
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Harmonisation and integrated 
modelling of UK long-term 
vegetation data: a case study 
focussed on heath & bog 
habitats 

Draft report to Defra under the UKCEH-Defra 
Memorandum of Agreement project 07111 
Task 04 

Authors:   Hannah Risser, Susan Jarvis, Peter Henrys, Lindsay 
Maskell, Sam Tomlinson, Bede West, Simon Smart & Don 
Monteith 



Harmonisation and integrated modelling of UK long-term vegetation data: a case study focussed on heath & 
bog habitats 

UKCEH report … version 1.0                                      2 

 

Date 11/02/2021 

 

Title Harmonisation and integrated modelling of UK long-term vegetation data: 
a case study focussed on heath & bog habitats 

 

Client Defra 

 

Client reference Add Client reference 

 

Confidentiality, 
copyright and 
reproduction 

 

 

UKCEH reference UKCEH Project 07111 Task 04 

 

UKCEH contact details Don Monteith 

UK Centre for Ecology & Hydrology 

Lancaster Environment Centre 

Library Avenue 

Bailrigg 

Lancaster 

LA1 4AP 

  
email: dmonteit@ceh.ac.uk 

 

   

Corresponding author Monteith, Don 

 

 

Approved by Simon Smart 

 

Signed 

 
 

Date 02/03/2021 

  



Harmonisation and integrated modelling of UK long-term vegetation data: a case study focussed on heath & 
bog habitats 

UKCEH report … version 1.0                                      1 

 

Contents 

1 Introduction .................................................................................................................................... 7 

2 Data Integration ............................................................................................................................ 10 

2.1 Introduction to the data integration exercise ....................................................................... 10 

2.2 Data collation and cleaning ................................................................................................... 11 

2.2.1 LTMN data cleaning ....................................................................................................... 11 

2.2.2 ECN data cleaning .......................................................................................................... 12 

2.3 Data filtering .......................................................................................................................... 12 

2.4 Species name harmonisation ................................................................................................ 14 

2.5 Cluster analysis ...................................................................................................................... 15 

2.6 Covariate data ....................................................................................................................... 16 

2.6.1 Climate variables ........................................................................................................... 16 

2.6.2 Atmospheric Deposition ................................................................................................ 16 

2.7 Indicator values ..................................................................................................................... 17 

2.8 Creation of modelling dataset ............................................................................................... 17 

3 Indicator selection ........................................................................................................................ 18 

3.1 Introduction ........................................................................................................................... 18 

3.2 Indicators ............................................................................................................................... 18 

3.2.1 Ellenberg fertility score ................................................................................................. 19 

3.2.2 Ellenberg R ..................................................................................................................... 19 

3.2.3 Ellenberg Moisture ........................................................................................................ 19 

3.2.4 Ellenberg Light ............................................................................................................... 19 

3.2.5 Positive and negative habitat quality indicators ........................................................... 19 

4 Comparison of trends in vegetation metrics between individual schemes ................................. 21 

4.1 Introduction to the scheme comparison ............................................................................... 21 

4.2 Exploratory data analysis ...................................................................................................... 21 

4.3 Results of individual scheme models .................................................................................... 23 

4.3.1 Countryside Survey models ........................................................................................... 23 

4.3.2 Environmental Change Network models....................................................................... 24 

4.3.3 Long Term Monitoring Network .................................................................................... 24 

4.3.4 National Plant Monitoring Scheme ............................................................................... 24 

4.4 Summary of individual scheme trend models ....................................................................... 26 

4.4.1 Comparison of Ellenberg N trends ................................................................................ 27 

4.4.2 Comparison of Ellenberg R trends ................................................................................. 28 

4.4.3 Comparison of Ellenberg W trends ............................................................................... 29 

4.4.4 Comparison of trends in CSM positive indicator richness............................................. 29 



Harmonisation and integrated modelling of UK long-term vegetation data: a case study focussed on heath & 
bog habitats 

UKCEH report … version 1.0                                      2 

 

4.4.5 Comparison of trends in CSM negative indicator richness ........................................... 29 

5 Vegetation simulation .................................................................................................................. 31 

5.1 Introduction to the simulation of vegetation communities .................................................. 31 

5.2 The conceptual approach ...................................................................................................... 31 

5.3 The simulation routine .......................................................................................................... 32 

5.3.1 Step 1: Defining the target population .......................................................................... 32 

5.3.2 Step 2: Estimating the total species number ................................................................ 33 

5.3.3 Step 3: Determining the species pool ........................................................................... 33 

5.3.4 Step 4: Assigning cover values ....................................................................................... 33 

5.3.5 Step 5: Populating the grid ............................................................................................ 34 

5.3.6 Step 6: Reality checking ................................................................................................. 34 

5.4 Sample according to scheme protocols ................................................................................ 35 

5.4.1 Sampling ........................................................................................................................ 35 

5.4.2 Comparison ................................................................................................................... 35 

5.5 Results ................................................................................................................................... 36 

5.6 Summary ............................................................................................................................... 39 

6 The integrated vegetation model: temporal change ................................................................... 40 

6.1 Introduction to modelling temporal change ......................................................................... 40 

6.2 Integrated temporal model results ....................................................................................... 41 

7 The integrated vegetation model: trend attribution .................................................................... 43 

7.1 Introduction to the trend attribution modelling ................................................................... 43 

7.2 Covariates .............................................................................................................................. 44 

7.2.1 Climate covariates ......................................................................................................... 44 

7.2.2 Atmospheric S and N deposition covariates ................................................................. 44 

7.2.3 Centring the response variables .................................................................................... 46 

7.3 Hypothesis testing ................................................................................................................. 47 

7.3.1 Hypothesis 1: N deposition has driven long term increase in Ellenberg N ................... 47 

7.3.2 Hypothesis 2: Reductions in acid (S) deposition have driven a long term increase, 
hence recovery, in vegetation as measured by mean Ellenberg R. .............................................. 48 

7.3.3 Hypothesis 3: The eutrophying impact of cumulative N deposition is most evident 
where recovery from acidification has been greatest i.e. the increase in Ellenberg N is 
dependent not only high N deposition but has increased to a greater extent where high N 
deposition and declining S deposition coincide. .......................................................................... 53 

7.3.4 Hypothesis 4: A climate favourable to nitrogen-loving plants is associated with a 
greater increase in Ellenberg N. ................................................................................................... 54 

7.3.5 Hypothesis 5: An increase in total rainfall has increased the occurrence of plants of 
wetter conditions or/and decreased plants of drier conditions. ................................................. 54 

7.3.6 Hypothesis 6: An increase in precipitation, through its influence on soil moisture, also 
explains increases in Ellenberg R in addition to a separate effect of decreased S deposition. ... 55 



Harmonisation and integrated modelling of UK long-term vegetation data: a case study focussed on heath & 
bog habitats 

UKCEH report … version 1.0                                      3 

 

7.3.7 Hypothesis 7: An increase in precipitation in addition to a separate effect of N 
deposition is correlated with an increase in Ellenberg N. ............................................................ 56 

7.4 Attribution modelling discussion........................................................................................... 57 

8 Discussion and conclusions .......................................................................................................... 58 

Acknowledgements ............................................................................................................................... 62 

References ............................................................................................................................................. 63 

Appendix 1 Details of data exploration for each vegetation scheme ................................................... 65 

1.1 Countryside Survey data exploration ..................................................................................... 65 

1.2 Environmental Change Network data exploration ................................................................. 77 

1.3. Long Term Monitoring Network data exploration ................................................................ 88 

1.4. National Plant Monitoring Scheme data exploration ............................................................ 99 

 ........................................................................................................................................................ 110 

 

 

 

  



Harmonisation and integrated modelling of UK long-term vegetation data: a case study focussed on heath & 
bog habitats 

UKCEH report … version 1.0                                      4 

 

Executive Summary 
 
The primary aim of this project was to determine the potential to combine the vegetation data of some 
of the most established national monitoring and survey schemes within a single analysis in order to 
maximise our understanding of long-term vegetation change across the UK. Differences in 
methodologies between schemes has been an impediment in attempting to integrate data across them 
in the past. 

The schemes of interest were the UK Environmental Change Network (ECN), the Countryside Survey 
(CS), Natural England’s Long Term Monitoring Network (LTMN) and the National Plant Monitoring 
Scheme (NPMS). 

The project focussed on heath and bog vegetation as a proof of concept.  

Computer scripts were written at the outset in order to efficiently extract all vegetation data (i.e. not 
only from heath and bog) from the various scheme databases and other repositories. These scripts can 
be re-used to provide updated downloads whenever a scheme refreshes its data holdings. 

The UKCEH project team worked with Natural England staff in standardising raw data formats for LTMN 
data to improve the efficiency of extraction of the LTMN data and assist NE more generally in the 
management and curation of these datasets.  

Species codes used by each scheme were harmonised through the production of a common species 
dictionary. Code was produced as a package “vegtaxon”, in the statistical programming language R. 
This matches Latin names of UK vascular plant species to the current accepted name.  The R package 
has value beyond the current project, including potential application to Defra’s developing UK APIENS 
project that reports on air quality impacts on ecosystems.   

All plots from the fully integrated vegetation dataset that, at any point in their records, showed the 
necessary characteristics of either heaths or bogs, were then identified. This approach has already 
been re-applied under a separate 25YEP indicator project within the current UKCEH-Defra MoA, 
focussed on unimproved grassland.  

A range of the most appropriate vegetation indicators were subsequently selected to characterise 
spatial and temporal variation in the heath and bog assemblages. These were Ellenberg R (soil acidity), 
Ellenberg N (soil fertility), Ellenberg W (soil wetness), and sets of both positive and negative Common 
Standards Monitoring (CSM) indicators. 

Trends over time in the Ellenberg and CSM metrics were then modelled separately for the four 
schemes. Tight agreement was observed between most schemes in rates of change in the selected 
Ellenberg metrics, and particularly with respect to Ellenberg N and Ellenberg R, although there were 
significant differences in the average levels between schemes. In contrast, there was substantial 
disagreement between schemes in the temporal patterns of the CSM metrics. 

An entirely novel vegetation sward simulation approach was developed. This allowed a virtual 
assessment of the importance of various differences in sampling protocols between schemes in 
influencing the value of vegetation metrics and their sensitivity to long-term shifts in vegetation 
assemblages. The simulations suggested that plot size was not important in determining mean 
Ellenberg scores, whether the vegetation data were cover weighted or not. The simulations provided 
further evidence that the calculation of CSM scores is much more sensitive to the specific scheme 
sampling methodologies.   

Simulation of variation in the plot assemblages across an environmental gradient, as a surrogate for 
temporal change, demonstrated that that estimates of change in Ellenberg metrics were consistent 
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across schemes. While the simulation work has proved very successful, producing authentic results, 
more work is recommended to further improve realism, e.g. by including requirements for the spatial 
clustering of some species. It is envisaged that there will be widespread application of the method in 
developing better models for assessing vegetation survey data, and potential future survey design.  

Informed by the assessment of similarities and differences in the temporal models for the individual 
schemes, and by the simulation work, appropriate structures were then developed for models of each 
vegetation indicator, integrated across schemes. The models therefore included random slopes and 
random intercepts to allow for differences between schemes.  

The integrated models for the Ellenberg metrics provided consistent and precise estimates of change 
over time for all three of them. In all three cases, Ellenberg scores for heath and bogs were found to 
be increasing significantly over time. 

We found little evidence for the value of combining data from multiple schemes for the assessment of 
change in the CSM metrics. The direction of trends in the integrated CSM models was highly uncertain 
as a result of conflicting trends in the individual datasets. Further work is required to better understand 
the reasons for the between-scheme disparities. 

In the final round of modelling, spatially explicit environmental covariates representing air pollutant 
loads (sulphur and nitrogen) and climate, were introduced in an attempt to explain variation and 
change in the integrated Ellenberg signals.  Our approach was unusual, in that it first standardised both 
response and explanatory variables in order to remove the potential influence of spatial effects, which 
then allowed a more robust test of hypotheses concerning the drivers of temporal change.  

The attribution analysis provided new evidence demonstrating the strength of the link between 
nitrogen deposition and long-term change in Ellenberg N (soil fertility) in UK heath and bog vegetation. 
Ellenberg N was found to increase in CS, ECN and LTMN datasets at a remarkably similar rate. This is 
particularly striking, given that LTMN commenced only in 2010, and suggests that this trend towards 
more-nutrient loving species has been occurring over many years and appears to have continued until 
quite recently at least. It was not possible to determine whether the continuing rise in Ellenberg N 
represents a lagged floristic response to the historical nitrogen load, or whether there is sufficient 
contemporary deposition for these communities to be continuing to respond dynamically to continued 
soil N accumulation. This is an important distinction from an air quality policy perspective, but requires 
further investigation. 

The attribution analysis also provided support for the hypothesis that changes in sulphur deposition 
have been a key driver of change in Ellenberg R (soil acidity), although it has not so far been possible 
to discount the importance of other drivers. We found some evidence that the response in Ellenberg 
R to the reduction in S deposition had been stronger in habitats with assemblages indicative of less 
acid conditions. This needs to be explored in further detail, but it is possible that this may at least in 
part be linked to the role of buffering of pollutant acidity by peaty soils that are rich in (natural) organic 
acids. 

We found tentative evidence that inclusion of precipitation as an additional covariate strengthened 
the apparent role of sulphur deposition. However further work is required to investigate these 
relationships in more detail. In particular, there is a need to provide a more finessed range of potential 
climate covariates, including seasonal temperature and precipitation variables, and to consider more 
complex non-linear approaches.  

Our attempts to model change in Ellenberg W (soil wetness) were more equivocal. Again a more 
detailed breakdown of climate variables, and possibly the introduction of additional metrics such 
reflecting, for example, water balances, will be necessary to make further advances here.  

In summary, the attribution work adds considerable strength to a developing evidence base that 
suggests that terrestrial vegetation in the UK is changing progressively, albeit very gradually, in 
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response to long-term shifts in in the deposition and accumulation of air pollutants, but more work is 
required to pin down these relationships with greater confidence, particularly with respect to 
Ellenberg R.  More work is also required to better understand the drivers of the national increase in 
Ellenberg W in heath and bogs. 

Overall the project has demonstrated that there is considerable potential for integrating data for these 
surveys, and possibly others, in order to shed new light on the nature and causes of vegetation change. 
The fact that there is a clear regional shift in the Ellenberg metrics over recent decades, that can be 
linked directly to regional changes in drivers (particularly with respect to air pollutants), needs to be 
taken into account when assessing the potential impact of other more local drivers, including 
Environmental Land Management (ELM), on these heath and bog habitats at least, and possibly others.  

The work also highlights the individual value of all these monitoring schemes, each established for a 
different reason, and the added value of bringing their various spatial and temporal strengths together 
in a single analysis. The differences in characteristics such as extent, frequency and co-location should 
be seen as a strength of the UK’s diverse set of long-term environmental monitoring and observation 
assets. 

While ECN plots are much fewer in number and much less geographically spread than the other 
surveys, our analysis showed that the trends identified in the data are still broadly consistent with the 
changes observed more widely across the UK. Since the ECN plots are monitored more frequently, and 
surveys are co-located with range of other environmental measurements, including air and soil 
chemistry and meteorology, they have particular potential for testing cause-effect hypotheses.  

The project represents a major step forward in our ability to exploit the interoperability of what until 
now have been considered rather disparate sources of data. There is substantial potential to explore 
the signals we have begun to quantify, decipher causes of change within heath and bog habitats in 
much greater detail, and extend the approach to other habitats.  
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1 Introduction 
The composition of vegetation provides a strong indication of the state of the immediate environment, 
including the structure, functioning and diversity of the ecosystem, and is widely applied in the 
assessment of habitat condition. Long-term monitoring of composition, therefore, provides valuable 
insights into ecosystem resilience to environmental pressures, and the causes and consequences of 
environmental change. Vegetation monitoring also conveys information on changes in the properties 
of natural capital, including biodiversity, and the delivery of ecosystem services, and is therefore 
fundamental in assessing the efficacy of policy measures developed to protect and/or restore 
ecosystems. 

Defra have identified three current areas where assessment of vegetation monitoring data at a 
national scale should benefit policy development. These are: 1) Development of indicators for tracking 
progress in delivering the 25 Year Environment Plan (25YEP); 2) Support for condition assessment of 
SSSIs and other designated sites, and 3) Meeting the commitments of the National Adaptation 
Programme (NAP) for climate change.  

There is mounting evidence that vegetation communities have been changing gradually over wide 
areas of UK semi-natural habitat in recent years. The spatial scale of change suggests that the key 
drivers operate over a similar range, implicating the effects of either, or both, changes in air pollutants 
and climate. There remains a need, however, to better quantify the nature and extent of these regional 
scale changes in vegetation, and to confidently attribute causes, in order that other more localised 
impacts, such as targeted environmental stewardship, can be also be evaluated appropriately. 

A recent analysis of the long-term datasets of the UK Environmental Change Network, highlighted 
widespread increases in vegetation species richness across a range of semi-natural habitats (Rose et 
al. 2016). The changes were most closely linked with concomitant increases in Ellenberg R (a vegetation 
indicator of soil acidity) and consistent, therefore, with evidence for a national-scale response to 
declining soil acidity, a consequence of large reductions in acid deposition over recent decades. There 
was also an indication of increases in Ellenberg W (and indicator of soil wetness) in drier lowland 
habitats.  

A number of studies of vegetation across the UK and wider Europe have also highlighted long-term 
increases in Ellenberg N (an indicator of soil fertility and associated, in non-agricultural environments, 
with levels of atmospheric nitrogen deposition). Although Ellenberg R and Ellenberg N scores for 
individual taxa tend to be broadly correlated, the two indicators have been developed to reflect effects 
of different drivers, so assessment of changes in both is useful in determining the likely causes of 
vegetation change. In some circumstances common shifts in both could reflect related processes, such 
that a reduction in soil acidity (increase in Ellenberg R) could enable the return of more acid sensitive 
species that are better able to respond to a legacy of accumulated of soil nitrogen (thus an increase in 
Ellenberg N). Clearly, therefore, it is vital that both indicators are considered together, and that 
hypotheses are developed that best enable the discrimination of these two potential drivers of change.    

The exploration of competing hypotheses surrounding the causes of vegetation change, and the 
separation of impacts of local management from effects of regional-scale pressures will be most 
effectively achieved through the integration of different types of data (biological, physical, chemical 
and management), both measured and modelled. In addition, efforts should made to draw in and 
integrate vegetation monitoring data from as many reputable sources as possible. Fine-scale intensive 
monitoring is particularly suited for investigation of short-term variability, and is often best placed to 
establish direct links between drivers and responses, but if possible should be combined with data 
collected from more occasional surveys capable of capturing much wider-scale patterns of change. 
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There are significant challenges, however, in bringing together vegetation datasets developed under 
different monitoring and survey programmes. There is no single established UK vegetation monitoring 
protocol, and most monitoring and survey schemes have unique methodological attributes that best 
suit their individual aims. Protocols differ, for example, with respect to the size and replication of 
survey plots, and approaches to assessing species cover. To complicate matters further, there are often 
differences between schemes in the names used for some species and the degree to which varieties, 
and species may be lumped into higher level taxonomic categories.  

The efficient and robust integration of vegetation data from across schemes to enable a single 
integrated analysis, the ultimate aim of this project, therefore involves a number of steps. First, 
computer scripts are required to enable efficient extraction of data from host databases, and any 
potential programme-specific quirks in the consistency of formatting overcome. Second, taxonomic 
differences between programmes need to be addressed through the creation of a single species 
dictionary for the project.  Third, decisions are required on the range of metrics to be applied in the 
analysis. Finally, the potential influence of programme-specific differences in sampling protocols on 
the calculation of the selected vegetation metrics and sensitivity of those metrics to detect vegetation 
change needs to be assessed, so that protocol-specific effects can be included, if necessary, in 
subsequent analysis. 

This project embodies all of the steps outlined above, and the subsequent assessment and attribution 
of change in vegetation metrics in the integrated dataset. Four nationally applied vegetation 
monitoring/survey schemes were identified for integration, namely the UK Environmental Change 
Network (ECN), the Countryside Survey (CS), Natural England’s Long Term Monitoring Network (LTMN) 
and the National Plant Monitoring Scheme (NPMS).  

The work presented in this report covers three sub-work packages outlined in the original 
Memorandum of Agreement, namely: 

Task 3.2: Data Integration  

Develop an approach for extraction and harmonisation of data from a range of national plant 
monitoring programmes, and subsequent generation of indicator metrics. 

Task 3.3: Understanding 25 YEP Indicator sensitivity to pressures and spatial scaling.  

3.3a)  Test compatibility of a range of vegetation indicators derived from each programme. 

3.3b) Investigate metric performance, e.g. trend comparisons, signal to noise ratios; seasonal and 
inter-annual variation relative to long-term baselines. 

Task 3.4:   Understanding pressures on 25 YEP Indicators 

3.4a)  Analyse relative influences of air pollution and climate on terrestrial vegetation indicators 

3.4b) Investigate the potential of resulting statistical models to predict vegetation response to these 
regional-scale drivers across a range of semi-natural habitats 

It was agreed with Natural England at the project start-up meeting that, given the resources and 
timescale for the project, it would be necessary to restrict the scope of habitats assessed, but it was 
also recognised that boundaries between broad habitat groupings are often blurred and that 
vegetation monitoring plots sometimes cross these boundaries over time. Consequently both heaths 
and bogs were selected for specific attention, with a view that this project should be considered a 
“proof of concept” study, with a view to extending the work to other habitats in future. 

