receiver stations, 
the amplitude behaviour of the VLF signal associated with 
the ionization maximum can be either a peak or a trough. 
Once this behaviour is understood, the computation of the 
time delay between the peak of SXR and the perturbation of 
the VLF signal is possible. The time delay turns negative for 
the most intense flares, i.e. >X2, which implies that another 
ionization source is acting on the ionosphere earlier than 
SXR. Hard X-rays (HXR) have been identified as a possible 
source. They indeed occur before SXR in most of the flare-
development scenarios and produce non-thermal emissions 
for strong flares. The role of HXR is fundamental in the early 
stage of the flare only: the SXR remains the most efficient 
source of ionization after this initial stage.

To evaluate the recombination rate from the computa-
tion of the time delay, the contribution of the hard X-rays 
must be controlled since an error of several minutes in 
the time delay evaluation can result.

Our analysis is based on a reduced number of events, but 
the timing analysis is consistent with two other papers that 
also mentioned negative time delays for flares. Statistical 
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analysis is required to check whether the HXR impact is 
defined only by the flare strength. The position of the solar 
active region on the solar surface should not play a critical 
role since HXR are optically thin radiation.

Appendix A: Flare list
See Table 2.

Table 2 Characteristics of the selected flares

Class Date (MM/DD/YYYY) SXR peak flare time 
[UT]

SZANRK (deg) SZAGQD (deg) SZANSY (deg)

C6.1 01/21/2017 11:08 79.21 73.08 63.25

C4.1 02/22/2017 13:27 67.51 63.82 58.68

C3.2 03/27/2017 11:12 56.67 50.44 40.55

M5.3 04/02/2017 08:02 73.91 68.30 59.14

M2.3 04/02/2017 13:00 52.05 48.15 43.12

C4.2 04/02/2017 15:08 59.95 60.05 61.46

C3.8 04/03/2017 08:14 71.98 66.22 56.83

C3.9 04/03/2017 11:13 53.85 47.63 37.79

C3.4 04/03/2017 13:06 51.81 48.10 43.45

C7.3 04/03/2017 13:24 52.36 49.21 45.55

M5.8 04/03/2017 14:28 56.09 55.00 54.66

C5.5 04/06/2017 12:10 50.49 45.28 37.72

C3.3 04/18/2017 09:41 56.21 49.73 39.13

C8.0 06/02/2017 17:57 67.23 72.29 80.94

M1.3 07/03/2017 16:14 51.98 55.09 61.24

C4.0 07/09/2017 09:12 50.49 44.62 35.25

C5.3 07/09/2017 12:09 34.97 29.60 22.39

C6.3 08/27/2017 15:16 56.70 57.39 59.83

C7.7 09/02/2017 15:41 61.59 62.89 66.09

C8.3 09/04/2017 12:25 49.93 45.18 38.60

M1.5 09/04/2017 15:30 61.08 62.05 64.77

M3.8 09/05/2017 06:40 82.91 78.56 71.41

C5.4 09/05/2017 10:19 56.35 49.79 39.10

C6.9 09/05/2017 13:34 51.90 49.26 46.51

C3.7 09/05/2017 16:18 67.21 69.44 73.88

C4.6 09/05/2017 17:15 74.47 77.93 84.10

M2.3 09/05/2017 17:43 78.24 82.25 89.18

X2.2 09/06/2017 09:10 63.72 57.37 46.98

X9.3 09/06/2017 12:02 50.94 45.64 37.88

M2.5 09/06/2017 15:56 64.79 66.43 70.04

M1.4 09/07/2017 09:54 59.30 52.74 41.99

X1.1(a) 09/07/2017 10:15 57.34 50.77 40.07

C3.0 09/07/2017 12:14 51.12 46.11 38.96

X1.3 09/07/2017 14:36 56.88 56.22 56.55

M8.1 09/08/2017 07:49 74.40 68.90 59.93

C5.9 09/08/2017 12:13 51.50 46.48 39.28

M2.9 09/08/2017 15:47 64.48 65.85 69.08

M3.7 09/09/2017 11:04 54.35 48.10 38.18

X8.2 09/10/2017 16:06 67.47 69.30 73.13

C3.0 09/12/2017 07:29 78.15 72.86 64.19

C8.1 07/02/2018 13:47 73.29 69.99 65.36

C4.6 10/02/2018 13:22 71.58 67.66 62.00
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