The following chapters detail the series of steps set out above. Chapter 2 (Data Integration) describes 
the vegetation and driver data sources, development of the data extraction code, issues and 
recommendations to data providers regarding data recording and reporting protocols to facilitate 
efficient external data retrieval, taxonomic harmonisation and development of a project species 
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dictionary, and our approach to heath and bog plot selection. Chapter 3 (Indicator Selection) considers 
the potential range of indicators available to the project and the final rationale for selection. Chapter 
4 (Comparison of trends in vegetation metrics between individual schemes) describes the 
development of programme-specific models to describe change in vegetation metrics and presents 
and compares the resulting trends. Chapter 5 (Vegetation Simulation) outlines the development of a 
virtual (i.e. computer based) vegetation sward simulator, and its subsequent application in exploring 
the influence of the different monitoring protocols on the calculation of metric scores and their relative 
sensitivity to change over time, in order to inform the need for terms accounting for protocol 
differences to be included within a final integrated model.  Chapter 6 (The integrated vegetation 
model: temporal change) presents the outcomes of the integrated modelling with respect to testing 
for and quantifying overall trends in metrics over time, while Chapter 7 (The integrated vegetation 
model: trend attribution) is focussed on testing a range of hypotheses around the drivers of vegetation 
change via the fitting of environmental covariates. Finally, in Chapter 8, we summarise outcomes of 
the project, consider the primary research findings, assess the scientific and policy value of the work 
and make recommendations for further developments of the approach.   
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2 Data Integration  

2.1 Introduction to the data integration exercise 

We collated and integrated vegetation plot data from the Countryside Survey (CS), the Environmental 
Change Network (ECN), the Long Term Monitoring Network (LTMN), and the National Plant Monitoring 
Scheme (NPMS). Information on the history of each scheme, and a brief description of the types of 
data they record, are provided below. 

The UKCEH CS has recorded plant and soil data in Great Britain since 1978. Plants are surveyed at over 
591 1 km squares, chosen in an unbiased manner to represent all major UK habitat types across Great 
Britain (Carey et al. 2008). Historically, these squares have been surveyed on average every 10 years. 
Since 2019, surveys have taken place within a 5-year rolling programme. At each square, surveyors 
record, on average, 29 vegetation plots of different types, in addition to collecting data on soils, 
freshwater habitats and invertebrates, and land cover and landscape features. CS surveys are 
undertaken by professional surveyors. 

The ECN has amassed data on plants, invertebrates, vertebrates, soils, air, water, weather, and climate 
at a limited number of terrestrial sites located across the UK since 1992 (Sykes and Lane, 1996). The 
11 sites still in operation were established between 1992 and 1998.  They cover a range of habitats 
and were selected on the basis of their size, the availability of past research at the site, known history 
of management and relative stability of land management. They provide broad geographical coverage, 
a range of environmental conditions and habitats, some guarantee of long-term physical/financial 
security, and are mostly considered to contain high-quality habitats.  The ECN vegetation monitoring 
protocols comprise both high frequency (1 to 3 yearly) “fine grain” monitoring and lower frequency (9 
year), “coarse grain” monitoring. ECN surveys are undertaken by ECN site managers with botanical 
training and other professional surveyors with detailed knowledge of the individual sites. 

Natural England’s Long Term Monitoring Network has been recording weather, air quality, vegetation, 
soil, bird, butterfly and site management data at 37 sites across England since 2010 (Nisbet et al., 
2017). The LTMN was designed to be complementary to the ECN, using some of the same protocols, 
including the coarse grain vegetation protocol. Most, but not all, LTMN sites are National Nature 
Reserves (NNRs) and were chosen to provide a wide geographical spread for a wide range of broad 
habitats. In common with ECN, therefore, LTMN sites tend to be under relatively stable management 
and of high environmental quality. LTMN surveys are undertaken mostly by Natural England staff 
drawn from a variety of roles and overseen by professional surveyors. 

The National Plant Monitoring Scheme, launched in 2015, uses citizen science surveyors to record 
vegetation data at 1km squares across the UK (Pescott et al., 2019). The NPMS is unique in that it 
involves participation of recorders with a wide range of botanical skill levels. Recorders conduct 
surveys at one of three levels; wildflower, indicator or inventory. The wildflower and indicator levels 
survey vascular plant species from a specified list of indicator species for each habitat, whereas the 
inventory level involves the recording of all species. Recorders are encouraged to visit their plots twice 
yearly. 

Although it had been decided at the outset to concentrate on plots representing heath and bogs only 
(see Chapter 1), it was first necessary to collate all available vegetation data so that the heath and bog 
subset could subsequently be defined robustly. 
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2.2 Data collation and cleaning 

A significant amount of project time was spent collating and preparing the datasets for analysis, 
particularly the Natural England Long Term Monitoring Network data that had not previously been 
collated for the purposes of a multi-site analysis. Data from the CS and ECN were accessed directly 
from the UKCEH Oracle databases in which they are held. National Plant Monitoring Scheme data was 
received directly from Oliver Pescott in advance of it being published on the EIDC (now available at 
https://catalogue.ceh.ac.uk/documents/cdb8707c-eed7-4da7-8fa3-299c65124ef2). Data from 
Natural England’s Long Term Monitoring Network is freely accessible online 
(http://publications.naturalengland.org.uk/category/5316639066161152). Data from all four schemes 
are publically accessible (under relevant licenses), apart from the CS location data which is confidential. 

2.2.1 LTMN data cleaning 

LTMN data is stored in the data.gov repository as separate MS Excel spreadsheets for each site and 
year of survey. Historically, the formatting of these spreadsheets had not been entirely consistent 
between sites and over time. At the beginning of this project, Natural England were in the process of 
migrating all data to new consistent templates. Consequently, some survey data had yet to be 
converted to the new format at the beginning of this project. This is important, as it meant that it was 
not possible at the outset to develop a single piece of computer code to extract all the data from this 
archive. 

Files in the new format were shared with UKCEH via Dropbox as soon as they were available, and all 
data received through this channel were included in the final analysis. These data are also now 
available on the Natural England Access to Evidence website. 

We encountered various residual errors and inconsistencies within the newly formatted LTMN 
spreadsheets. These had to be identified and fixed before the data could be used in our analysis. Many 
of these problems were associated with the new template providing too much flexibility in the manner 
data could be entered by surveyors. For example, there were few limits on what types of data could 
be entered, and it was also possible for surveyors to add, remove or re-order columns within sheets. 
The main problems encountered are outlined below: 

 Formatting errors: flexibility of data recording template meant that there were few limits on 

what could be entered or added to the spreadsheet. 

- Column names: These were not fixed and in some cases were altered. 

- Number of columns: It was possible to add/remove columns from the template. For 

example, at one site an extra column had been added with no explanation, and at another 

site several columns were accidentally duplicated.  

- Text spacing: Free entry of text led to formatting inconsistencies. For example, grid 

references could be entered as ‘AA 11111 1111’, ‘AA1111111111’, or ‘AA11111 11111’, or 

have an odd number of digits and therefore not be valid.  

- Dates: Entered in multiple formats, including: DD-MMM-YY, DD-MMM, DD/MM/YYYY. 

- Free text entry of presence/absence data: The presence/absence of a species is noted for 

each cell within each plot, with 1 indicating presence and 0 absence. There were multiple 

instances of accidental entry of incorrect numbers, e.g. 2 in place of 1.  

- Free text entry of site codes: Each Excel spreadsheet contained information for one site 

only. However, the “sitecode” associated with the plot-level data was not returned 

automatically and instead had to be entered manually. This led to accidental incorrect 

noting of site codes in more than one instance. 

https://catalogue.ceh.ac.uk/documents/cdb8707c-eed7-4da7-8fa3-299c65124ef2
http://publications.naturalengland.org.uk/category/5316639066161152
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 Data in free text boxes. Plot-level information was sometimes stored in a free text box on the 

first sheet of each file if an appropriate place did not exist elsewhere in the document. For 

example, information about which plots were surveyed on that visit and whether these plots 

were relocated accurately could be found here. Such information was not included in our final 

dataset as it would have been incredibly time-consuming to extract. This valuable quality 

control information would benefit from being recorded in a more repeatable manner. 

 Inconsistent plot numbering system. Plot numbering systems at several sites changed between 

years. For example, site B29 plot 1 in 2010 became B29 plot T1 in 2013, despite being at the 

same location. Data with this type of issue was fixed promptly by NE once discovered.  

 Species occurrences without matching plot-level data. Some species presence data had no 

associated plot-level data. Plot-level data included survey dates, plot location, and other key 

details. These species occurrences were removed from our analysis. 

 Lack of metadata. Clear metadata explaining the survey sheets and their contents was not 

made available to UKCEH.  

The resulting need for careful manual quality checking and bespoke coding consumed considerably 
more staff time than had been initially factored in for this stage of the work. However, UKCEH and NE 
staff soon established an effective working relationship to enable a constructive and iterative exchange 
of information and proposed solutions, and data for the vast majority of LTMN surveys eventually 
made it through to the initial analysis stage. 

At the January 2020 project meeting these data quality issues were discussed with NE, when it was 
proposed that NE create a new data entry template with fixed formatting requirements to limit 
flexibility and potential for error. UKCEH also suggested that all data be made available on a single 
webpage and ideally in one aggregated table in order to facilitate the most efficient extraction of data 
in the future. 

2.2.2 ECN data cleaning 

This data collation step highlighted gaps in the location data for some vegetation plots in the 
Environmental Change Network database. On discovering this, site managers were contacted and 
asked to provide exact location data for these plots.  

 

2.3 Data filtering 

Schemes differ in the types of data collected, regions of the UK covered, and the methods used for 
collection. A key part of preparing the integrated dataset involved making decisions on what data to 
include from each scheme. In order to analyse these datasets using an integrated approach, while 
minimising the complexity of the modelling structure, the structure of the data from the individual 
schemes must be broadly similar. The key differences between datasets are outlined below and a 
summary of the data included in the final modelling dataset from each scheme is provided in Table 
2.1. 

 Location: Only two of the schemes, the ECN and NPMS, collect data in Northern Ireland, and 

the ECN site does not include heath and bog plots. All data from the province were therefore 

excluded as coverage was deemed insufficient to be regionally representative. 

 Plot types: All schemes survey more than one plot type, e.g. square, linear, woodland, and 

roadside plots. In order to minimise the effect of plot type in our analysis we chose to focus 

on square plots only, which are mostly 2m x 2m in size.  



Harmonisation and integrated modelling of UK long-term vegetation data: a case study focussed on heath & 
bog habitats 

UKCEH report … version 1.0                                      13 

 

 Bryophyte recording: There were differences in the level of bryophyte recording between 

schemes, with the ECN and LTMN recording bryophytes to species level, the CS recording to 

broad groupings, and the NPMS not recording bryophytes at all. As a consequence we chose 

to limit the scope of our analysis to vascular plants only. This decision may ultimately have had 

a significant influence on the modelling outcomes since bryophytes are an important structural 

and ecological component of heath/bog habitats.  

 Survey type: The NPMS allows recorders to choose from one of three survey levels according 

to past botanical experience. The Wildflower and Indicator levels involve the use of a limited 

habitat-specific species list, while the Inventory level involves recording all species present in 

the plot, not limited to a list. We used data from the Inventory level only on the grounds that 

this was most comparable to the survey methods in the other three schemes. 

 Cover: Each scheme uses a different method for estimating cover. The LTMN protocol requires 

the estimation of percentage cover of each species in a plot on a continuous scale, the CS 

record cover at 5% increments, the NPMS use the Domin scale, and the ECN and LTMN both 

record presence/absence in each cell (40 x 40 cm) of a plot. 

 Temporal resolution: Schemes differ greatly in the frequency of survey visits and the number 

of years for which plots have been surveyed. The CS and ECN have both monitored their plots 

for 25+ years, whereas the LTMN and NPMS were established much more recently, with 

records currently around 10 and 5 years in length respectively. Survey frequency of the plots 

taken forward to the modelling dataset ranged from twice yearly for the NPMS to once per 

decade for the CS. 

 

Table 2.1. Summary of plot data included in the individual scheme and integrated analysis. 

Scheme Years Countries Plot types Plot size Survey 
frequency 
(years) 

CS 1978, 1990, 
2000, 2007, 
2016-2019 

England 
Scotland 
Wales 

X plots (2x2m nest only) 
 
U plots 
 

4m2 (2m x 2m plot) 
 
 
4m2 (2m x 2m plot) 

10 (on average) 
10 (on average) 

ECN 1993-2015 England 
Scotland 
Wales 

Coarse-grain (VC) 
 
 
 
Fine-grain (VF and VFA) 

4m2 (2m x 2m plot 
containing 25 cells, 
each 40cm x 40cm) 
 
1.6m2  (ten 40cm x 
40cm cells within 
larger 10m x 10m, or 
100m2, plot) 
 

9 
 
 
 
3 (VF) 
1 (VFA) 

LTMN 2010-2019 England Coarse-grain (VC) 
 

4m2 (2m x2 m plot 
containing 25 cells, 
each 40cm x 40cm) 
 

4 (on average) 

NPMS 2015-2019 England 
Scotland 
Wales 

Square 5x5m plots at 
inventory level 

25m2 (5m x 5m 
plot) 

1-5 
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2.4 Species name harmonisation 

The four monitoring schemes were established at different times, and this partly accounts for the 
adoption of different names for the same species within scheme species lists. This can pose challenges 
not only for integration of data from multiple schemes but also for ensuring that taxa from across all 
schemes are linked consistently with appropriate plant indicator values. A common species dictionary 
was therefore created to solve this nomenclature problem. This enables vascular plant species names 
from each scheme to be matched to the name currently accepted by the Botanical Society of Britain 
and Ireland, and relies heavily on the Taxon name parser tool available on the BSBI website 
(https://database.bsbi.org/taxonnameparser.php). The method for creating the dictionary is outlined 
below. 

 

Figure 2.1. Flow diagram depicting species dictionary workflow. The process is described in the following text box. 

 

1. Extract full list of observed plant species and their associated codes (e.g. BRC numbers, VESPAN codes). 

2. Clean the species list to remove obvious spelling errors and non species-specific descriptors – e.g. “Acer 

campestre (c)” will need the (c) to be removed.  

3. Input this cleaned species list to the Taxon name parser tool on the BSBI Distribution Database website 

(https://database.bsbi.org/taxonnameparser.php). The edited species names column created earlier 

must be entered as the column containing taxon names in the tool. This tool will match this list of 

species names to the current accepted name in the BSBI database. These accepted names are mostly 

matched to Stace 3rd edition (Stace, 2010).  

4. Take output from the BSBI tool and check for errors where the species name entered does not have a 

match on the BSBI database. Where there are lots of errors, as found in the scheme datasets, go back to 

step 2 and clean the data further. If the reason for a name not matching to the database was not 

immediately obvious, we used the BSBI database and NBN Atlas to search for the species name and 

investigate why it did not match. Once the correct name was discovered, the edited species names were 

updated accordingly. Often it was immediately obvious why the name wasn’t matching, for example if 

“var” has been used instead of “subsp” to indicate a subspecies, as the BSBI tool did not always 

recognise this.  

5. Ensure that the BSBI database matches to sensu stricto/sensu lato/aggregate descriptors properly. In 

some cases, names did not match to the correct descriptor. With the guidance of botanical experts 

within the project team, we corrected these names manually. For example, ‘Species x’ may match to 

‘Species x sensu stricto’ in the BSBI database when actually it should match to ‘Species x sensu lato’ 

because it was recorded before the change in nomenclature. 

6. Re-format the file to keep key pieces of information, and join species names from each scheme to the 

new harmonised list of names. 
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The harmonisation work within this project has proved a valuable outcome in its own right. We have 
received interest from other projects (including the Defra-supported UK APIENS project) both to use 
the current dictionary and in further development that would enable incorporation of other vegetation 
datasets. The species dictionary has been developed into an R package, ‘vegtaxon’, which aims to assist 
with the harmonisation of vascular plant survey data from UK datasets. Similar packages have been 
developed in R, but none are specific to UK vascular plants. The package is built using the underlying 
integrated species dictionary, which matches the Latin names of UK vascular plant species to the 
current accepted name. This is done mostly to classifications provided by Stace's Flora (Stace, 2010). 
The package ‘vegtaxon’ also provides functions to easily calculate commonly applied indicator values 
such as Ellenberg scores.  

The package ‘vegtaxon’ is now publically available and can be downloaded from Github 
(https://github.com/NERC-CEH/vegtaxon). It is hoped that it will encourage increased, and more 
efficient, use of these vegetation datasets, as well as integration of them with others. It should 
therefore become a valuable resource for the wider ecological community and further work will go 
into developing its functionalities under the NERC funded programme UK-SCaPE. We also plan to 
create a separate package which implements National Vegetation Classifications from the Modular 
Analysis of Vegetation Information System software (MAVIS; Smart et al., 2016) in R. A function which 
maps user’s vegetation species names to the species names used by MAVIS will be added to the 
‘vegtaxon’ package.  

 

2.5 Cluster analysis 

Because of differences in the way habitats are classified between schemes, we devised a clustering 
method to assist with the selection of heath and bog plots.  

We calculated a Bray-Curtis dissimilarity matrix (using the ‘vegdist’ function from the R package 
‘vegan’) to estimate the pairwise dissimilarities between vegetation plots. This method is commonly 
used to quantify differences between ecological samples. The non-Euclidean measure assumes that 
plots are of equal size, however our use of binary presence/absence data rather than count data 
minimises this issue.  

We ran k-medoids clustering on the matrix using the ‘pam’ (partitioning around medoids) function 
from the R package ‘cluster’, imposing a maximum of 12 clusters. A medoid is the most centrally 
located object of a cluster, i.e. it is the point with the minimum sum of distances to other points within 
the cluster. Every plot from every visit in all four surveys was assigned separately to one of the 12 
clusters. Countryside Survey habitat data was used to guide our selection of clusters, whereby we 
chose the clusters that contained the majority of CS bog, shrub heath, and acid grassland plots (Table 
2.2). Clusters 6, 7, 8 and 10 were subsequently chosen to represent heath and bog habitats. Plots which 
fell in any of these four clusters at any point in time were included in subsequent analysis. For example, 
if a hypothetical CS plot was classified as ‘bog’ in 1978, but as ‘bracken’ in subsequent survey years, all 
incidences of this plot regardless of habitat classification were included in the heath/bog dataset. This 
method of data selection was designed to be broad, in order to encompass the majority of plots 
present in heaths/bogs in all schemes, including marginal plots in which the characteristics of the 
assemblage has either shifted towards or away from heath/bog habitat over time.  

  

https://github.com/NERC-CEH/vegtaxon
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Table 2.2. Proportion of CS plots in a selection of relevant habitats represented by each cluster  

Cluster Acid.Grass Arable Bog Bracken Broadleaf Calcareous.Grass Fen Montane Shrub.Heath 

1 
 

0.02  0.05 0.32 
 

0.02   

2 0.03 0.26  0.07 0.15 0.03 0.06   

3 
  

 0.08 0.14  0.01   

4 
 

0.55  
  

 0   

5 
 

0.06  0.02 0.02 0.01 0.08   

6 0.08 0.07 0.58 0.07 0.03 
 

0.07  0.23 

7 0.27  0.24 0.09 0.06 0.03 0.31 0.09 0.19 

8 0.43  0.05 0.28 0.09 0.15 0.1 0.55 0.19 

9 0.05  0.01 0.24 0.06  0.01 0.18 0.21 

10 0.03  0.11 
  

 0.02 0.09 0.16 

11 0.01  
 

0.01 0.02 0.51   0.01 

12 0.09 0.03 0.01 0.09 0.11 0.26 0.32 0.09 0.02 

 

2.6 Covariate data 

2.6.1 Climate variables 

We obtained climate data from the Met Office HadUK-Grid (Met Office, 2019), which provides a range 
of gridded climate variables at 1 km resolution, derived from more widely spaced land surface 
observations. We extracted the annual total precipitation, maximum July temperature, and minimum 
January temperature for each 1 km square in the UK which contained vegetation data from the CS, 
ECN, LTMN or NPMS. Met Office data was received in NetCDF format. Climate data for all 1 km squares 
in the UK containing vegetation scheme data was extracted from this NetCDF file. The HadUK-Grid 
dataset does not provide data for 1 km squares which intersect with the coastline. To obtain climate 
data for plots in coastal locations, we used a nearest neighbour approach to find the closest 1 km 
square for which we had data. If the closest square with data was less than 10 km away, we assigned 
this data to the coastal square. Where no nearby data was available, climate variables for that plot 
were set to NA (not available). 

Values for temperature and precipitation for each year and grid square were time-standardised as the 

difference between annual estimates and the long-term mean, such that if the mean across all years 

for a grid cell was 10 and the value in the year of vegetation survey was 15 then the value attributed 

to the vegetation plot would be 5. 

At the time of access, climate data were only available for 1862-2017. Plots sampled in 2018-2019 

were assigned climate variables from 2017. 

2.6.2 Atmospheric Deposition 

The Defra Nitrogen futures scenario method (Dragosits et al., 2020) involved comparing a FRAME (Fine 
Resolution Atmospheric Multi-pollutant Exchange) model run for the future to a contemporary year 
FRAME run, and applying those differences to CBED (Concentration Based Estimated Deposition) 
model data derived for the same contemporary year. We did this in reverse, using a 1970 LTLS FRAME 
and a contemporary FRAME. This used a grid average time series of CBED data from 1986 to 2018 and 
LTLS FRAME data for 1970 and 2010. The resulting datasets contain yearly grid average total nitrogen 
and total sulphur deposition for 1970 to 2018 on a 5 km grid covering the UK. 
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Values of deposition variables were standardised before use in analysis, and the rationale for the 

standardisation is explained in further detail at the start of Chapter 6.2. Nitrogen deposition (1970-

2018) was represented as the plot-specific 2003-2005 average Nitrogen deposition. This value is used 

to represent peak nitrogen deposition load for the grid square across the time series, as in RoTAP 

(2012). Sulphur deposition to each grid square in each year (1970-2018) was time-standardised as the 

difference from the long-term grid square mean sulphur deposition. No deposition data was available 

for 2019, and so plots surveyed in 2019 were assigned deposition variables from 2018. 

2.7 Indicator values 

In order to summarise the compositional structure of the vegetation plots in relation to environmental 
pressures, and quantify change in attributes over time, we used a range of vegetation indicator 
metrics. We focussed on Ellenberg N, Ellenberg R, Ellenberg F/W, CSM positives and CSM negatives. 
Further detail on the selection of indicators is given in Chapter 3.  

Ellenberg indicator values were sourced from the LUS_SP_LIB_AND_TRAITS table in the Countryside 
Survey Oracle database and integrated with the other schemes using the species dictionary. 

As this analysis is looking broadly at heaths and bogs rather than a specific strict habitat type, we 
compiled generalised Common Standards Monitoring (CSM) positive and negative indicator lists by 
aggregating the CSM scores for the four most relevant CSM habitat types; lowland dry heath, lowland 
raised bog and lowland blanket bog, alpine dwarf-shrub heath, and upland blanket bog and valley bog. 

Indicator values were calculated for each plot, in each site, in each year. The number of CSM positive 
and negative species in each plot were totalled to provide the CSM scores. Neither Ellenberg nor CSM 
indicators were cover-weighted due to differences in cover recording between the schemes.  

2.8 Creation of modelling dataset 

Data from the four individual schemes were filtered as outlined in Section 2.3 and joined together in a 
single dataset with the help of the species dictionary described in Section 2.4. Data were aggregated 
to plot-level, with indicator calculation taking place as outlined in Section 2.7. 

The final integrated dataset included 8490 individual plots, with CS data comprising by far the largest 
proportion of the data (Table 2.3). This integrated dataset cannot be made publically available due to 
the confidential nature of the CS data. 

Table 2.3. Summary of the aggregated plot data used in the analysis. 

Dataset Proportion of 
plots in integrated 
dataset (%) 

CS 65 

ECN 15 

LTMN 15 

NPMS 5 
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3 Indicator selection 

3.1 Introduction 

The selection of indicators was carried out in association with other work in the MoA on the 25 YEP 
indicator D1: Habitat quantity, quality and connectivity on the habitat quality component (Maskell et 
al. 2020, 2021). D1 sits within the “wildlife” theme and the “thriving plants and wildlife” goal and 
contributes to headline 7 “Changes in nature on land and water that support our lives and livelihoods”. 
It is an indicator for all terrestrial habitats: Priority habitats1 as well as habitats less rich in wildlife 
(contributing to the matrix of a habitat network) forming an environmental system providing wider 
benefits. 

As part of that work, potential indicators were reviewed from a range of sources; those currently being 
used to monitor habitat condition within different organisations and those under development. A long 
list of potential indicators was used as a basis for a stakeholder workshop discussion around the 
development of quality indicators held in October 2019.  

Representatives from Natural England, Defra, BTO, RSPB, National Trust, CEH, Environment Agency, 
Forestry Commission, JNCC and the Woodland Trust attended the workshop. Many organisations have 
been working on metrics of habitat condition/quality, and the aim of the workshop was to share ideas 
and develop a consensus on appropriate measures of habitat quality for this indicator.  

Following the workshop an indicator framework was created using outputs from the workshop and 
subsequent discussions with stakeholders. Six functional elements were identified; nutrient status, 
plant species composition, vegetation structure, naturalness of hydrology, habitat heterogeneity and 
soil health. Within each habitat, appropriate indicators for each functional element were considered 
to create a shortlist. For the purposes of this task (task 4) we used the indicators for Bog and Heathland 
and selected the most appropriate to reflect the potential driver-linked changes in those habitats. 
These indicators were Ellenberg N, Ellenberg R, Ellenberg W, CSM positive richness and CSM negative 
richness.  

3.2 Indicators 

Ellenberg scores (Ellenberg et al. 1991) allow the assessment of environmental conditions without 
direct measurements (Diekmann 2003). They were developed as an indicator system for vascular 
plants of central Europe (Ellenberg, 1979; Ellenberg et al., 1991) and are based on a simple ordinal 
classification of plants according to the position of their realized ecological niche along an 
environmental gradient. They describe the response of individual species to a range of ecological 
conditions (light, temperature, fertility, moisture, pH). Ellenberg scores were adapted for application 
to UK plants (Hill et al. 2000) and are available for a wide range of higher plants and bryophytes. 
Preferences are pre-classified and an average score is calculated for each study community on the 
basis of individual species preferences. Scores can be weighted by cover (hence, relative dominance) 
of individual species, however, we have not done this because of the difficulties associated with 
estimating cover for the different schemes. The advantages of Ellenberg scores are that they are 
relatively easy to calculate, and reflect environmental conditions that allow, or restrict, the occurrence 
of species at a site over long time periods (Bartelheimer and Poschod 2016). 

 

                                                           

1 https://jncc.gov.uk/our-work/uk-bap-priority-habitats/ 

https://jncc.gov.uk/our-work/uk-bap-priority-habitats/
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3.2.1 Ellenberg fertility score 

The Ellenberg fertility (or Ellenberg N) score for a vegetation plot is determined as the mean of the 
Ellenberg fertility scores of all species present, providing an overall community score on a scale of 
nutrient poor (1) to nutrient rich (10) (Sutton et al. 2004). The sensitivity of Ellenberg fertility metric 
has been tested in nitrogen addition experiments. Ellenberg fertility scores have been shown to reflect 
plant and soil nitrogen status (Hill, 2000; Smart et al.,2003; Diekman, 1995), and used in many different 
contexts, from local (Pitcairn, 1998) to regional and national scales (Smart et al., 2003). An increase in 
an Ellenberg fertility score of a community indicates a floristic shift consistent with eutrophication, and 
scores can therefore be used to attribute changes to eutrophication compared to other potential 
drivers, such as understanding the impact of atmospheric nitrogen deposition on vegetation (RoTap, 
2012). Ellenberg fertility scores might be expected to be more sensitive to subtle vegetational shifts 
than standard CSM monitoring (Emmett et al. 2011), and may therefore reveal ongoing damage even 
at sites judged to be in favourable condition. 

3.2.2 Ellenberg R 

The soil reaction gradient (Ellenberg R) ranges from “strong acidity, never moderately acidic or 
alkaline” (R-number 1) to “alkaline and calcareous conditions, only calcareous soils”(R number 9) 
(Bartelheimer and Poschod, 2016). 

3.2.3 Ellenberg Moisture 

Ellenberg moisture (or Ellenberg W) scores range from very dry conditions with a low moisture score 
(1) to wet soils (9); scores 10-12 represent aquatic communities. Ellenberg moisture scores can 
therefore be used to track the impacts of hydrological change on vegetation over time. More direct 
indicators of wetness, e.g. soil moisture, have the disadvantage of greater short-term variability and 
sensitivity to antecedent weather conditions.  

3.2.4 Ellenberg Light 

Plant species are assigned an Ellenberg Light (Ellenberg L) indicator values on a scale from 1 to 10. This 
indicates position along an environmental gradient from heavy shading in late successional 
habitats (1), e.g. underneath woodland canopy, to strongly illuminated (often disturbed) open 
habitats (10).  

3.2.5 Positive and negative habitat quality indicators 

In Common Standards Monitoring, positive and negative indicator species were originally selected on 
the basis that they are typical or distinctive for the habitat; are useful for determining site condition; 
are not so scarce that they will rarely be observed; and occur across a wide geographic range (Rowe et 
al., 2016).  

Positive and negative habitat indicators are useful for assessing how the vegetation studied compares 
to a reference habitat type. Negative indicators may indicate that abiotic conditions are changing, 
perhaps indicating eutrophication or disturbance. Dominance by a small number of negative indicators 
can have significant impacts on a site. However, there is a degree of subjectivity in the choice of 
indicator species, and more work would be useful to agree the species lists with habitat 
representatives. 

A study by Rowe et al. (2016) combined qualitative semi-structured interviews with conservation 
professionals specialising in grasslands, heathlands and mires, and quantitative ranking of example 
habitat communities, in order to determine the best metric for assessing habitat quality. The 
specialists’ rankings were compared to metrics calculated from the data, including total species 
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richness, positive and negative indicators, % forbs, sphagnum cover, DSH cover, and a metric based on 
Ellenberg fertility. The number of positive indicator-species was the metric most consistently 
associated with specialists’ rankings, although there was also some agreement with respect to 
Sphagnum cover in bog habitats. 

Positive habitat quality indicators have been used in reporting from the Glastir Monitoring and 
Evaluation project as an indicator of habitat quality (https://gmep.wales/) and the Natural Capital 
maps produced for NE2, and will be used for the current work under ERAMMP 
(https://erammp.wales/en). 

The number of CSM positive and negative indicators have been derived by extracting indicator species 
used in Common Standards Monitoring guidance for Sites of Special Scientific Interest (JNCC) and 
refined in consultation with the Botanical Society of Britain & Ireland to create a list of plants indicative 
of habitats of high conservation value (Maskell et al., 2019).  

 

 

                                                           

2 https://eip.ceh.ac.uk/naturalengland-ncmaps/reports/diversity_report.pdf 

 

https://gmep.wales/
https://erammp.wales/en
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4 Comparison of trends in vegetation metrics 
between individual schemes  

4.1 Introduction to the scheme comparison 

The overall aim of this project is to explore the potential for combining long-term vegetation 
monitoring and survey data, and associated covariate data, within single statistical analyses in order 
to maximise our understanding of vegetation change across the UK over recent decades. We have 
focussed on the integration of data from the four vegetation schemes (Countryside Survey, 
Environmental Change Network, Long Term Monitoring Network, National Plant Monitoring Scheme), 
and heath and bog habitats as the target for this case study. 

Our integrative approach is novel, but imposes some constraints on the complexity of trends that can 
be quantified. Because the programmes above were initiated at different times we were only able to 
assess linear changes, i.e. working on the assumption of linear increases, decreases or stability over 
time. We consider this reasonable given that that the dominant drivers of change over recent years 
are likely to have exerted largely uni-directional effects on vegetation composition. For example, 
progressive reductions in acid deposition ever since the 1970s are expected to be leading to gradual, 
if possibly lagged, reductions in soil acidity, while there is an assumption that atmospherically 
deposited nitrogen has continued to accumulate in terrestrial ecosystems, resulting in a gradual 
eutrophying effect. Likewise, climate change is likely to be exerting a gradual, although possibly 
stepped, influence on air and soil temperatures. In some circumstances, particularly with respect to 
change in CSM scores, it is possible that trends will be more nuanced, involving periods of both 
increases and decreases, and possibly more geographically dependent. However, it was not possible 
to investigate these relationships with the datasets and modelling structure used. 

Before beginning to build integrated models it is important to investigate datasets individually to 
inform any integration. There are two key questions we need to ask of the data: 

1. What characteristics of each scheme need to be accounted for when modelling individually? 

For example, if the scheme design includes the nesting of plots within larger areas such as sites 

or 1 km squares, we need to account for this structure in the individual dataset models and in 

the integrated models. 

2. Do our individually fitted models for each indicator of interest support the assumption of a 

common trend across schemes? This is the most important question to decide whether we can 

integrate the different schemes or not. If we believe that the assumption of a shared 

underlying trend is not met (e.g. because the datasets show very different trends over time) 

then it would not be valid to combine the datasets.  

To answer these questions we conducted exploratory data analysis and fitted some simple temporal 
models to each dataset. The purpose of these models is to assess similarity in trends between schemes 
rather than to attribute change, so no covariates are included within them. We would not expect our 
estimated trends to be identical to those reported previously for these schemes due to our exclusion 
of covariates at this stage and the custom selection of heath and bog plots defined in Section 2. 

4.2 Exploratory data analysis 

We explored the five indicator metrics selected according to the rationale set out in in Chapter 3. These 
indicators were Ellenberg N, Ellenberg R, Ellenberg W, CSM positive richness and CSM negative 
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richness. Ellenberg scores for each plot were calculated as the unweighted means of scores for all 
species present for which indicator scores were available. CSM richness was calculated as the number 
of unique species per plot, assigned either positive or negative indicators on the basis of the lists 
described in Chapter 3. For each scheme we selected heath and bog plots as outlined in Section 2 and 
calculated the five indicators for each vegetation plot. 

Data exploration involved six key elements which are described briefly here. Full details of exploration 
for each scheme can be found in Appendix 1. For each scheme we assessed: 

1. The distribution of each selected indicator using histograms. Inspection of these plots 

informed the choice of distribution for the trend models 

2. Plots of each indicator over time. These plots informed our treatment of time in the models 

e.g. as a continuous or discrete variable. It also allowed us to identify any gaps in the time 

series and consider how to account for these in autocorrelation structures 

3. Plots of each indicator by site. It might be necessary to account for site identity in our models 

by including a random effect. Plotting indicators against site allowed us to evaluate the 

potential variation explained by site identity 

4. Plots of each indicator over space. These plots allowed us to assess the spatial coverage of 

each scheme and give a preliminary indication of potential spatial patterns in indicator values 

5. Summaries of the number of repeat visits to each plot to inform how to build the models. 

6. Summaries of the number of plots per site. The schemes vary substantially in the maximum 

number of plots that occur within a site. It may be wise to fit a site level random effect for 

schemes with high numbers of plots per site. For schemes with very low numbers of plots per 

site, a site level random effect is not likely to provide any benefit.  

Examples of the plots described in points 1-4 are given below for a selected scheme and indicator 
(Ellenberg R in the LTMN; Figure 4.1). 

On the basis of the exploratory plots and summaries, we concluded that the same basic model 
structure could be fitted to each scheme dataset (Eq 1). 

Indicator ~ Year + (1|site/PlotID)  (Eq 1) 

This model accounts for similarity between multiple revisits to the same plot, and similarity between 
plots within the same square. Ellenberg indicators were modelled with a normal distribution, while 
CSM indicators were modelled with a Poisson distribution. Ideally an autocorrelation term conditional 
on plot identity would be fitted. This term would account for the fact that when a plot is revisited, the 
vegetation recorded is likely to be similar to the last time it was visited. Similarity would be expected 
to decay over time i.e. the longer the time between visits the less likely the vegetation would be similar. 
Unfortunately, we could not fit this model to all schemes because of the relatively small number of 
repeat visits to each plot. Even for CS, the scheme with the longest history, only 2% of plots were 
revisited 5 times (i.e. every survey).  

 

 

 

  



Harmonisation and integrated modelling of UK long-term vegetation data: a case study focussed on heath & 
bog habitats 

UKCEH report … version 1.0                                      23 

 

 

Figure 4.1. Examples of a) indicator histograms, b) plots of indicators of time, c) boxplot of indicator against site, d) 
exploration of geographic spread of indicators where larger dots indicate greater mean indicator value. All plots are 
shown for Ellenberg R from the LTMN scheme. 

4.3 Results of individual scheme models 

By fitting the model described in Section 4.2 to each of the five selected indicators for each scheme 
individually, we calculated trends over time that could then be compared between schemes. In these 
models we have included the variable “year” as the year since the onset of the scheme rather than the 
calendar year. 

4.3.1 Countryside Survey models 

Models of the CS data indicated a very small increasing trend in Ellenberg N and R (of 0.006 and 0.007 
units per year respectively; Figure 4.2). This is suggestive of gradual shifts in heath and bog 
assemblages towards those indicative of more nutrient rich and less acid environments respectively.  

There was also some evidence of an increasing trend in Ellenberg W of 0.002 units per year, indicating 
a trend towards species with a preference for wetter conditions. Both CSM indicators showed a 
decreasing trend over time, which could potentially suggest an overall decrease in richness.  
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Figure 4.2. Estimated trends in each indicator over time in the CS dataset with prediction intervals.  

 

4.3.2 Environmental Change Network models 

The ECN models also provided an increasing trend in Ellenberg N of 0.006 units per year, (i.e. a very 
similar trend to that observed in the CS data). However, no significant trends were observed in the 
other indicators (Figure 4.3). 

4.3.3 Long Term Monitoring Network 

In common with CS, the LTMN models again yielded very gradual positive trends in both Ellenberg N 
and Ellenberg R (Figure 4.4). The increase in both Ellenberg indicators was around 0.008 units per 
year, a comparable rate to that estimated by the Countryside Survey dataset (and in the case of ECN, 
Ellenberg N only). Trends in both indicators were statistically significant.  

4.3.4 National Plant Monitoring Scheme 

The NPMS data used in this work only cover 5 years (from 2015 to 2019) and therefore it is no 
surprise that there was no evidence of trends over time (Figure 4.5).  
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Figure 4.3. Estimated trends in each indicator over time in the ECN dataset with prediction intervals.  

 

 

 

Figure 4.4. Estimated trends in each indicator over time in the LTMN dataset with prediction intervals.  
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Figure 4.5. Estimated trends in each indicator over time in the NPMS dataset with prediction intervals.  

 

4.4 Summary of individual scheme trend models 

We found that trends between schemes in the five selected indicators were generally very similar 
(Table 4.1) for all but the shortest lived scheme (NPMS). In particular, three out of four schemes 
showed a positive trend in Ellenberg N over time, with rates of between 0.006 and 0.008 units per 
year. The NPMS scheme did not show a positive trend in Ellenberg N over time, but this is not surprising 
as only five years of data were available.  

There was more divergence in trends observed for the other indicators. Ellenberg R increased by 
around 0.008 units per year in the CS and LTMN schemes, but did not change significantly in the ECN 
scheme. Only CS reported significant trends in CSM indicators, with both positive and negative 
indicators declining over time. The CS was also the only scheme to show a significant trend in Ellenberg 
W. Previous analysis of the ECN vegetation data bulked into “upland”, “lowland” and “woodland” 
categories indicated an increase in Ellenberg W in the lowland category only (largely comprised of 
unimproved and improved grassland). Our analysis estimated an average increase of 0.002 Ellenberg 
W units per year in the ECN data, but this was not statistically significant (P = 0.06).  

Overall the results of the individual trend analyses provide the justification for creating an integrated 
model, particularly with respect to Ellenberg N and R. No schemes directly contradicted each other in 
terms of observed trends, and in some cases the estimated trend coefficients were almost identical 
between datasets.  
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Table 4.1. Summary of the trend estimates for each indicator from each scheme modelled 
individually. Estimates of the year coefficient are given followed by standard errors in brackets 
and P values. Comparison of trends between schemes 

Indicator  CS ECN LTMN NPMS 

Ellenberg N 0.004 (0.001) P < 
0.001 

0.005 (0.001) P < 
0.001 

0.006 (0.001) P < 
0.001 

-0.001 (0.007) P  
= 0.832 

Ellenberg R 0.007 (0.001) P < 
0.001 

0.001 (0.001) P = 
0.534 

0.008 (0.003) P = 
0.003 

-0.009 (0.011) P 
= 0.394 

Ellenberg W 0.002 (0.001) P = 
0.036 

0.002 (0.001) P = 
0.057 

0.002 (0.003) P = 
0.573 

-0.010 (0.014) P 
= 0.452 

CSM positive 
indicators 

-0.018 (0.001) P 
< 0.001 

0.002 (0.001) P = 
0.259 

0.007 (0.005) P = 
0.182 

0.237 (0.018) P = 
0.177 

CSM negative 
indicators 

-0.018 (0.001) P 
< 0.001 

-0.001 (0.002) P 
= 0.493 

0.012 (0.008) P = 
0.109 

0.007 (0.019) P = 
0.717 

 

In addition to assessing similarity in terms of estimated trend coefficients (see Table 4.1.1), it is also 
possible to plot estimated trends for all schemes. To do this, we refitted the models above replacing 
‘Year of scheme’ with calendar year to allow direct comparisons. 

4.4.1 Comparison of Ellenberg N trends 

As expected from comparisons of model coefficients, we found that plotted trends of Ellenberg N over 
time were very similar between schemes (Figure 4.6). Plotting the data also demonstrates differences 
in uncertainty around the trends, with confidence intervals around the CS trend being much smaller 
than those around the NPMS trend, reflecting differences in the amount of data available for each 
scheme. Intercepts also differed between schemes, with the average Ellenberg N score lowest in LTMN 
plots. 

 

Figure 4.6. Trends over time in Ellenberg N for each vegetation monitoring scheme. Confidence intervals are shown 
around the fitted trend.  
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4.4.2 Comparison of Ellenberg R trends 

Similar to our observations regarding Ellenberg N trends, the plotted trends over time in Ellenberg R 
showed a good degree of similarity between schemes (Figure 4.7). Confidence intervals were much 
greater for NPMS than the other schemes, reflecting high uncertainty in estimated trends with only 5 
years of data. LTMN plots tended to have lower Ellenberg R scores (more acidic) on average than plots 
from other schemes. 

 

Figure 4.7. Trends over time in Ellenberg R for each vegetation monitoring scheme. Confidence intervals are shown 
around the fitted trend.  
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4.4.3 Comparison of Ellenberg W trends 

The plot of Ellenberg W trends provides less evidence of consistent cross-scheme change in this 
metric in comparison to Ellenberg N and Ellenberg R scores (Figure 4.8). The models of Ellenberg W 
suggested smaller changes over time in Ellenberg W values, suggesting this indicator may be more 
stable. 

 

Figure 4.8. Trends over time in Ellenberg W for each vegetation monitoring scheme. Confidence intervals are shown 
around the fitted trend.  

4.4.4 Comparison of trends in CSM positive indicator richness 

Although Countryside Survey was the only scheme to show a significant trend in CSM positive indicator 
richness over time, when plotted it is clear there is quite a lot of dissimilarity in the relationships 
occurring in different schemes (Figure 4.9). Uncertainty around the trend in CSM positive richness was 
highest for ECN, where the model estimated no change in CSM richness over time. CS estimated a 
strong decrease in richness, whereas NPMS estimated a strong increase despite only five years of data 
being available. 

4.4.5 Comparison of trends in CSM negative indicator richness 

Trends in CSM negative indicators also differed markedly between schemes, with a negative trend in 
CS not mirrored by any of the other schemes (Figure 4.10).  
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Figure 4.9. Trends over time in CSM positive indicator richness for each vegetation monitoring scheme. Confidence 
intervals are shown around the fitted trend.  

 

 

 

Figure 4.10. Trends over time in CSM negative indicator richness for each vegetation monitoring scheme. Confidence 
intervals are shown around the fitted trend.  
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5 Vegetation simulation 

5.1 Introduction to the simulation of vegetation 
communities 

When bringing together data from multiple monitoring schemes in an integrated analysis, it is 
important to account for any differences in sampling protocols across the schemes that may influence 
the distribution of the observations of interest. This is because any integrated analysis will assume that 
at least one model component, such as the global mean, trend, variance, or other covariate effects, is 
common across all schemes. If significant differences in the distribution of the data between schemes 
are not accounted for, these jointly estimated components may not be robust and could be 
substantially biased. 

Across the schemes considered here, namely the Countryside Survey (CS), National Plant Monitoring 
Scheme (NPMS), Environmental Change Network (ECN) and the Long Term Monitoring Network 
(LTMN), a range of different vegetation survey protocols have been adopted. Prior to any integrated 
analysis we need to understand the impact these have on the distribution of any derived indices. Some 
differences may have little or no impact on the data obtained and the derived indicators, some may 
have significant impact on species level data but less influence on derived indicators, and others still 
may influence both the species level data and derived indicators. Those protocols that do not affect 
the indicators under consideration here can be overlooked within any analysis, whereas those that 
have substantial impact must be accounted for. 

To investigate differences in the influence of the protocols on observations, one could conduct a large-
scale experiment whereby a substantial number of sites are independently surveyed according to the 
various protocols. The resulting data could then be compared across protocols using the sites as 
replicate samples to aid comparison. There are two major drawbacks to this however, the first being 
the financial cost. With potentially hundreds of replicate samples needed and multiple protocols to 
apply independently (i.e. ideally at separate visits by separate survey teams), the surveyor effort and 
practical cost becomes prohibitive. Second, distinguishing the particular effect of any individual 
protocol from another via physical survey can be very challenging. To do so would require a multi-
factorial experimental design with a large number of factor levels. 

An alternative mechanism for establishing differential impacts of the various sampling protocols is to 
simulate realistic vegetation patches and then “pseudo sample” from that according to different 
hypothetical protocols. This computational approach offers the advantages of being relatively cheap, 
efficient and quick to perform compared to field survey alternative, as it enables comparison of 
individual protocols, sets of protocols, and any such mixture. It does, however, rely on an ability to 
simulate realistic vegetation patches in the first place. 

Here, we used a simulation-based approach to determine the impact the various sampling protocols 
adopted across the CS, ECN, LTMN and NPMS schemes would be expected to exert on indicator 
responses. We sought to quantify any effects, whilst also understanding whether it was possible to 
account for them within an integrated model and whether some indicators are more robust to these 
differences than others. 

5.2 The conceptual approach 

To focus the simulation study around a few critical elements of the sampling protocols across schemes, 
we considered the aspects of: i) plot size ii) cover estimates iii) relocation error, and iv) accuracy of 
surveyors. Plot sizes vary across the four schemes with the CS, LTMN and ECN (coarse-scale plots) 
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covering a 2 x 2 m area, whereas the NPMS uses a 5 x 5 m quadrat size and the ECN fine grain plots 
cover a 10 x 10 m area. Plot size was hypothesised to have a significant impact on habitat condition 
indicators due to the well documented, explicit species-area curve relationships. As many of the 
indicators are typically cover-weighted, the way in which cover of individual species is estimated across 
the schemes was also investigated with different scaling categories used across CS and NPMS and ECN 
and LTMN using a cell-count system. Finally, two components of error, plot relocation error and 
surveyor error, were investigated because of the potential impact on sensitivity to detect change. 

To simulate vegetation patches effectively, we needed information on: 

 How many species in total we might expect 

 Which species are more common than others 

 Which species are most likely occur with others 

 How clustered or regularly distributed species are 

As each of these aspects vary significantly across landscapes and habitats, it was deemed necessary to 
identify an example “target” community that the simulated patch was to represent. Having selected 
this target community, the necessary information on species composition could be extracted from 
existing sources to parameterise the simulation and obtain realistic vegetation patches. 

Based on this information, we established an overarching approach to investigate the effect of the 
protocols in use across the schemes on resulting habitat condition indicators. For each aspect being 
investigated (e.g. plot size, cover estimation, surveyor error or re-location error), 1000 independently 
simulated patches of vegetation were generated. This provided a large number of replicates with 
which to formally test and evaluate the impact of different protocols. Each of the 1000 patches were 
sampled according to the protocols of the schemes for the aspect(s) under investigation. All other 
differences in protocols were held constant so that the specific effect could be isolated. Finally, 
indicator metrics were derived from these subsets of data, all taken from the same simulated patch, 
and formal comparisons were made between them. 

5.3 The simulation routine 

To simulate patches of vegetation we constructed a hypothetical grid of 5000 by 5000 cells to 
represent a 50 m by 50 m patch of vegetation divided into 10 cm cells. The premise of the simulation 
was to fill each of these cells with particular species, including bare ground, such that the total number 
of species, the composition of species, the cover of species and the clustering of species were all 
realistic. The Countryside Survey (CS) were used to parameterise the simulations, provide the 
information required as detailed in the previous section, and provide a reality check against which the 
resulting patches could be compared. The detailed steps used to simulate vegetation patches are 
described below. 

5.3.1 Step 1: Defining the target population 

The CS data used to parameterise the simulations were subsetted according to the type of community 
to simulate. Initially, focus was on a broad subset of heath and bog plots, but more refined subsets 
were also selected using the ordination described in Section 2.5 to establish a transitional gradient of 
different populations. In this case, a region of the ordination space was selected (as shown in Figure 
5.1) and a minimum of 20 plots extracted that are close to this point to reflect the community. It was 
these selected subsets of CS plots that then defined the target population of interest and hence the 
species pool, and their relative cover, with which the simulated grid was populated. 

  



Harmonisation and integrated modelling of UK long-term vegetation data: a case study focussed on heath & 
bog habitats 

UKCEH report … version 1.0                                      33 

 

 

Figure 5.1: Ordination plot of vegetation composition from all scheme data with identified health and bog clusters (6, 7 
and 8) coloured in. Added to this is a hypothetical point to define a target population around which to base simulated 
vegetation patches.  

 
5.3.2 Step 2: Estimating the total species number 

The X plots used within the Countryside Survey record species composition within a nested set of five 
plot sizes (4 m2, 25 m2, 50 m2, 100 m2 and 200 m2). This provides information on the total number of 
species within each of these areas. This information was used to establish a relationship between the 
number of species and the area by fitting a linear model to the log-log relationship of the two variables. 
This simple linear model was then extrapolated to estimate how many species should be present in a 
50 m x 50 m plot. 

5.3.3 Step 3: Determining the species pool 

The subset of CS data obtained in Step 1 was then used to establish the overall species pool within our 
hypothetical 50 m x 50 m vegetation patch. Species were randomly sampled with probability 
proportional to their average cover so that species with consistently high cover values in plots 
indicative of the target community were more likely to be sampled than rarer species. Once a given 
species was selected, the subset of plots from which to sample was reduced to only those in which 
that species occurred to ensure that the composition of species was appropriate. Species were 
iteratively sampled in this way – selecting one at a time, followed by subsetting – until the required 
number of unique species, as determined by the fitted species-area curve in Step 2, was reached. 

5.3.4 Step 4: Assigning cover values 

For each species within the species pool established in Step 3, a cover value was randomly sampled 
from the observed set of all plots comprising the subset target population established in Step 1. This 
then gave a list of an appropriate number of unique species, with the appropriate composition of co-
occurring species, and an assigned total cover value for each. 
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5.3.5 Step 5: Populating the grid 

All the cover values were then rescaled to sum to 100% before the corresponding number of 10 cm 
cells was selected across the grid to assign to each particular species. Cells were selected at random, 
but with neighbouring cells preferentially selected according to the species present. This maintained 
an appropriate level of clustering for each species. An example of a simulated vegetation patch is 
shown in Figure 5.2 with each colour representing a hypothetical species. This demonstrates the 
concept of defining a grid of cells that are then populated by different species. 

 

Figure 5.2: An example of a simulated vegetation patch sized 50 m by 50 m. Colours represent hypothetical species. Note 
that this is shown at a 1 m cell scale rather than 10 cm to enable visual inspection. 

 
5.3.6 Step 6: Reality checking 

Finally, having filled the grid cells with species and generated a hypothetical patch of vegetation, a 
couple of checks were undertaken to ensure that the simulated data provided a realistic 
representation of observed data. To do so, we plotted the number of species against area for a number 
of nested areas within the simulated 50 m by 50 m area. The fitted species area relationship estimated 
in Step 2 was overlaid in order to assess whether the simulated data was adequately capturing this. In 
addition, an ordination of the subset of vegetation plots was compiled and the simulated plot added 
passively to test whether it fell appropriately within the multivariate space. An example of these plots 
is shown in Figure 5.3, where the extracted species-area values agree approximately with the fitted 
relationship, and the multivariate representation of the species composition falls within the space 
defined by the target population. 
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Figure 5.3: Left hand plot - species area relationship (on log-log scale) estimated from the Countryside Survey nested X plot 
data (shown as solid black line) with values added from simulated vegetation patch (open circles). Right hand plot – 
ordination of vegetation species composition from target population plots in the Countryside Survey data (open circles) 
with the simulated patch passively added in (blue square) to enable comparison. 

 

5.4 Sample according to scheme protocols 

5.4.1 Sampling 

Having simulated a hypothetical patch of vegetation across the 50 m by 50 m grid, we then proceeded 
to sample it according to the various scheme protocols. To represent the plot sizes of each scheme, 
the corresponding area was simply extracted from the 50 m by 50 m simulated patch, with all pseudo 
plots sampled in this way, centred on the central point of the simulated grid. Cover estimates 
representing CS and NPMS were taken to be the proportional cover across the extracted pseudo plot 
for each species, whereas for ECN and LTMN the presence of each species within 40 cm by 40 cm cell 
blocks was established and then up-scaled to provide cover estimates. This reflects the protocols 
adopted by these schemes. 

Surveyor accuracy was included across the schemes by adding in some random noise to the cover 
estimates assigned to species. This noise was typically small, but varied across the schemes with 
greater uncertainty assigned to the NPMS data – in acknowledgement that this is an entirely volunteer-
based survey, and lower uncertainty to CS where there is greater standardisation of expertise in 
surveyors and a high degree of quality control procedures in place. 

Re-location error was investigated by randomly changing the point in the 50 m by 50 m patch on which 
the pseudo plot was centred. 

5.4.2 Comparison 

We compared the effect of plot size, cover estimation, surveyor accuracy and relocation error. To do 
so, 1000 patches of vegetation within a 50 m x 50 m area were simulated. Each was subsetted 
according to the protocols of the respective schemes and aspects under investigation. Indicator 
metrics of Ellenberg N, R and W and the number of CSM negative and CSM positive species were 
calculated from the generated pseudo vegetation plots. 
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Boxplots of the indicators across the 1000 simulated samples were then produced and compared, and 
formal statistical tests (specifically, multiple sample Anderson–Darling tests) were applied. Formal 
statistical tests comparing the distributions across 5 samples can, however, be overly sensitive, so only 
significance levels below 0.01 were noted. 

5.5 Results 

In the first comparison, we were interested in the effects of plot size across the schemes. Sampling of 
the 1000 sets of simulated vegetation patches to represent each scheme, according to the routine in 
Section 5.3, differed only in terms of area. All other potential differences between the schemes were 
held constant to allow comparison of the effects on indicators resulting from the differences of plot 
size alone. The resulting boxplots are shown in Figure 5.4. It should be noted that since only plot size 
differed, the schemes with the same plot size, namely CS, LTMN and ECN coarse scale (VC) are based 
on exactly the same data and therefore have identical boxplots.  

Few other features were immediately apparent from the boxplots in Figure 5.4. The Ellenberg scores 
all showed reasonable consistency across the schemes in terms of the mean value, the only difference 
appearing to be the smaller variation in the NPMS data – a consequence of this being a larger plot that 
is less sensitive to the differences across the 1000 simulated sets. The CSM indicators showed 
considerable differences in mean values using ECN fine scale (VF) and the NPMS methodology -  far 
less than and far greater than the other schemes respectively. This is because CSM indicators are a 
species count measure and therefore the area surveyed has a direct impact on the number observed, 
according to species-area logic. The ECN fine scale plots cover a smaller area, 160 of the 10cm cells, 
compared to 400 for CS, LTMN and ECN coarse scale, whilst the NPMS covers 2500 of the 10cm cells.  
Formal statistical comparisons across these results showed that only the two CSM indicators provided 
significant evidence to reject the null hypothesis that the distribution of values across the different 
schemes was the same (p<0.0001 in both cases). 

 
Figure 5.4: Boxplots of different indicator metrics derived from 1000 simulated patches of vegetation sampled in a 
consistent manner except for the difference in plot sizes across the different schemes under consideration. 
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We then extended this comparison to include the differences in plot size and the ways in which the 
schemes estimate cover. Once again, all other differences were held constant. In this case, because 
both the plot size and the mechanism by which cover is estimated is the same across the ECN coarse 
scale and LTMN plots, these were essentially using the same data. Boxplots of indicators are shown in 
Figure 5.5. 

 

Figure 5.5: Boxplots of different indicator metrics derived from 1000 simulated patches of vegetation sampled in a 
consistent manner except for the difference in plot sizes and cover estimation across the different schemes under 
consideration. 

Once again, the mean values in the Ellenberg scores appear to be reasonably consistent across plot 
sizes and cover estimation methods of each of the schemes. There were some differences in variability, 
particularly for Ellenberg R where the CS and NPMS showed less variability than the other schemes. 
These schemes both adopt an overall surveyor assessment of cover rather than using the cell count 
method of the other schemes. The effect of plot size on the CSM indicators seen in Figure 5.4 is still 
apparent and, as these are not cover weighted, there is no pattern beyond that already identified. The 
Anderson-Darling test confirms that the Ellenberg indicators can be assumed to be independent of 
scheme, with the exception of Ellenberg R, where the difference in variability provided some evidence 
for a significant difference (p=0.011). 

Finally, the effect of plot relocation and surveyor accuracy were added in addition to the effect of plot 
size and cover estimation. Both of these aspects affect the variability of the derived data. The resulting 
box plot is shown in Figure 5.6, where no two schemes are based on the same data due to the random 
variability now introduced. Once again, it appears that mean Ellenberg scores can be considered 
roughly equivalent (p>0.1 in all cases), perhaps with some small differences in overall variation. 
However, it is the CSM indicators that again show the biggest difference, with the effect of plot size 
still dominating. 

  



Harmonisation and integrated modelling of UK long-term vegetation data: a case study focussed on heath & 
bog habitats 

UKCEH report … version 1.0                                      38 

 

 

Figure 5.6: Boxplots of indicator metrics derived from 1000 simulated patches of vegetation sampled in a consistent 
manner except for the difference in plot sizes, cover estimation, relocation error and surveyor accuracy between the 
schemes under consideration. 

Whilst the results shown in Figures 5.4, 5.5 and 5.6 provide consistent and understandable effects of 
the different protocols on indicator responses, these are all based on simulating vegetation patches of 
the same type. We therefore also investigated the impact of simulating different patches of vegetation 
typical of communities across a gradient in order to assess potential differences in the way the 
schemes would quantify change. Six target populations were considered that traversed the major axis 
of the species ordination previously compiled. This provided a gradient of community type with which 
to re-run the simulation and test the robustness of any conclusions drawn regarding key between-
scheme differences. In Figure 5.7, the six target communities are superimposed onto the species level 
ordination previously ran in Section 5.3,1.  

 

 

Figure 5.7: Species level ordination across all scheme data with six target population points labelled, providing a gradient 
of community types. 
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The resulting boxplots from this series of simulations are shown in Figure 5.8 with each row 
representing one of the different target communities 1:6 respectively from top to bottom. Whilst there 
are some differences across these plots, the main features identified in Figure 5.4-5.6 are still apparent. 
Slightly different patterns are evident for some indicators, depending on the community. One example 
is the Ellenberg R indicator, for which the CS scheme appears differs slightly from the others on the 
bottom row (the extreme of the community types), in comparison with the top rows, where there is 
consistency across all schemes. 

 

Figure 5.8: Boxplots of indicator metrics derived from 1000 simulated patches of vegetation sampled in a consistent 
manner except for the difference in plot sizes, cover estimation, relocation error and surveyor accuracy across the different 
schemes under consideration. Each row represents a different target community identified according to the ordination in 
Figure 5.7. Top to bottom rows represents target regions 1:6 respectively. 

 
5.6 Summary 

On the basis of the results from the simulations conducted, it seems reasonable to assume that 
differences in plot size between schemes do not affect mean Ellenberg scores, whether they are cover 
weighted or not. The variability in the Ellenberg indicators may differ slightly across schemes, especially 
when surveyor error or relocation error are considered, but this can be captured within a scheme 
specific random effect in any joint model, which should be a primary consideration for future work. 

The CSM scores do vary significantly across schemes, with plot size having the biggest effect. The effect 
overwhelms any differences in variance or other differences. This will have to be accounted for 
explicitly in any joint model. 

Out of all the indicators, Ellenberg N seems the most robust to differences across the schemes and this 
is consistent across gradients. It is therefore likely that this indicator will provide the best basis for 
integrated modelling and for producing robust results consistent across all schemes. 
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6 The integrated vegetation model: temporal 
change 

6.1 Introduction to modelling temporal change 

Having completed the assessment of the individual schemes (Chapter 4) and concluded there were no 
major impediments to combining data from the four schemes within a single analysis (Chapter 5), it 
was then possible to consider how best to integrate the datasets into a single model.  

At this stage if was necessary to determine: 

- Which elements of protocol differences between schemes e.g. quadrat size needed to be 

accounted for. This was informed by the simulation study results in Section 5 

- How to construct the models to account for these differences 

- Which elements of the models could be shared between datasets. This would include the 

effects of time and other covariates 

In some cases the process was straightforward e.g. for Ellenberg N. The simulation study results 
suggested it was not necessary to account for quadrat size in modelling Ellenberg N, and there was 
good evidence from Chapter 4 that trends in Ellenberg N are comparable between schemes.  

It was clear that there was a need to allow for separate intercepts as, for example, the LTMN plots 
tend to record lower Ellenberg N on average. It would also be sensible to allow different slopes via a 
random slope model. For Ellenberg N it may not be necessary to fit a random slope model as all trends 
are so similar, but a random slope model will be more transferable to other indicators where trends 
may be less comparable. 

Some indicators appear more difficult to model, such as the richness of CSM positive indicators. The 
simulation work presented in Section 5 showed that it is important to account for differences in 
quadrat size while modelling CSM responses. In addition, results from Chapter 4 indicated that trends 
in CSM positive richness differed between monitoring schemes, varying between strongly negative (CS) 
to strongly positive (NPMS). This suggests that fitting integrated models to these data may not be 
sensible without a greater understanding of the differences between schemes. Accounting for protocol 
differences such as quadrat size may account for differences in intercepts e.g. higher richness on 
average in NPMS plots, but do not explain differences in trends. 

To develop an appropriate model structure, we initially fitted an integrated temporal model only i.e. 
excluding any covariates related to drivers of change. We fitted a basic model first, which could then 
be added to, for example, by adding covariates. To do so, we expanded on the individual trend models 
presented in Section 4 to include an additional random effect level of scheme (Eq 2). 

Indicator ~ Year + (1|scheme/site/PlotID)        (Eq 2) 

This is the simplest way to include all schemes in a single model but enforces a shared trend over time. 
To allow trends over time to vary between schemes, whilst also estimating a shared trend, we can 
extend Eq 2 to fit a random slope model (Eq 3). 

Indicator ~ Year + (1|scheme/site/plotID) + (Year|scheme)                      (Eq 3) 

In this model we allowed the effect of year to vary between schemes i.e. we fitted random slopes per 
scheme. Importantly, we did not allow sites within schemes, or plots within sites to have different 
slopes. Each plot within a scheme was assumed to have the same trend over time, but allowed to take 
a different baseline value (intercept). 
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6.2 Integrated temporal model results 

To test the benefits of integrating datasets within a single model, we first assessed the potential of 
extending the models presented in Chapter 4 to model all schemes jointly. These models included 
effects of time but not covariates of potential drivers of change (Eq 3). We also included an offset for 
quadrat size in CSM models as indicated by the simulation work in Chapter 5. 

For all three Ellenberg indicators we found that the integrated models produced trend estimates that 
had high precision (small standard errors; Table 6.1, Figure 6.1). However, we found that integrated 
models for the CSM indicators invariably had low precision. 

 

Figure 6.1 Estimated trends over time in five selected indicators produced via data integration of four vegetation 
monitoring schemes. Confidence intervals are shown around the estimated trend. 
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Table 6.1 Estimated trend slopes, confidence intervals, and p values in the five selected 
indicators produced via data integration of the four vegetation monitoring schemes 

Indicator  Integrated model 

Ellenberg N 0.0057 (0.0007) P < 0.001 

Ellenberg R 0.00654 (0.0007) P < 0.001 

Ellenberg W 0.0017 (0.0006) P < 0.001 

CSM positive 
indicators 

-0.0009 (0.003) P = 0.762 

CSM negative 
indicators 

-0.003 (0.002) P = 0.125 

 

Overall, we can conclude that the integrated approach works well for the Ellenberg indicators, as a 
consequence of the similarities in trends across the individual datasets. We were able to obtain 
consistent and precise estimates of change over time in all three Ellenberg indicators by integrating 
CS, ECN, LTMN and NPMS data.  

There is less evidence that integrating data from multiple schemes provides any benefits for 
characterisation of trends in heath and bog CSM indicators. The integrated models show high 
uncertainty in the direction of trends in the CSM indicators as a result of conflicting trends in the 
individual datasets. The reasons for this have not been fully explored but may reflect greater variability 
in counts of CSM indicators, potentially as a consequence of apparency, observer skill, phenology etc., 
compared to community averaged Ellenberg scores. Community average Ellenberg scores are thought 
to be fairly robust to differences in surveyor effort, skill and other observation-related processes e.g. 
weather, whereas counts of indicators may be more sensitive to these observation processes. It is also 
possible that CSM scores are more sensitive to local management effects. This could result in greater 
spatial heterogeneity and less linearity in long-term trends than might be expected for the Ellenberg 
indicators. The latter could be particularly important in influencing differences between the four 
schemes that cover markedly different time periods.  
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7 The integrated vegetation model: trend 
attribution 

7.1 Introduction to the trend attribution modelling 

The gradual increase in community Ellenberg R and Ellenberg N scores demonstrated from the analysis 
of the integrated datasets presented in Chapter 6, suggest widespread shifts in the assemblages of UK 
heaths and bogs that are broadly indicative of both ecosystem recovery from acidification and 
progressive atmospheric eutrophication from reactive nitrogen (N). While changes in the former are 
consistent with other recent evidence of the positive impacts of reductions in the emissions of 
transboundary air pollutants, and as such can be considered a positive environmental development, 
changes in the latter give cause for concern and are of significant relevance to national and 
international air quality and biodiversity policy.  In order to confidently attribute these drivers to our 
observations of change, however, it is first necessary to determine the extent to which the changes in 
these indicators can be linked directly to changes in the deposition of sulphur (the predominant 
contributor to acid deposition historically) and N (the main atmospheric source of eutrophication in 
semi-natural systems).  

Reductions in S deposition have been substantial across the UK in recent decades.  Sulphur tends to 
behave relatively conservatively within catchments, i.e. inputs and outputs tend to be closely 
associated over relatively short time scales – at least in better drained soil types. The reductions in S 
deposition are therefore relatively easy to link to recent reductions in soil and water acidity. In 
contrast, N deposition, although in decline, has not fallen as fast as S deposition, and there remains 
considerable uncertainty around the extent to which N may or may not be continuing to accumulate 
within soils. This is partly due to the more complicated biogeochemical cycling of deposited reactive N 
and the challenges in accurately quantifying denitrication rates (i.e. loss of N back to the atmosphere).  

Consequently, there is also considerable uncertainty around how bog and heath vegetation is expected 
to respond to elevated, although declining, rates of N deposition. Perhaps the most obvious 
explanation for the overall rise in Ellenberg N in heath and bog vegetation reported in Chapters 4 and 
6 is that deposited N continues to accumulate and thus enrich or “eutrophy” these environments. 
Alternatively, it is feasible that recent shifts to assemblages with a higher nutrient preference might 
result from the increased presence of acid-sensitive species (as a consequence of reduced soil acidity), 
and/or species with different climatic preferences, that also tend to have a higher nutrient demand 
(Rose et al., 2016). 

In this section, therefore, we describe the introduction of covariates into the integrated modelling 
framework, in order to test a range of hypotheses designed to improve our understanding of the 
relative influences of recovery from acidification, continued eutrophication from nitrogen deposition 
and changes in climate, on terrestrial vegetation indicators at ECN, CS, NPMS and LTMN sites. Our main 
focus of interest was the response of community mean Ellenberg R (soil acidity) and N (soil fertility) 
indicators, calculated for each plot in each scheme in each year of survey, although we also 
investigated potential drivers of change in Ellenberg W (soil moisture). The covariates applied, i.e. the 
explanatory variables, are based on metrics of sulphur and nitrogen deposition, and climate. Because 
we wished to focus on explaining differences in indicators between survey years and over time rather 
than explaining spatial variation, we standardised our response and covariate data relative to site 
means, as explained in the following sections. 
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7.2 Covariates 

7.2.1 Climate covariates 

Although our principal focus was on explaining change in indicators of air pollution impacts it was also 
important to consider the potential influence of climate on vegetation change. In part this is because 
warmer temperatures and a wetter growing season can promote growth of more competitive species, 
particularly perennial grasses. Hence weather can drive a similar response to that resulting from 
changes in macronutrient availability (see for example Dunnet et al 1998 and Silvertown et al 1994). 

Climate attribution studies relevant to both heath and bog with a primary focus on temporal, as 
opposed to spatial, variation were used to guide selection of climate covariates. Such studies are scarce 
and their relevant features are summarised below: 

• Mauquoy & Yeloff (2008) - Response of raised bog to climate change – summer temperature 

and summer rainfall were identified as key drivers of a shift from Sphagnum to vascular plants. 

• Britton et al. (2017) – Changes in dwarf shrub heath and moorland were studied over a 35 year 

interval in Scotland. Significant predictors included rainfall (annual, spring, winter, autumn, 

summer) and maximum winter and summer temperature. As is typical, a broad selection of 

climate variables were applied so as to maximise signal attribution but without necessarily 

framing a hypothesis around any specific covariate. 

• Kirk et al. (2010) – This study focused on soil pH change (Eng & Wales) between 1978 and 2003. 

Covariates included mean annual precipitation from 1978 to 2000 as the sole climate 

predictor, alongside sulphur (S) deposition and other soil variables.   

• Stevens et al. (2016)  - Vegetation change between 1965 and 2012-13 was analysed using mean 

Ellenberg scores and other indices to summarise vegetation quadrats in acid and calcareous 

upland grasslands. The temperature variables selected were maximum July and minimum 

January temperature and annual rainfall.  

In light of our review of the relevant attribution literature, the final covariates were selected as follows. 

- Annual precipitation (mm yr-1) 

- Mean Maximum July temp (˚C) 

- Mean Minimum Jan temp (˚ C) 

We recognise that this selection is rather limited, but we were restricted by the time available to carry 
out this element of the work. There would clearly be merit in exploring additional variables including 
a separation of rainfall into winter and summer, a measure of growing season length and estimated 
evaporative loss and soil moisture. 

7.2.2 Atmospheric S and N deposition covariates 

Our choice of covariates to represent current and past deposition loads reflected the need to capture 
the historical peak, and then consistent decline, in sulphur deposition (Figure 7.1) and the cumulative 
loading of total N to terrestrial ecosystems in Britain (Payne et al 2013; RoTap 2012). We therefore 
used the following sources of pollutant estimates to derive our explanatory variables: 

- Total N deposition averaged for the period 2003-2005. This was derived from CBED 5 x 5 km 

estimates as recommended and used in RoTAP (2012).  The rationale here was that we 

expected an approximately linear spatial relationship between long term catchment 
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accumulation of deposited reactive N (which is not possible to estimate directly) and the N 

deposition load prior to recent reductions.  

- Annual total S deposition at 5 x 5 km, based on a combination of FRAME + CBED deposition 

estimates, that included the 1970s peak in deposition and the subsequent widespread and 

marked reduction (e.g. Figure 7.1).  

 

Figure 7.1: Sulphur deposition trajectories estimated by both FRAME and CBED models for UK Upland Acid Waters 
Monitoring sites (to represent a broad UK distribution) covering the majority of the period of observations by the terrestrial 
schemes and illustrating the overall decline in deposition and consistency between datasets and resolutions. The sites 
include Llyn Llagi (North Wales), Loch Coire Fionnaraich (Northwest Scotland), Lochnagar (Northeast Scotland), Old Lodge 
(Southeast England), River Etherow (southern Pennines) and the Round Loch of Glenhead (Southwest Scotland).   

Covariates were transformed in a number of ways in order to optimise hypothesis testing. Specifically, 
we sought to remove spatial gradients in the response and covariate data so that analysis focussed on 
explaining differences in mean Ellenberg values between years (temporal differences) rather than 
between locations (spatial differences).  In this respect our study is a departure from the many spatial 
gradient studies that have been used to infer cumulative impacts of deposition on the basis of spatial 
variation in ecological response. 

For each plot in each scheme in each year, we calculated the difference between S deposition for that 
year and mean S long-term (1970 to 2018) deposition for the site. Hence, larger positive values for a 
plot indicated higher S deposition for that year relative to the mean for that location. Panel 1 in Figure 
7.2, illustrates how this transformation removes spatial variation in mean S deposition between 
sampled locations (evident in panels 2 and 3) while maintaining information on the longer deposition 
trend at each location.   
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Figure 7.2: Options tested for construction of the sulphur deposition covariate. Panel 1represents the selected best 
option. Examples are provided for two randomly selected vegetation plots from ECN Moor House (TO4-61) and ECN 
Glensaugh (TO8_72).  

 
7.2.3 Centring the response variables 

The mean Ellenberg R and N values in each sampled location in each scheme in each year were also 
centred on the mean Ellenberg R and N values across years, again to remove spatial differences. This 
in turn meant that the mean Ellenberg score for a plot across all years could be used as an independent 
explanatory variable, for example to test whether temporal differences in Ellenberg scores between 
plots across the sampling period in response to deposition were additionally dependent on the average 
acidity status of the vegetation (Figure 7.3). 

 

 

Figure 7.3: Options tested for construction of the sulphur deposition covariate. Panel 2 represents the selected best 
option. Examples are provided for two randomly selected vegetation plots from ECN Moor House (TO4-61) and ECN 
Glensaugh (TO8_72).  
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7.3 Hypothesis testing 

We then developed a set of statistical models to test a range of hypotheses, focussing on those raised 
in the introductory paragraphs of this chapter.  These are as follows and their outcomes are considered 
in detail in the results section: 

Hypothesis 1: N deposition has driven a long term increase in Ellenberg N 

Hypothesis 2: Reductions in acid (S) deposition have driven a long term increase, hence recovery, in 
vegetation as indicated by mean Ellenberg R. 

Hypothesis 3: The eutrophying impact of cumulative N deposition is most evident where recovery from 
acidification has been greatest, i.e. the increase in Ellenberg N is dependent not only high N deposition 
but has increased to a greater extent where high N deposition and declining S deposition coincide. 

Hypothesis 4: A climate favourable to nitrogen-loving plants is associated with a greater increase in 
Ellenberg N. 

Hypothesis 5: An increase in precipitation has increased the occurrence of plants of wetter conditions 
or/and decreased plants of drier conditions. 

Hypothesis 6: An increase in precipitation (and consequent effect on soil moisture) also explains 
increases in Ellenberg R in addition to a separate effect of decreased S deposition. 

Hypothesis 7: The increase in Ellenberg N is correlated with an increase in precipitation in addition to 
a separate effect of N deposition. 

In the following sections we examine the hypotheses listed above sequentially. We refer to the 
Ellenberg R metric as EbR, and the Elleberg N metric as EbN.  In each case tabulated model results 
are followed by an interpretation. Models are numbered according to the hypothesis numbers, and 
in some cases model variants are identified with a suffix, e.g. Model 2.2.  

 

7.3.1 Hypothesis 1: N deposition has driven long term increase in Ellenberg N 

MODEL 1 STRUCTURE: Standardised EbN (response variable) at each quadrat in each year = 
intercept + (plot-specific 2003-2005 average N deposition) + (year of survey) + interaction between 
the two. 

Table 7.1: Model 1. Results table for the random effects model. N dep = plot-specific 2003-2005 
average N deposition; Year = year of survey. 

   Value   Std.Error    DF    t-value   p-value 

Year              0.002028  0.0009442  4934   2.148211   0.0317 

N dep        -0.316579  0.1146111  4934  -2.762202   0.0058 

Year * N dep    0.000158  0.0000572  4934   2.760216   0.0058 

 

Model 1 interpretation. 

Although the coefficient for the separate N deposition variable is negative, the positive coefficient for 
the interaction term in Table 7.1 indicates that Ellenberg N has been increasing most at sites where N 
deposition was highest in 2003-05 – and hence those sites that have received the highest reactive N 
loads historically.  

What is the size of the modelled N deposition effect? 
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An illustration of the ecological, rather than purely statistical, significance of the impact of N 
deposition, as inferred by Model 1, can be achieved by adding the change in mean Ellenberg N over 49 
years (1978 to 2019) predicted using Model 1, onto the starting values of each quadrat in 1978 and 
plotting the new distribution of predicted values (Figure 7.4). The significant interaction term in Model 
1 tells us that the rate of change over time depends on the history of N deposition at a site (as indicated 
by the 2003-05 deposition estimate). We therefore added a predicted increase over time at the 5 
percentile value of total N deposition in the dataset (5.2 kg N ha-1 yr-1) and at the 95%tile (27 kg N ha-1 
yr-1). The density of mean Ellenberg N scores for Acid Grassland in CS2007 is also shown, representing 
an ‘undesirable’ and more fertile reference distribution. Model 1 estimates an average increase of 0.23 
of an Ellenberg N unit over the 49 years at the 95%tile deposition. The full range of Ellenberg N scores 
is 1 to 9. Hence at high N deposition, 49 years of loading is estimated to result in a 2.5% change along 
this vegetation fertility gradient from the most infertile to the most fertile vegetation in Britain. 

 

 

Figure 7.4: Application of Model 1, to predict how the distribution of mean Ellenberg N values in 2019 are expected to 
have increased from their 1978 values. Predictions were added to the baseline values assuming a lower (5%tile) or upper 
(95%tile) N deposition value. A reference distribution of mean Ellenberg N values for plots in Acid grassland is shown to 
aid assessment of the magnitude of the estimated change.  

It is important to note that nitrogen deposition has been falling in recent years, although less sharply 
than sulphur. So the relationship described by Model 1 is consistent with either a lagged response to 
N deposition and/or the effect of a continued gradual increase in the availability of plant available N 
in these plots, possibly as a consequence of continued accumulation of deposited N or other changes 
in soil chemistry. 

7.3.2 Hypothesis 2: Reductions in acid (S) deposition have driven a long term 
increase, hence recovery, in vegetation as indicated by mean Ellenberg R. 

A series of models with varying numbers of covariates were fitted to test this hypothesis, in which 
variation in the Ellenberg R score of each plot was modelled as a function of S deposition and time. In 
the more complex models we also included mean plot Ellenberg R score to reflect the long-term acidity 
status of the plot.  The Akaike information criterion (AIC) values for each model are provided in Table 
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7.2 as a guide to the best-fitting model when taking the number of covariates into account. Models 
with the lowest AIC are normally considered to have the best fit, although AIC values do not 
communicate the level of statistical significance of a model and do not necessarily convey a high ability 
to explain the variation in the response data..  

MODEL 2 GENERAL STRUCTURE: Standardised EbR at each quadrat in each year = intercept + (time 
standardised S deposition) + (year of survey) + (interaction between the two)  

Table 7.2: Models tested and their AIC values. S dep = standardised S deposition, Year = year of 
survey.  

Effects in model AIC 

Random effects only (Model 2.1) 6938 

S dep (Model 2.2) 6894 

Year (Model 2.3) 6863 

S dep + mean Ellenberg R across years (Model 2.4) 6870 

S dep + mean Ellenberg R across years + interaction term (Model 2.5) 6849 

Year + mean Ellenberg R across years + interaction term (Model 2.6) 6836 

 

Table 7.3: Model 2.2. Results table for the random effects model. Response variable = 
Standardised EbR at each quadrat in each year. S dep = standardised S deposition. 

   Value   Std.Error    DF    t-value   p-value 

S deposition            -0.004  0.0005  4888 -7.1  0.0000 

 

The results for the simple model, involving S deposition as the sole predictor (Model 2.2), indicate a 
statistically significant negative relationship, such that plots with higher standardised mean Ellenberg 
R values are associated with lower S deposition. The standardised effect size (-0.09) indicates a very 
small effect relative to the wider variation in Ellenberg R in the dataset. This was expected given the 
multiple factors and relationships likely to be responsible for this variation in addition to S deposition 
(e.g. Van den Berg et al 2010; Van der Wal et al 2003). Moreover the 5 x 5 km grid cell estimates may 
not fully reflect changes that may have occurred at a sub-grid scale. A plot of the modelled slope 
against the observations indeed shows how much residual variation there is in the response along the 
S deposition gradient (Figure 7.5). Importantly however, the variable Year (as sole predictor) provided 
a better fit than S deposition, leaving open the possibility that another monotonically changing driver 
provides the dominant mechanism (see comment within the following interpretation section). 
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Figure 7.5.  Raw data points and fitted line from Model 2.2 (S deposition as the sole predictor of temporal differences in 
mean Ellenberg R). The fitted regression line is the same in each panel and reflects the fitting of the model to all scheme 
datasets combined. Contributing plots are shown in separate panels to indicate scheme-specific coverage of the change 
in S deposition gradient and years sampled. 

We also tested the hypothesis that the response of mean Ellenberg R over time is not only driven by S 
deposition but also conditioned by the long term acidity status of the impacted plot, as inferred from 
the long-term mean Ellenberg R value for each plot (i.e. averaged across years). This is an important 
test, since evidence suggests that more organic, lower pH soils differ from mineral soils in their 
response to acid deposition. The interaction term in Model 2.5 (Table 7.4) was highly significant. On 
the starting assumption that S deposition is indeed the dominant driver, the coefficients in Model 2.5 
indicate that vegetation plots indicative of less acidic conditions have been more responsive to the 
reduction in S deposition than those indicative of more acidic environments.  

Table 7.4: Model 2.5  Response variable = Standardised EbR at each quadrat in each year. S dep 
= standardised S deposition. Mean EbR = mean long-term Ellenberg R score for the plot. 

   Value   Std.Error    DF    t-value   p-value 

S deposition            0.0026  0.00146  4887 1.7775  0.0755 

Mean EbR  0.0026  0.00460  3090 0.5665  0.5711 

Interaction    -0.0020  0.00041  4887 -4.7994  0.0000 

 

The importance of the interaction in Model 2.5 is illustrated in Figure 7.6. Vegetation plots with a 
higher long term mean Ellenberg R score, i.e. those associated with less acid soils overall (pink line), 
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showed stronger responses to changing S deposition than those associated with more acidic conditions 
(darker green line in Figure 7.6). 

 

Figure 7.6: Each line shows predictions from Model 2.5 at varying percentile values of the cross-year mean Ellenberg R 
value to illustrate the effect of the significant interaction term (see Table 4). The interaction terms estimates how the 
response of plots to the S deposition gradient varies with mean Ellenberg R where the mean is calculated across all 
sampling years for that location and is therefore an indicator of the average pH regime of that location.  

 

Table 7.5: Model 2.6. Results table for the random effects model with lowest AIC.  Response variable 
= Standardised EbR at each quadrat in each year. Covariates are Year of survey and mean EbR = mean 
long-term Ellenberg R score for the plot. 

Value   Std.Error    DF    t-value   p-value 

(Intercept)     -3.608   2.33669  4887  -1.5441   0.1226 

year             0.0018   0.00117  4887   1.5068    0.1319 

EbR_mean        -1.5945   0.60491  3090  -2.6358   0.0084 

year:EbR_mean   0.0008   0.00030  4887   2.6630    0.0078 

 

 

Interpretation 

When S deposition was applied as the sole covariate, we found a strong negative relationship between 
time-centred S deposition and time-centred EbR, i.e. consistent with an S deposition control on 



Harmonisation and integrated modelling of UK long-term vegetation data: a case study focussed on heath & 
bog habitats 

UKCEH report … version 1.0                                      52 

 

Ellenberg R (Fig 5). It is important to note, however, that the variable Year (as sole predictor) provided 
a better fit than S deposition, and when Year and S deposition were both included in a two predictor 
model, S deposition was not statistically significant. Hence, the pattern of widespread increases in 
Ellenberg R is better explained by a pure linear variable than the more complex, but still monotonic, 
change in S deposition.  

This, therefore, leaves open the possibility that a single factor, other than S deposition, dominates the 
Ellenberg R signal (but see interpretation for Model 6.2 below). A more plausible explanation is that 
the centred S deposition variable is overly sensitive to the estimated S deposition referenced to each 
plot-centred mean Ellenberg R value in each specific year. Lag effects in the vegetation response would 
lead us not to expect an instantaneous coupling between S dep and mean Ellenberg R. Moreover, it is 
possible that the plot and year-specific deposition estimate is also overly sensitive to yearly increases 
and decreases in estimated deposition (see Fig 7.2). Further work should explore a smoothed non-
linear covariate that perhaps better conveys the longer term reduction in S dep and is less sensitive to 
annual variability. The last model tested was one with year, mean Ellenberg R and their interaction 
term as covariates (Table 7.5). This actually had the lowest AIC (Table 7.2) which suggest that the S dep 
variable indeed has shortcomings as an informative measure of long-term influential changes in S 
deposition compared to time alone. Compared to the spatially invariant time term we would expect 
spatial variation from plot to plot in the plot-centred S dep variable to contribute useful additional 
explanatory power but this is clearly not the case. We would also expect a degree of mismatch 
between the covariate and the plant community response because of their different resolutions; the 
former is a 5x5km estimate while the latter is a 2x2m measurement. However, it is unexpected that 
an index on year of survey should prove more explanatory. Further work is clearly needed to 
understand these results.    

Bearing in mind the reservations above, while working on the assumption that S deposition is actually 
the dominant driver, the best fitting model (Model 2.5), included a significant interaction term 
between the long-term mean Ellenberg R score of the plots and S deposition. The model parameters 
(Table 7.4) indicate that the larger acidity-driven changes in vegetation (i.e. larger increases in 
Ellenberg R), in response to reductions in S deposition, have occurred in less acidic environments.  

The standardized effect size for the interaction term is very small (-0.05). However the main effect 
parameter estimating the impact of S deposition (Table 3) indicates that for every 10 kg S ha-1 yr-1 
reduction in deposition, mean Ellenberg R increases by 0.3. This equates to 3.8% of the range of mean 
Ellenberg R values in the heath & bog sample and 3% of the entire range of Ellenberg values assigned 
to British plant species (1 to 9). The range of mean Ellenberg R is high in the heath & bog plots because 
of the liberal selection criteria applied so as to optimise attribution of vegetation change – see Chapter 
2. 

Our findings in terms of the vegetation index Ellenberg R are consistent with patterns seen for soil pH 
change in terrestrial vegetation summarised in RoTAP (2012). Analysis of National Soil Inventory (NSI) 
data (Kirk et al., 2010) and the repeat of the GB Woodland Survey (Smart et al., 2014) have shown a 
dependence of soil pH over time on the mean pH at sampled locations. The NSI analysis also showed 
a negative correlation between pH change and S deposition change but only when historical deposition 
was included in the model. Analysis of Countryside Survey data also clearly show that the size of pH 
change over time is larger the higher the average pH of the habitat sampled (see Table 5.1 in RoTAP 
2012). While we have focussed on a species compositional indicator of soil pH, the consistency of the 
pattern is compelling and suggests that changes above-ground are to some extent coupled with 
changes below-ground and both are responding to legacy effects of high but declining S deposition. 
The effect size is small however. 
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7.3.3 Hypothesis 3: The eutrophying impact of cumulative N deposition is 
most evident where recovery from acidification has been greatest i.e. the 
increase in Ellenberg N is dependent not only high N deposition but has 
increased to a greater extent where high N deposition and declining S 
deposition coincide. 

Here we focussed on the hypothesis that the reduction in soil acidity, as soils recover from acidification, 
is allowing plants to exploit previously inaccessible N, where N had either accumulated or was still 
being deposited at high rates. This should mean that plants typical of more productive and less acidic 
conditions are likely to have responded more than others in areas with larger reductions in S deposition 
that have also been subject to higher levels of N deposition. 

The key test of this hypothesis is the importance of the interaction term in the Model 3.3 in Table 7.6 
below and reported fully in Table 7.7.  

MODEL STRUCTURE: Model 3. Standardised EbN at each quadrat in each year = intercept + (time 
standardised S deposition) + (plot-specific 2003-2005 average N deposition) +  interaction between 
the two. 

Table 7.6: Models tested and their AIC values. 

Effects in model AIC 

S deposition (Model 3.1) 6273 

S deposition + N deposition load (2003-’05) (Model 3.2) 6266 

S deposition + N deposition load (2003-’05) + interaction (Model 3.3) 6266 

 

Table 7.7: Results table for Model 3.3 (see above) including the main effects of S and N 
deposition and their interaction.  Response variable = Standardised mean Ellenberg N at each 
quadrat in each year. 

   Value   Std.Error    DF    t-value   p-value 

S deposition            -0.0059  0.0014  4886 -4.2766  0.0000 

N deposition  -0.0013  0.0008  4886 -1.6398  0.1011 

Interaction    0.0000  0.0000  4886 1.2686  0.2046 

 

Interpretation 

The AIC value for Model 3.3 is no lower than the equivalent model without an interaction (Model 3.2), 
which indicates that the interaction is not important, and therefore that this hypothesis does not hold. 
This is not likely to be an artefact of the spatial correlation between N and S deposition estimates which 
are only weakly correlated (see Figure 7.7).  Our conclusion here is that there is no evidence that the 
relationship between change in Ellenberg N and change in S deposition is additionally dependent on N 
deposition load.   

Climate-related hypotheses 

With all the hypotheses that follow we sought to test whether trends in climate variables can explain 
a fraction of the observed trend in mean Ellenberg values across the schemes and 49 years of 
observations. The mechanisms envisaged here differ fundamentally from those where climate may act 
as a spatial correlate of spatial or temporal change in vegetation. Using three climate variables, we 
tested whether any trend across the sampled locations toward climate conditions more amenable to 
the growth of competitive versus broadly stress-tolerant species might also explain change in Ellenberg 
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R and N. We also tested explicitly whether long-term increases in rainfall could explain change in 
Ellenberg Wetness, that is a shift toward favouring wetter conditions.  

7.3.4 Hypothesis 4: A climate favourable to nitrogen-loving plants is 
associated with a greater increase in Ellenberg N. 

Models 4.1 and 4.2 (below) were structured to test whether change in Ellenberg N could be linked to 
change in minimum January temperature. 

MODEL STRUCTURE: Model 4.1. Standardised EbN at each quadrat in each year = intercept + (time 
standardised minimum January temperature) + (year of survey) + interaction between the two   

Table 7.8: Model 4.1. Results table. Year and minimum January temperature treated separately 
(no interaction). Response variable = Standardised mean Ellenberg N at each quadrat in each 
year. 

 

Value   Std.Error    DF    t-value   p-value 

Year             0.0041  0.0005   4887   7.9101    0.0000 

Min Jan temp               -0.0004                 0.0039   4887  -0.1120   0.9108 

 

Table 7.9: Model 4.2. Results table. As for Model 4.1 but with an added interaction between 
Year and min Jan temperature. Response variable = Standardised mean Ellenberg N at each 
quadrat in each year. 

Value   Std.Error    DF    t-value   p-value 

Year             0.0041   0.0005   4886   7.9013    0.0000 

 Min Jan temp      0.0628   0.5715   4886   0.1099    0.9125 

Interaction    -0.0000   0.0002   4886  -0.1107   0.9118 

    

Interpretation 

The results do not indicate any effect of change in minimum January temperature on the change in 
mean Ellenberg N between plots over time. 

 

7.3.5 Hypothesis 5: An increase in total rainfall has increased the occurrence 
of plants of wetter conditions or/and decreased plants of drier conditions. 

 

MODEL STRUCTURE: Model 5. Standardised Ellenberg Wetness (EbW) at each quadrat in each year 
= intercept + (time standardised total annual precipitation) + (year of survey).   

Table 7.10: Model 5. Results table with no interaction between year and rainfall. Response 
variable = Standardised mean Ellenberg Wetness at each quadrat in each year. 

 

Value   Std.Error    DF    t-value   p-value 

Year             0.0004   0.0003   4887   1.2671    0.2052 
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Annual rainfall    -0.0000   0.0000   4887  -0.5167   0.6054 

   

Interpretation 

The results provide no indication of a relationship between changes in Ellenberg Wetness values and 
precipitation over time. It is possible that annual rainfall is a somewhat blunt instrument as an 
explanatory variable and future work should test for relationships with other possible covariates such 
as summer rainfall and estimates of evaporative loss. Other response variables could also be tested 
where feasible, for example total bryophyte cover or Sphagnum cover, where focussing just on heath 
and bog. 

   

7.3.6 Hypothesis 6: An increase in precipitation, through its influence on soil 
moisture, also explains increases in Ellenberg R in addition to a separate 
effect of decreased S deposition. 

MODEL STRUCTURE: Model 6. Standardised EbR at each quadrat in each year = intercept + (time 
standardised annual precipitation) + (time standardised S deposition) + (year of survey) + 
interaction between the three 

Table 7.11: Model 6.1 Results table. Response variable = Standardised mean Ellenberg R at each 
quadrat in each year. 

Value   Std.Error    DF    t-value   p-value 

Year               0.0041  0.0008   4886   5.4750    0.0000 

Annual precip    -0.0000   0.0000   4886  -2.8965   0.0038 

S deposition               -0.0007   0.0008   4886  -0.7938   0.4274 
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Table 7.12: Model 6.2  Results table with added interactions between year, precipitation and S 
deposition. Response variable = Standardised mean Ellenberg R at each quadrat in each year. 

Value   Std.Error    DF    t-value   p-value 

Year              0.0041   0.0008   4882   5.2846    0.0000 

Annual precip     0.0057   0.0062   4882   0.9109    0.3624 

S deposition                               -0.1741  0.0834   4882  -2.0886   0.0368 

Year * Annual precip    -0.0000  0.0000   4882  -0.9242   0.3554 

Year * S deposition      0.0001   0.0000   4882   2.0845    0.0372 

Annual precip * S deposition    0.0003   0.0003   4882   1.1680    0.2429 

3-way interactions    0.0000   0.0000   4882  -1.1837   0.2366 
 

Interpretation 

During the testing of Hypothesis 2 we found a strong year ~ S deposition correlation and so the lack of 
significance of S deposition in Model 6.1 is not surprising given the inclusion of Year in this model. The 
model, however, suggests that changes in mean Ellenberg R between plots and over time tend to be 
smaller in areas where precipitation has increased most. Further work is required to map these 
patterns to determine any geographical patterning in the apparent relationships between change in 
precipitation and species that vary in their association with higher or lower pH conditions.  

Tests of interaction terms indicate no evidence for any conditional relationships between mean 
Ellenberg R in response to time and rainfall and S deposition (Table 7.12).  Interestingly though, and in 
contrast to modelling under Hypothesis 2, S deposition does feature as a significant predictor in Model 
6.2, while the Year * S deposition interaction is also significant.  This provides further support for the 
idea that S deposition is an important driver of Ellenberg R, but only when considered in combination 
with a more complex model formulation. It remains perfectly possible that the change in S deposition 
is a contributor, if not the dominant contributor, to the Ellenberg R shift. At this stage it seems 
reasonable to conclude that our modelling implicates S deposition in changing Ellenberg R, but 
limitations in the number of covariates we could investigate and the complexity of models we could fit 
mean that further work may be necessary to explain changes with greater confidence. 

7.3.7 Hypothesis 7: An increase in precipitation in addition to a separate 
effect of N deposition is correlated with an increase in Ellenberg N. 

MODEL STRUCTURE: Model 7. Standardised EbN at each quadrat in each year = intercept + (time 
standardised annual precipitation) + (plot-specific 2003-2005 average N deposition) + (year of 
survey) + interaction between the two   

Table 7.13: Model 7.1 Results table with no interaction between year, rainfall and N deposition. 
Response variable = Standardised mean Ellenberg N at each quadrat in each year. 

 

Value   Std.Error    DF    t-value   p-value 

Year             0.0041   0.0005   4886   8.5607    0.0000 

Annual rainfall    -0.0000   0.0000   4886  -1.9621   0.0498 

N deposition                 -0.0001   0.0006   4886  -0.2088   0.8346 
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Table 7.14: Model 7.2. Results table with added interaction between year, rainfall and N 
deposition. Response variable = Standardised mean Ellenberg N at each quadrat in each year. 

Value   Std.Error    DF    t-value   p-value 

Year              0.0021   0.0010   4882   2.1482    0.0317 

Annual rainfall                    0.0042   0.0075   4882   0.5599    0.5756 

N deposition                                -0.2923  0.1172   4882  -2.4930   0.0127 

Year * Annual rainfall           -0.0000  0.0000   4882  -0.5635   0.5731 

Year * N deposition         0.0001   0.0001   4882   2.4922    0.0127 

Annual rainfall * N deposition     -0.0003  0.0004   4882  -0.7803   0.4352 

3-way interaction    0.0000   0.0000   4882   0.7802    0.4353 
 

Interpretation 

Here we tested a hypothesis generated by evidence for the positive effect of seasonal rainfall on 
species able to readily exploit higher macronutrient availability. Analysis of a 35 year trend in weather 
and vegetation indicated that wetter summers favoured nutrient-loving, perennial grasses, a signal 
likely to translate into an increase in Ellenberg N (Dunnett et al 1998). The ability of changing rainfall 
to drive increased grass biomass with competitive impacts on other species, hence a similar signal to 
that expected from eutrophication, was also evidenced by Silvertown et al (1994) based on analysis of 
the long running Rothamsted Park Grass experiment. Here the key test was therefore the interaction 
between plot centred annual rainfall (a covariate that conveys differences in rainfall at each plot 
location over time) and N deposition.  Results indicated that this interaction was not significant (Table 
7.14). Hence based on analysis of patterns across the four schemes we did not find evidence of a 
rainfall related enhancement of the positive N deposition effect on mean Ellenberg N detected in 
hypothesis 1 (see Table 7.1).  

7.4 Attribution modelling discussion 

Our cross-scheme analysis provides new evidence of relationships between S and N deposition and 
mean Ellenberg values. These patterns are consistent with the impact of eutrophication and recovery 
from acidification on heath and bog plant assemblages over 49 years. While these are correlative 
relationships only, our application of appropriate standardisation of response and covariates allowed 
us to focus solely on changes through time across the multiple schemes without the confounding 
effects of spatial variation. Being able to directly quantify change over time avoids some of the pitfalls 
that beset spatial gradient analysis as a source of indirect evidence of the impacts of global change 
drivers on ecosystems over time (e.g. Damgaard 2019).  

The effect sizes we detected are small, yet this is to be expected outside the realm of a controlled 
experiment or heavily constrained sampling domain. Here we attribute a response to pollutant 
deposition as a fraction of a larger amount of variation most of which as yet remains unexplained. The 
benefit is that we have analysed a realistic and representative sample of heath and bog across the 
British landscape.  

Our case study focussed on heath and bog did not recover any signals attributable to linear trends in 
climate variables. More sensitive covariates such as summer rainfall, would be worth trying in future 
work as well as in any extension of the attribution modelling to other vegetation types.    
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8 Discussion and conclusions 
The primary aim of this project was to determine the potential to combine the vegetation data of some 
of the most established national monitoring and survey schemes within a single analysis in order to 
maximise our understanding of long-term vegetation change across the UK. It was decided from the 
outset that we would focus on heath and bog vegetation as a proof of concept. While the ultimate 
focus was on quantifying, and understanding the causes of, long-term change, the process required a 
sequence of steps, several of which we consider valuable in their own right. 

First, computer code was produced to enable efficient extraction of all vegetation data (i.e. not only 
from heath and bog) from the various scheme databases or other repositories. This can be re-applied 
whenever these databases are updated. In the course of this step we encountered some problems 
associated with the consistency of raw data formats. As a consequence of working through these issues 
with the data providers, we were able to provide advice on best practice which they have subsequently 
taken up. In the course of the data extraction process we also gathered information on the technical 
specifics of the various sampling methodologies applied by the different schemes, that then fed into 
later steps.    

Second, species identifiers used by the different schemes were harmonised through the production of 
a common species dictionary. Code was produced as a package “vegtaxon”, in the statistical 
programming language R, which matches Latin names of UK vascular plant species to the current 
accepted name.  Considerable interest has already been expressed in the potential of the package to 
make integration and harmonisation of vegetation data from different sources simpler and more 
efficient – including with regard to Defra’s developing UK APIENS project that reports on air quality 
impacts on ecosystems.  Species-specific values for a range of indicators were then linked to the 
harmonised species names. 

Third, a method was developed to identify all plots from the full integrated vegetation dataset that, at 
any point in their records, showed the necessary characteristics of either heaths or bogs. This approach 
has already been re-applied under a separate 25YEP indicator within the current UKCEH-Defra MoA, 
focussed on unimproved grassland. A range of the most appropriate vegetation indicators were 
subsequently selected to characterise spatial and temporal variation in the heath and bog 
assemblages. 

Fourth, we then carried out a first round of modelling of time trends in the Ellenberg and CSM metrics 
of the four schemes separately. This demonstrated remarkably tight agreement between schemes in 
temporal patterns and rates of change in the selected Ellenberg metrics, particularly with respect to 
Ellenberg N and Ellenberg R, while also highlighting significant differences in the average levels 
between schemes. This gave us some confidence in the potential to bring these data together in a 
single analysis, providing the difference in levels was accounted for.  In contrast to the comparison of 
Ellenberg trends, we found considerable disagreement between schemes in the temporal patterns of 
the CSM metrics, which provided our first warning that integration of these data in a single analysis 
was likely to be challenging. 

Fifth, we developed an original approach to simulating vegetation swards, in order to test the effect 
that differences between sampling protocols may exert on the calculation of the range of metrics of 
interest.  The simulated plots were sufficiently realistic to show the expected species area relationship, 
and fall within the ordination range for heath and bogs determined for this project. On the basis of the 
simulations we concluded that plot size did not affect mean Ellenberg score, whether the vegetation 
data were cover weighted or not. The computation of Ellenberg N seemed particularly robust to 
methodological differences between schemes, suggesting that modelling of this metric derived from 
integrated schemes should be similarly robust.  
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The simulations provided further evidence that the calculation of CSM scores is much more sensitive 
to the specific scheme sampling methodologies.  By simulating variation in the plot assemblage across 
an environmental gradient, as a surrogate for temporal change, we were also able to show that 
estimates of change in Ellenberg metrics were consistent across schemes. While we are confident in 
the general simulation approach, it is still relatively simplistic and does not yet take into account the 
tendency of some species to cluster spatially or form strong associations with other species. We 
therefore intend to continue developing the approach, and envisage widespread application of the 
method in developing better models for assessing vegetation survey data, and potential future survey 
design.  

As a consequence of the sequence of steps mapped out above we were able to design the most 
appropriate structure for our integrated models to describe change in the vegetation metrics. These 
included random slopes and random intercepts to allow for differences between schemes. 
Unsurprisingly, given the comparisons of trends between schemes, we found the integrated models 
for the Ellenberg metrics worked extremely well, and provided consistent and precise estimates of 
change over time for all three of them. The NPMS time series is too short to date for trends to be 
clearly discernible. 

In contrast, and again consistent with observations made in the earlier steps, we found little evidence 
for the value of combining data from multiple schemes for the assessment of change in the CSM 
metrics. The direction of trends in the integrated CSM models was highly uncertain as a result of 
conflicting trends in the individual datasets. The extent to which these differences result from the 
sensitivity of these metrics to plot size and methods, as opposed to the potentially more spatially and 
temporally heterogeneous variation in the metrics themselves, still requires further investigation. 

The introduction of covariates to attempt to explain variation and change in the integrated Ellenberg 
signals sheds new light on the factors that appear to be dominating the modelled increases in Ellenberg 
N and Ellenberg R.  Unusually for assessments of long term vegetation change, our approach of 
standardising both response and explanatory variables removes the potential influence of spatial 
effects and therefore allows a more robust test of hypotheses concerning the drivers of temporal 
change.  

Our analysis provides the most robust quantification to date of national-scale increases in Ellenberg N, 
Ellenberg R and Ellenberg W metrics. It also adds considerable strength to a developing evidence base 
that suggests that terrestrial vegetation in the UK is changing progressively, albeit very gradually, in 
response to long-term shifts in in the deposition and accumulation of air pollutants.  

The clearest signal in our heath and bog data, a progressive increase in Ellenberg N, occurred in CS, 
ECN and LTMN data at remarkably similar rates. This is particularly striking, given that LTMN 
commenced only in 2010. While we only tested for linear trends, the similar rates of change quantified 
across the very different time scales of the three schemes suggests this trend towards more-nutrient 
loving species has been occurring over many years and appears to have continued until quite recently 
at least.  

Our attribution modelling upheld the hypothesis that the change in Ellenberg N in these communities 
is linked directly to the amount of reactive N deposited historically, although it was not possible to 
discern whether the continuing rise in the metric represents a lagged response to the historical load, 
or whether there is sufficient contemporary deposition for these communities to be continuing to 
respond dynamically to continued soil N accumulation. This distinction is clearly important from an air 
quality policy perspective, but will require further investigation, for example through the development 
of non-linear modelling approaches capable of capturing changes in the rate of change in Ellenberg N 
over time, and by exploring relationships between N deposition, soil chemistry and vegetation where 
these are measured together, i.e. at ECN sites. Currently there is a trade-off between the advantages 
of including multiple datasets in an integrated model and the flexibility to include e.g. non-linear terms 
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or site-level covariates when modelling datasets individually. Developing methods to address this 
would allow more sophisticated integrated models to be constructed. 

The integrated model of Ellenberg R also demonstrated a clear cross-scheme shift towards species 
with a preference for less acidic conditions, albeit with slightly more variation between schemes in the 
response relative to the change in Ellenberg N.  We found tentative evidence to link the response 
directly to an atmospheric deposition driver – in this case the large reduction in sulphur deposition 
that has been occurring progressively since the 1980s to the present and is driving a reduction in soil 
acidity.  Interestingly, our more detailed model demonstrated that the response in Ellenberg R to the 
reduction in S deposition was stronger in habitats with assemblages indicative of less acid conditions. 
This again needs to be explored in further detail, but it seems likely that the primary explanation for 
this is that more peaty environments are rich in (natural) organic acids that provide significant 
buffering against changes in mineral (pollutant) acidity, and have therefore responded less to changes 
in acid deposition regimes over time. A second potentially contributory factor is that the soil chemistry 
of some chronically acidified soils may not yet have recovered to a point at which acid sensitive species 
are able to thrive. For example, levels of inorganic aluminium could still present toxicity barriers to 
some taxa. Our hypothesis that responses of Ellenberg N to nitrogen fertilisation were conditional on 
the extent of recovery from acidification was not upheld but deserves more thorough investigation. 

Our integrated model of temporal change in Ellenberg W again provided evidence of a very gradual 
but highly significant cross-network upward trend, this time indicating a progressive shift towards 
species with a preference for wetter conditions. In contrast to Ellenberg N and R though, we were 
unable to establish a significant link with climate variables, the most obvious hypothesis being that 
there would be a significant effect of annual precipitation, which has been increasing across most of 
the UK over the full period covered by the schemes. It is quite feasible, however, that annual 
precipitation is too coarse a measure for explaining the response. With more time we would have 
explored other hydrological explanations such as changes in precipitation at a seasonal scale – there 
has also been a very strong increase in summer precipitation over the survey period for example, while 
seasonal estimates of water balance, or soil moisture might also be appropriate although relatively 
uncertain. Further work should explore these other facets in more detail. 

Overall therefore we have demonstrated that there is considerable potential for integrating data for 
these surveys, and possibly others, in order to shed new light on the nature and causes of vegetation 
change. The value of the integration is brought home by the significant reduction in standard errors of 
the temporal models for the Ellenberg metrics. The fact that there is a clear regional shift in the 
Ellenberg metrics over recent decades, that can be linked directly to regional changes in drivers 
(particularly with respect to air pollutants), clearly needs to be taken into account when assessing the 
potential impact of other more local drivers, such as Environmental Land Management (ELM) on these 
heath and bog habitats at least, and possibly others.  

The work also highlights that signals of temporal change in ECN plots, that are much fewer in number 
and geographical spread that the other surveys, are still broadly consistent with the changes observed 
more widely. Since the ECN plots are monitored more frequently, and surveys are co-located with a 
range of other environmental measurements, including air and soil chemistry and meteorology, there 
would seem to be clear wider value in exploring cause-effect relationships at these intensively 
monitored sites. Ultimately, all these datasets have an important role to play in tracking and 
understanding long-term environmental change. Now we have demonstrated that the information 
from them can be usefully combined, the differences in characteristics such as extent, frequency and 
co-location should be seen as a strength of the UK’s diverse set of long-term environmental monitoring 
and observation assets. 

The project represents a major step forward in our ability to exploit the interoperability of what until 
now have been considered rather disparate sources of data. There is clearly potential to both explore 
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the signals we have begun to quantify and decipher within heath and bog habitats in much greater 
detail, and also to extend the approach to other habitats.  
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Appendix 1 Details of data exploration for each vegetation scheme 

1.1 Countryside Survey data exploration 

This document includes exploration of the CS data and the five calculated indicators (CSM + , 
CSM -, Ellenberg N, Ellenberg R and Ellenberg W) 

First, load data. 

This has already been filtered to include only heath and bog plots (as defined by the cluster 
analysis). 

CS <- read.csv("CS_modelling_dataset_v2.csv") 
 
summary(CS) 

##             ID            plotID        repeat_plotID        year      
##  CS_889X1_NEN:   41   835X1  :  100   835RPT20 :  100   Min.   :1978   
##  CS_931U5_NEN:   38   1152X1 :   83   1152RPT8 :   83   1st Qu.:1990   
##  CS_835X1_NEN:   37   931X1  :   82   931RPT19 :   82   Median :1998   
##  CS_825U1_NEN:   35   1115X1 :   79   1115RPT12:   79   Mean   :1998   
##  CS_1054X4_NI:   34   931X3  :   78   931RPT21 :   78   3rd Qu.:2007   
##  CS_922X5_NEN:   33   987X1  :   73   987RPT16 :   73   Max.   :2019   
##  (Other)     :49781   (Other):49504   (Other)  :49504                  
##      yearF          yearOS      scheme          site        
##  Min.   :1978   Min.   : 1.00   CS:49999   Min.   :   6.0   
##  1st Qu.:1990   1st Qu.:13.00              1st Qu.: 732.0   
##  Median :1998   Median :21.00              Median : 933.0   
##  Mean   :1998   Mean   :21.07              Mean   : 861.1   
##  3rd Qu.:2007   3rd Qu.:30.00              3rd Qu.:1070.0   
##  Max.   :2019   Max.   :42.00              Max.   :1272.0   
##                                                             
##               species          EBERGR          EBERGN      
##  Potentilla erecta: 2720   Min.   :1.000   Min.   :1.000   
##  Calluna vulgaris : 2597   1st Qu.:2.000   1st Qu.:2.000   
##  Molinia caerulea : 2169   Median :3.000   Median :2.000   
##  Sphagnum         : 1941   Mean   :3.494   Mean   :2.634   
##  Galium saxatile  : 1555   3rd Qu.:4.000   3rd Qu.:3.000   
##  Nardus stricta   : 1522   Max.   :8.000   Max.   :9.000   
##  (Other)          :37495   NA's   :3624    NA's   :2678    
##      EBERGW          CSM_POS         CSM_NEG       EBERGR_site    
##  Min.   : 1.000   Min.   :1       Min.   :1       Min.   :1.000   
##  1st Qu.: 6.000   1st Qu.:1       1st Qu.:1       1st Qu.:2.714   
##  Median : 7.000   Median :1       Median :1       Median :3.250   
##  Mean   : 6.623   Mean   :1       Mean   :1       Mean   :3.480   
##  3rd Qu.: 8.000   3rd Qu.:1       3rd Qu.:1       3rd Qu.:4.100   
##  Max.   :12.000   Max.   :1       Max.   :1       Max.   :8.000   
##  NA's   :3620     NA's   :24450   NA's   :30985   NA's   :58      
##   EBERGN_site     EBERGW_site      CSM_POS_site     CSM_NEG_site    
##  Min.   :1.000   Min.   : 3.000   Min.   : 0.000   Min.   : 0.000   
##  1st Qu.:1.846   1st Qu.: 6.000   1st Qu.: 4.000   1st Qu.: 2.000   
##  Median :2.444   Median : 6.625   Median : 6.000   Median : 4.000   
##  Mean   :2.616   Mean   : 6.635   Mean   : 5.966   Mean   : 4.557   
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##  3rd Qu.:3.100   3rd Qu.: 7.333   3rd Qu.: 8.000   3rd Qu.: 7.000   
##  Max.   :9.000   Max.   :11.000   Max.   :16.000   Max.   :14.000   
##  NA's   :49      NA's   :60                                         
##     Easting          Northing       
##  Min.   : 73145   Min.   :  37267   
##  1st Qu.:192604   1st Qu.: 508348   
##  Median :267144   Median : 740420   
##  Mean   :264602   Mean   : 672916   
##  3rd Qu.:327745   3rd Qu.: 832852   
##  Max.   :642102   Max.   :1217914   
##  

Note that CS locations are in Easting and Northing unlike other datasets 

#create LATITUDE and LONGITUDE columns 
 
 
## libraries 
require(rgdal) # for spTransform 
require(stringr) 
 
### shortcuts 
ukgrid <- "+init=epsg:27700" 
latlong <- "+init=epsg:4326" 
 
### Create coordinates variable 
coords <- cbind(Easting = as.numeric(as.character(CS$Easting)), 
                Northing = as.numeric(as.character(CS$Northing))) 
 
### Create the SpatialPointsDataFrame 
dat_SP <- SpatialPointsDataFrame(coords, 
                                 data = CS, 
                                 proj4string = CRS("+init=epsg:27700")) 
 
### Convert 
dat_SP_LL <- spTransform(dat_SP, CRS(latlong)) 
 
## replace Lat, Long 
CS$LONGITUDE <- coordinates(dat_SP_LL)[, 1] 
CS$LATITUDE <- coordinates(dat_SP_LL)[, 2] 

Currently the dataset retains the species-level information so that we can recalculate new 
indicators if we need to at a later date. However, Hannah has already calculated the square 
level average/sum indicator scores (EBERGR_site etc) 

We can aggregate to plot level (by ID). Note this uses repeat_plotID to ensure that revisits 
where the plot was moved are not counted 

CS_plot <- aggregate(cbind(EBERGR_site, EBERGN_site, EBERGW_site, CSM_POS_
site, CSM_NEG_site) ~ ID + repeat_plotID + scheme + site + year + yearF + 
yearOS + LATITUDE + LONGITUDE, data = CS, FUN = mean) 

Total of 5609 plot visits 
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summary(CS_plot) 

##              ID         repeat_plotID  scheme         site        
##  CS_1005U1_NEN:   1   1020RPT11:   5   CS:5609   Min.   :   6.0   
##  CS_1005U2_NEN:   1   1020RPT12:   5             1st Qu.: 671.0   
##  CS_1005U3_NEN:   1   1020RPT13:   5             Median : 910.0   
##  CS_1005U4_NEN:   1   1020RPT14:   5             Mean   : 831.4   
##  CS_1005U5_NEN:   1   1041RPT13:   5             3rd Qu.:1058.0   
##  CS_1005X1_NEN:   1   1104RPT10:   5             Max.   :1272.0   
##  (Other)      :5603   (Other)  :5579                              
##       year          yearF          yearOS         LATITUDE     
##  Min.   :1978   Min.   :1978   Min.   : 1.00   Min.   :50.18   
##  1st Qu.:1998   1st Qu.:1998   1st Qu.:21.00   1st Qu.:54.15   
##  Median :1998   Median :1998   Median :21.00   Median :55.90   
##  Mean   :1999   Mean   :1999   Mean   :21.94   Mean   :55.62   
##  3rd Qu.:2007   3rd Qu.:2007   3rd Qu.:30.00   3rd Qu.:57.31   
##  Max.   :2019   Max.   :2019   Max.   :42.00   Max.   :60.84   
##                                                                
##    LONGITUDE       EBERGR_site     EBERGN_site     EBERGW_site     
##  Min.   :-7.482   Min.   :1.000   Min.   :1.000   Min.   : 3.000   
##  1st Qu.:-5.120   1st Qu.:2.571   1st Qu.:1.800   1st Qu.: 5.933   
##  Median :-3.935   Median :3.083   Median :2.353   Median : 6.571   
##  Mean   :-3.934   Mean   :3.444   Mean   :2.689   Mean   : 6.582   
##  3rd Qu.:-2.853   3rd Qu.:4.000   3rd Qu.:3.125   3rd Qu.: 7.333   
##  Max.   : 1.553   Max.   :8.000   Max.   :9.000   Max.   :11.000   
##                                                                    
##   CSM_POS_site     CSM_NEG_site   
##  Min.   : 0.000   Min.   : 0.00   
##  1st Qu.: 2.000   1st Qu.: 1.00   
##  Median : 5.000   Median : 3.00   
##  Mean   : 4.555   Mean   : 3.39   
##  3rd Qu.: 7.000   3rd Qu.: 5.00   
##  Max.   :16.000   Max.   :14.00   
##  

Histograms of each variables 

Five variables of interest: count of CSM positive indicators, count of CSM negative indicators, 
mean Ellenberg N, mean Ellenberg R and mean Ellenberg W. Ellenberg values were not 
weighted by cover. 

Distributional considerations: 

1. CSM values are counts and so a Poisson or negative binomial distribution are likely to be most 
appropriate. We’ll need to think about potential overdispersion (violating the assumption of 
equal mean and variance assumed by a Poisson distribution) 

2. Ellenberg variables are continous. Although techically bound (see below) the mean values 
should lie sufficiently away from the bounds to be treated without modelling the bounds. This is 
something to check 

Theoretical bounds of the Ellenberg values: 
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Each Ellenberg score associated with a plant species comes from a scale with defined limits. 
These vary between the different scores: 

Ellenberg N: 1-9 

Ellenberg R: 1-9 

Ellenberg W: 1-12 

To investigate the distributions of each response variable we can plot histograms: 

par(mfrow=c(3,2)) 
hist(CS_plot$CSM_POS_site, main = "CSM positive richness", xlab = "CSM pos
itive richness") 
hist(CS_plot$CSM_NEG_site, main = "CSM negative richness", xlab = "CSM neg
ative richness") 
hist(CS_plot$EBERGN_site, main = "Mean Ellenberg N", xlab = "Ellenberg N") 
hist(CS_plot$EBERGR_site, main = "Mean Ellenberg R", xlab = "Ellenberg R") 
hist(CS_plot$EBERGW_site, main = "Mean Ellenberg W", xlab = "Ellenberg W") 
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The Ellenberg distributions look sort of ok for W but quite skewed for N and R. There is 
evidence for potential slight bimodality in Ellenberg N and R. The Ellenberg N distribution 
gets close to the lower bounds. 
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The CSM positive indicator looks potentially zero inflated but on further inspection this is 
just a function of poor histogram plotting. Evaluating the frequencies of CSM positives does 
not support excess zeroes: 

table(CS$CSM_POS_site) 

##  
##    0    1    2    3    4    5    6    7    8    9   10   11   12   13   
14  
## 1964 1849 2348 3524 5723 6505 6498 6905 5469 3805 2229 1370  876  611  
255  
##   15   16  
##   30   38 

The CSM negative indicator distribution looks reasonable. 

We can calculate the mean and variance of the CSMs: 

mean(CS_plot$CSM_POS_site);var(CS_plot$CSM_POS_site) 

## [1] 4.555001 

## [1] 9.141455 

mean(CS_plot$CSM_NEG_site);var(CS_plot$CSM_NEG_site) 

## [1] 3.389909 

## [1] 7.3039 

Neither show strong evidence of overdispersion 

Plots of each variable against time 

As the focus of this work is to look at trends in these variables over time (i.e. using year as a 
predictor) it is worth having a look at some exploratory scatterplots to identify any 
potentially non-linear relationships or datasets where there may not be sufficient temporal 
replication to calculate a trend. 

Note that we are currently working without the 1978 data due to problems identified with 
this data. 

par(mfrow=c(3,2)) 
plot(CS_plot$CSM_POS_site ~ CS_plot$year, main = "CSM positive richness", 
ylab = "CSM positive richness", xlab = "Year") 
plot(CS_plot$CSM_NEG_site ~ CS_plot$year, main = "CSM negative richness", 
ylab = "CSM negative richness", xlab = "Year") 
plot(CS_plot$EBERGN_site ~ CS_plot$year, main = "Mean Ellenberg N", ylab = 
"Ellenberg N", xlab = "Year") 
plot(CS_plot$EBERGR_site ~ CS_plot$year, main = "Mean Ellenberg R", ylab = 
"Ellenberg R", xlab = "Year") 
plot(CS_plot$EBERGW_site ~ CS_plot$year, main = "Mean Ellenberg W", ylab = 
"Ellenberg W", xlab = "Year") 
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We can see here that the temporal distribution of plots varies across time. During the first 
30 years of survey sampling occasions occurred every ~10 years. However, in the 98/99 
survey plots were sampled across two years and in more recent times sampling occurs every 
1 to 2 years. This might make calculation of temporal autocorrelation quite tricky as there 
are few neighbouring years of survey (and plots would never be visited two years in a row). 
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Plots of each variable against site 

The model we plan to fit considers repeat visits to plots but not nesting of plots within sites 
or squares. Therefore it is useful to consider how much variation is due to site. 

par(mfrow=c(3,2)) 
par(mgp= c(3,1,0)) 
boxplot(CS_plot$CSM_POS_site ~ CS_plot$site, main = "CSM positive richness
", ylab = "CSM positive richness", xaxt =  "n", xlab = "Site") 
boxplot(CS_plot$CSM_NEG_site ~ CS_plot$site, main = "CSM negative richness
", ylab = "CSM negative richness", xaxt =  "n", xlab = "Site") 
boxplot(CS_plot$EBERGN_site ~ CS_plot$site, main = "Mean Ellenberg N", yla
b = "Ellenberg N", xaxt =  "n", xlab = "Site") 
boxplot(CS_plot$EBERGR_site ~ CS_plot$site, main = "Mean Ellenberg R", yla
b = "Ellenberg R", xaxt =  "n", xlab = "Site") 
boxplot(CS_plot$EBERGW_site ~ CS_plot$site, main = "Mean Ellenberg W", yla
b = "Ellenberg W", xaxt =  "n", xlab = "Site") 
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It is quite difficult to tell from these plots as there are so many sites but it seems reasonable 
to assume that a lot of variation is due to site. However, we also know that plots are 
accurately revisited over time so it seems important to account for plot revisits as well as 
plots within a site being similar to each other. 

Plots of each variable in space 
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It is quite useful to think about plotting the variables in space, even in a very simplistic way. 
This will achieve two things: 

3. Identify the spatial distribution of the data i.e. how well is the domain of interest covered? 

4. Identify any potential spatial patterns in the response variables e.g. are CSM positive counts 
higher in the south for some reason? At this stage we’ve not included any covariates so spatial 
patterns may be due to climate, for example. We can investigate this later once we have the 
covariate data 

The plots below show the locations of each measurement of the data, with the size of the 
point relative to the value of the response variable 

#set up for figure by reading in file with GB outline 
 
GB=read.table("GBoutline_latlong.txt",header=T) 

par(mfrow=c(3,2)) 
par(mgp= c(3,1,0)) 
cex_ind <- round(CS_plot$CSM_POS_site/4) 
plot(CS_plot$LATITUDE ~ CS_plot$LONGITUDE, pch = 20, cex = cex_ind, main = 
"CSM positive richness", ylab = "Latitude", xlab = "Longitude") 
lines(GB) 
cex_ind <- round(CS_plot$CSM_NEG_site/6) 
plot(CS_plot$LATITUDE ~ CS_plot$LONGITUDE, pch = 20, cex = cex_ind, main = 
"CSM negative richness", ylab = "Latitude", xlab = "Longitude") 
lines(GB) 
cex_ind <- round(CS_plot$EBERGN/2) 
plot(CS_plot$LATITUDE ~ CS_plot$LONGITUDE, pch = 20, cex = cex_ind, main = 
"Mean Ellenberg N", ylab = "Latitude", xlab = "Longitude") 
lines(GB) 
cex_ind <- round(CS_plot$EBERGR/4) 
plot(CS_plot$LATITUDE ~ CS_plot$LONGITUDE, pch = 20, cex = cex_ind, main = 
"Mean Ellenberg R", ylab = "Latitude", xlab = "Longitude") 
lines(GB) 
cex_ind <- round(CS_plot$EBERGW/4) 
plot(CS_plot$LATITUDE ~ CS_plot$LONGITUDE, pch = 20, cex = cex_ind, main = 
"Mean Ellenberg W", ylab = "Latitude", xlab = "Longitude") 
lines(GB) 
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There is quite strong evidence for geographical patterns in all indicators, in comparison to 
the other datasets investigated so far. Generally there seems to be a south-east to north-
west gradient in indicators with sites in the northwest having higher CSM positive richness, 
higher CSM negative richness, lower Ellenberg N, lower Ellenberg R and higher Ellenberg W. 
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As expected there is very good coverage of heath and bog sites, covering both the upland 
areas in Scotland and Wales but also lowland heaths in England. 

Summaries of data structure 

There are a couple of other useful things we can extract about the data. 

5. It would be useful to know how many times each plot has been revisited. The plot is 
going to be the unit over which we estimate the temporal autocorrelation so if a lot of 
plots have only been visited once then they won’t contribute to this estimation 

#calculate number of repeat visits  
 
repvis <- tapply(CS_plot$year, CS_plot$repeat_plotID, function (x) length(
unique(x))) 
 
#summarise 
table(repvis) 

## repvis 
##    1    2    3    4    5  
##  600 1284  423  243   40 

Interestingly, despite the strength of CS being high repeats over time only 40 plots (out of a 
total 2590 unique repeat plot IDs) were visited on 5 occasions (the maximum possible) and 
most plots were revisited only twice. 

If we looked at repeat visits to plot IDs… 

repvis2 <- tapply(CS$year, CS$plotID, function (x) length(unique(x))) 
table(repvis2) 

## repvis2 
##    1    2    3    4    5  
##  533 1267  434  256   54 

The same picture, most plots visited twice. This probably reflects the increase in survey size 
over time with more plots being added in later surveys. For the current surveys there may be 
plots that have not yet been revisited since 2007. 

2. The number of plots per site might vary quite a lot between schemes so it would be 
good to extract some statistics about this 

plotspersite <- tapply(CS_plot$repeat_plotID, CS_plot$site, function (x) l
ength(unique(x)))  
 
table(plotspersite) 

## plotspersite 
##  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19  
## 84 50 26 16 22 13 13 20 18 20 21 13 10 14 22 14  4  5  2 

The range of plots per site is quite large, from 1 to 19. The maximum number of plots per 
site in any one year is 15 (5 X plots plus 10 U plots) but relocation may increase the number 
of unique repeat plot IDs. For a square with one of the highest number of unique plots (sq 
804) 4 of the X plot locations moved in 1998/1999. 
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1.2 Environmental Change Network data exploration 

This document includes exploration of the ECN data and the five calculated indicators (CSM 
+ , CSM -, Ellenberg N, Ellenberg R and Ellenberg W) 

First, load data. 

This has already been filtered to include only heath and bog plots (as defined by the cluster 
analysis). 

ECN <- read.csv("ECN_modelling_dataset.csv", stringsAsFactors = TRUE) 
 
summary(ECN) 

##                    ID            plotID      plot_type       year      
##  ECN_VF_202_438_1999:   39   Min.   :  1.0   VC :5117   Min.   :1993   
##  ECN_VF_275_59_2011 :   36   1st Qu.: 92.0   VF :6333   1st Qu.:1999   
##  ECN_VF_324_61_2012 :   34   Median :319.0   VFA:5853   Median :2005   
##  ECN_VC_310_308_2011:   33   Mean   :326.2              Mean   :2005   
##  ECN_VF_324_61_2000 :   33   3rd Qu.:441.0              3rd Qu.:2011   
##  ECN_VF_324_61_2009 :   33   Max.   :918.0              Max.   :2015   
##  (Other)            :17095                                             
##      yearF          yearOS      scheme           site      
##  Min.   :1993   Min.   : 1.00   ECN:17303   T04    :6155   
##  1st Qu.:1999   1st Qu.: 7.00               T07    :4196   
##  Median :2005   Median :13.00               T02    :3230   
##  Mean   :2005   Mean   :12.84               T11    :2408   
##  3rd Qu.:2011   3rd Qu.:19.00               T12    : 806   
##  Max.   :2015   Max.   :23.00               T05    : 331   
##                                             (Other): 177   
##                     species          EBERGR          EBERGN      
##  Deschampsia flexuosa   :  756   Min.   :1.000   Min.   :1.000   
##  Galium saxatile        :  728   1st Qu.:2.000   1st Qu.:2.000   
##  Calluna vulgaris       :  632   Median :3.000   Median :3.000   
##  Alchemilla xanthochlora:  618   Mean   :3.712   Mean   :2.971   
##  Festuca ovina          :  615   3rd Qu.:5.000   3rd Qu.:4.000   
##  Agrostis capillaris    :  605   Max.   :8.000   Max.   :9.000   
##  (Other)                :13349   NA's   :2260    NA's   :2153    
##      EBERGW          CSM_POS         CSM_NEG       EBERGR_site    
##  Min.   : 2.000   Min.   :1       Min.   :1       Min.   :1.667   
##  1st Qu.: 5.000   1st Qu.:1       1st Qu.:1       1st Qu.:3.071   
##  Median : 6.000   Median :1       Median :1       Median :3.611   
##  Mean   : 6.365   Mean   :1       Mean   :1       Mean   :3.708   
##  3rd Qu.: 7.000   3rd Qu.:1       3rd Qu.:1       3rd Qu.:4.364   
##  Max.   :10.000   Max.   :1       Max.   :1       Max.   :7.000   
##  NA's   :2260     NA's   :10046   NA's   :10937   NA's   :1       
##   EBERGN_site     EBERGW_site     CSM_POS_site     CSM_NEG_site   
##  Min.   :1.143   Min.   :4.000   Min.   : 0.000   Min.   : 0.00   
##  1st Qu.:2.455   1st Qu.:5.750   1st Qu.: 4.000   1st Qu.: 3.00   
##  Median :3.000   Median :6.231   Median : 6.000   Median : 6.00   
##  Mean   :2.965   Mean   :6.357   Mean   : 6.012   Mean   : 6.13   
##  3rd Qu.:3.500   3rd Qu.:6.944   3rd Qu.: 8.000   3rd Qu.: 9.00   
##  Max.   :8.000   Max.   :8.556   Max.   :18.000   Max.   :22.00   
##  NA's   :1       NA's   :1                                        
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##     EASTING          NORTHING      
##  Min.   :260902   Min.   : 98780   
##  1st Qu.:365951   1st Qu.:528812   
##  Median :371622   Median :533600   
##  Mean   :356076   Mean   :575267   
##  3rd Qu.:384943   3rd Qu.:623474   
##  Max.   :445315   Max.   :804000   
##  

One or two missing values for EBERGN_site etc. Like this this is due to a plot with a single 
species with missing Ellenbergs - ECN_VF_294_11_2011 containing only Taraxacum 
Currently the dataset retains the species-level information so that we can recalculate new 
indicators if we need to at a later date. However, Hannah has already calculated the square 
level average/sum indicator scores (EBERGR_site etc) 

Note that the data are currently in Eastings and Northings. We will leave the data as-is for 
now but this will need to be harmonised between datasets at a later date 

We can aggregate to plot level (by ID) 

ECN_plot <- aggregate(cbind(EBERGR_site, EBERGN_site, EBERGW_site, CSM_POS
_site, CSM_NEG_site) ~ ID + plotID + plot_type + scheme + site + year + ye
arF + yearOS + NORTHING + EASTING, data = ECN, FUN = mean) 

Total of 1251 plot visits 

summary(ECN_plot) 

##                    ID           plotID      plot_type scheme     
##  ECN_VC_309_100_1994:   1   Min.   :  1.0   VC :441   ECN:1409   
##  ECN_VC_309_100_2002:   1   1st Qu.: 86.0   VF :507              
##  ECN_VC_309_100_2011:   1   Median :278.0   VFA:461              
##  ECN_VC_309_11_1994 :   1   Mean   :315.3                        
##  ECN_VC_309_11_2002 :   1   3rd Qu.:441.0                        
##  ECN_VC_309_11_2011 :   1   Max.   :918.0                        
##  (Other)            :1403                                        
##       site          year          yearF          yearOS      
##  T04    :549   Min.   :1993   Min.   :1993   Min.   : 1.00   
##  T07    :275   1st Qu.:1999   1st Qu.:1999   1st Qu.: 7.00   
##  T02    :243   Median :2005   Median :2005   Median :13.00   
##  T11    :181   Mean   :2005   Mean   :2005   Mean   :12.55   
##  T12    :101   3rd Qu.:2011   3rd Qu.:2011   3rd Qu.:19.00   
##  T08    : 23   Max.   :2015   Max.   :2015   Max.   :23.00   
##  (Other): 37                                                 
##     NORTHING         EASTING        EBERGR_site     EBERGN_site    
##  Min.   : 98780   Min.   :260902   Min.   :1.667   Min.   :1.143   
##  1st Qu.:528802   1st Qu.:365951   1st Qu.:2.875   1st Qu.:2.231   
##  Median :533237   Median :373553   Median :3.364   Median :2.750   
##  Mean   :572086   Mean   :356674   Mean   :3.519   Mean   :2.855   
##  3rd Qu.:623698   3rd Qu.:384804   3rd Qu.:4.111   3rd Qu.:3.375   
##  Max.   :804000   Max.   :445315   Max.   :7.000   Max.   :8.000   
##                                                                    
##   EBERGW_site     CSM_POS_site     CSM_NEG_site    
##  Min.   :4.000   Min.   : 0.000   Min.   : 0.000   
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##  1st Qu.:5.750   1st Qu.: 4.000   1st Qu.: 1.000   
##  Median :6.231   Median : 5.000   Median : 5.000   
##  Mean   :6.347   Mean   : 5.311   Mean   : 4.704   
##  3rd Qu.:7.000   3rd Qu.: 7.000   3rd Qu.: 7.000   
##  Max.   :8.556   Max.   :18.000   Max.   :22.000   
##  

Histograms of each variables 

Five variables of interest: count of CSM positive indicators, count of CSM negative indicators, 
mean Ellenberg N, mean Ellenberg R and mean Ellenberg W. Ellenberg values were not 
weighted by cover. 

Distributional considerations: 

1. CSM values are counts and so a Poisson or negative binomial distribution are likely to be most 
appropriate. We’ll need to think about potential overdispersion (violating the assumption of 
equal mean and variance assumed by a Poisson distribution) 

2. Ellenberg variables are continuous. Although techically bound (see below) the mean values 
should lie sufficiently away from the bounds to be treated without modelling the bounds. This is 
something to check 

Theoretical bounds of the Ellenberg values: 

Each Ellenberg score associated with a plant species comes from a scale with defined limits. 
These vary between the different scores: 

Ellenberg N: 1-9 

Ellenberg R: 1-9 

Ellenberg W: 1-12 

To investigate the distributions of each response variable we can plot histograms: 

par(mfrow=c(3,2)) 
hist(ECN_plot$CSM_POS_site, main = "CSM positive richness", xlab = "CSM po
sitive richness") 
hist(ECN_plot$CSM_NEG_site, main = "CSM negative richness", xlab = "CSM ne
gative richness") 
hist(ECN_plot$EBERGN_site, main = "Mean Ellenberg N", xlab = "Ellenberg N"
) 
hist(ECN_plot$EBERGR_site, main = "Mean Ellenberg R", xlab = "Ellenberg R"
) 
hist(ECN_plot$EBERGW_site, main = "Mean Ellenberg W", xlab = "Ellenberg W"
) 
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The distributions look ok in general. Ellenberg N and R distributions do hit the lower bound, 
Ellenberg N in particular is skewed. Possible indications of two populations in the CSM 
negative plot. 

We can calculate the mean and variance of the CSMs: 
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mean(ECN_plot$CSM_POS_site);var(ECN_plot$CSM_POS_site) 

## [1] 5.310859 

## [1] 6.478582 

mean(ECN_plot$CSM_NEG_site);var(ECN_plot$CSM_NEG_site) 

## [1] 4.704045 

## [1] 14.25539 

CSM negatives possibly overdispersed 

Plots of each variable against time 

As the focus of this work is to look at trends in these variables over time (i.e. using year as a 
predictor) it is worth having a look at some exploratory scatterplots to identify any 
potentially non-linear relationships or datasets where there may not be sufficient temporal 
replication to calculate a trend. 

par(mfrow=c(3,2)) 
plot(ECN_plot$CSM_POS_site ~ ECN_plot$year, main = "CSM positive richness"
, ylab = "CSM positive richness", xlab = "Year") 
plot(ECN_plot$CSM_NEG_site ~ ECN_plot$year, main = "CSM negative richness"
, ylab = "CSM negative richness", xlab = "Year") 
plot(ECN_plot$EBERGN_site ~ ECN_plot$year, main = "Mean Ellenberg N", ylab 
= "Ellenberg N", xlab = "Year") 
plot(ECN_plot$EBERGR_site ~ ECN_plot$year, main = "Mean Ellenberg R", ylab 
= "Ellenberg R", xlab = "Year") 
plot(ECN_plot$EBERGW_site ~ ECN_plot$year, main = "Mean Ellenberg W", ylab 
= "Ellenberg W", xlab = "Year") 
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Similar to the LTMN data it might be that different cohorts are measured in different years? 
Some indications of non-linear patterns. 

Plots of each variable against site 
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The model we plan to fit considers repeat visits to plots but not nesting of plots within sites 
or squares. Therefore it is useful to consider how much variation is due to site. 

par(mfrow=c(3,2)) 
par(mgp= c(3,1,0)) 
boxplot(ECN_plot$CSM_POS_site ~ ECN_plot$site, main = "CSM positive richne
ss", ylab = "CSM positive richness", xaxt =  "n", xlab = "Site") 
boxplot(ECN_plot$CSM_NEG_site ~ ECN_plot$site, main = "CSM negative richne
ss", ylab = "CSM negative richness", xaxt =  "n", xlab = "Site") 
boxplot(ECN_plot$EBERGN_site ~ ECN_plot$site, main = "Mean Ellenberg N", y
lab = "Ellenberg N", xaxt =  "n", xlab = "Site") 
boxplot(ECN_plot$EBERGR_site ~ ECN_plot$site, main = "Mean Ellenberg R", y
lab = "Ellenberg R", xaxt =  "n", xlab = "Site") 
boxplot(ECN_plot$EBERGW_site ~ ECN_plot$site, main = "Mean Ellenberg W", y
lab = "Ellenberg W", xaxt =  "n", xlab = "Site") 
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Relatively few sites compared to other schemes and huge variation between them. Including 
a site level random effect might be important for this scheme. 

Plots of each variable in space 
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It is quite useful to think about plotting the variables in space, even in a very simplistic way. 
This will achieve two things: 

1. Identify the spatial distribution of the data i.e. how well is the domain of interest covered? 

2. Identify any potential spatial patterns in the response variables e.g. are CSM positive counts 
higher in the south for some reason? At this stage we’ve not included any covariates so spatial 
patterns may be due to climate, for example. We can investigate this later once we have the 
covariate data 

The plots below show the locations of each measurement of the data, with the size of the 
point relative to the value of the response variable 

#set up for figure by reading in file with GB outline 
 
GB=read.table("GBoutline.txt",header=T) 

par(mfrow=c(3,2)) 
par(mgp= c(3,1,0)) 
cex_ind <- round(ECN_plot$CSM_POS_site/2) 
plot(ECN_plot$NORTHING ~ ECN_plot$EASTING, pch = 20, cex = cex_ind, main = 
"CSM positive richness", ylab = "NORTHING", xlab = "EASTING") 
lines(GB) 
cex_ind <- round(ECN_plot$CSM_NEG_site/3) 
plot(ECN_plot$NORTHING ~ ECN_plot$EASTING, pch = 20, cex = cex_ind, main = 
"CSM negative richness", ylab = "NORTHING", xlab = "EASTING") 
lines(GB) 
cex_ind <- round(ECN_plot$EBERGN) 
plot(ECN_plot$NORTHING ~ ECN_plot$EASTING, pch = 20, cex = cex_ind, main = 
"Mean Ellenberg N", ylab = "NORTHING", xlab = "EASTING") 
lines(GB) 
cex_ind <- round(ECN_plot$EBERGR/2) 
plot(ECN_plot$NORTHING ~ ECN_plot$EASTING, pch = 20, cex = cex_ind, main = 
"Mean Ellenberg R", ylab = "NORTHING", xlab = "EASTING") 
lines(GB) 
cex_ind <- round(ECN_plot$EBERGW/4) 
plot(ECN_plot$NORTHING ~ ECN_plot$EASTING, pch = 20, cex = cex_ind, main = 
"Mean Ellenberg W", ylab = "NORTHING", xlab = "EASTING") 
lines(GB) 
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Compared to other schemes ECN sites have limited geographic coverage meaning little can 
be seen from these plots in terms of spatial pattern. It may also mean that this scheme 
contributes little to any spatial understanding of patterns in indicator values. 

Summaries of data structure 
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There are a couple of other useful things we can extract about the data. 

1. It would be useful to know how many times each plot has been revisited. The plot is 
going to be the unit over which we estimate the temporal autocorrelation so if a lot of 
plots have only been visited once then they won’t contribute to this estimation 

#calculate number of repeat visits (note ECN plot IDs are not unique acros
s sites) 
 
ECN_plot$plotID_new <- paste(ECN_plot$site, ECN_plot$plotID, sep = "_") 
 
repvis <- tapply(ECN_plot$year, ECN_plot$plotID_new, function (x) length(u
nique(x))) 
 
#summarise 
table(repvis) 

## repvis 
##   1   2   3   4   5   6   7   8  10  14  15  16  17  18  19  
##   4  37 113   7   1   7  31   1   4   1   1  11   3  12   8 

This suggests a huge spread in revisit frequencies from 1 to 19! Most likely number of 
revisits is 3 but quite a few plots with more than that 

It looks like the VFA plots occur between VF surveys for some sites, increasing the temporal 
frequency of revisits. Moor House has vegetation data for 19 years! 

2. The number of plots per site might vary quite a lot between schemes so it would be 
good to extract some statistics about this 

plotspersite <- tapply(ECN_plot$plotID, ECN_plot$site, function (x) length
(unique(x)))  
 
table(plotspersite) 

## plotspersite 
##  2 23 43 44 51 74  
##  3  1  1  1  1  1 

The range of plots per site is also very wide, from 2 to 74. Only 8 of the ECN sites are 
included in this dataset 
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1.3. Long Term Monitoring Network data exploration 

This document includes exploration of the LTMN data and the five calculated indicators 
(CSM + , CSM -, Ellenberg N, Ellenberg R and Ellenberg W) 

First, load data. 

This has already been filtered to include only heath and bog plots (as defined by the cluster 
analysis). 

LTMN <- read.csv("LTMN_modelling_dataset_v3.csv") 
 
summary(LTMN) 

##                     ID            plotID            year      
##  LTMN_VC_B38_25_2013 :   34   Min.   :  0.00   Min.   :2010   
##  LTMN_VC_B38_25a_2018:   34   1st Qu.: 15.00   1st Qu.:2013   
##  LTMN_VC_B12_26_2014 :   33   Median : 28.00   Median :2015   
##  LTMN_VC_B38_26_2018 :   33   Mean   : 32.08   Mean   :2015   
##  LTMN_VC_B38_24_2013 :   32   3rd Qu.: 43.00   3rd Qu.:2018   
##  LTMN_VC_B03_44a_2017:   31   Max.   :128.00   Max.   :2019   
##  (Other)             :10234                                   
##      yearF          yearOS        scheme           site      
##  Min.   :2010   Min.   : 1.000   LTMN:10431   B38    :1233   
##  1st Qu.:2013   1st Qu.: 4.000                B49    : 926   
##  Median :2015   Median : 6.000                B47    : 680   
##  Mean   :2015   Mean   : 6.474                B10    : 663   
##  3rd Qu.:2018   3rd Qu.: 9.000                B40    : 611   
##  Max.   :2019   Max.   :10.000                B29    : 578   
##                                               (Other):5740   
##                      species         EBERGR          EBERGN      
##  Calluna vulgaris        : 821   Min.   :1.000   Min.   :1.000   
##  Erica tetralix          : 586   1st Qu.:2.000   1st Qu.:1.000   
##  Molinia caerulea        : 558   Median :3.000   Median :2.000   
##  Eriophorum vaginatum    : 524   Mean   :3.313   Mean   :2.311   
##  Eriophorum angustifolium: 495   3rd Qu.:4.000   3rd Qu.:3.000   
##  Deschampsia flexuosa    : 303   Max.   :9.000   Max.   :8.000   
##  (Other)                 :7144   NA's   :963     NA's   :961     
##      EBERGW          CSM_POS        CSM_NEG      EBERGR_site    
##  Min.   : 2.000   Min.   :1      Min.   :1      Min.   :1.500   
##  1st Qu.: 6.000   1st Qu.:1      1st Qu.:1      1st Qu.:2.400   
##  Median : 7.000   Median :1      Median :1      Median :2.812   
##  Mean   : 7.115   Mean   :1      Mean   :1      Mean   :3.309   
##  3rd Qu.: 8.000   3rd Qu.:1      3rd Qu.:1      3rd Qu.:4.000   
##  Max.   :10.000   Max.   :1      Max.   :1      Max.   :8.000   
##  NA's   :963      NA's   :4192   NA's   :7575                   
##   EBERGN_site     EBERGW_site     CSM_POS_site    CSM_NEG_site    
##  Min.   :1.000   Min.   :4.917   Min.   : 0.00   Min.   : 0.000   
##  1st Qu.:1.625   1st Qu.:6.500   1st Qu.: 4.00   1st Qu.: 1.000   
##  Median :2.125   Median :7.208   Median : 6.00   Median : 3.000   
##  Mean   :2.301   Mean   :7.114   Mean   : 5.92   Mean   : 3.197   
##  3rd Qu.:2.750   3rd Qu.:7.778   3rd Qu.: 8.00   3rd Qu.: 5.000   
##  Max.   :6.400   Max.   :9.500   Max.   :16.00   Max.   :14.000   
##                                                                   



Harmonisation and integrated modelling of UK long-term vegetation data: a case study focussed on heath & 
bog habitats 

UKCEH report … version 1.0                                      89 

 

##     EASTINGS        NORTHINGS         country      
##  Min.   :166826   Min.   : 13607   England:10431   
##  1st Qu.:334033   1st Qu.:184769                   
##  Median :374500   Median :393102                   
##  Mean   :387407   Mean   :357367                   
##  3rd Qu.:487290   3rd Qu.:482799                   
##  Max.   :568388   Max.   :643250                   
##  

All the LTMN data is from England unlike the other datasets which cover all of GB Currently 
the dataset retains the species-level information so that we can recalculate new indicators if 
we need to at a later date. However, Hannah has already calculated the square level 
average/sum indicator scores (EBERGR_site etc) 

Note that the data are currently in Eastings and Northings. We will leave the data as-is for 
now but this will need to be harmonised between datasets at a later date 

We can aggregate to plot level (by ID) 

LTMN_plot <- aggregate(cbind(EBERGR_site, EBERGN_site, EBERGW_site, CSM_PO
S_site, CSM_NEG_site) ~ ID + plotID + scheme + site + year + yearF + yearO
S + NORTHINGS + EASTINGS + country, data = LTMN, FUN = mean) 

Total of 1251 plot visits 

summary(LTMN_plot) 

##                     ID           plotID        scheme          site     
##  LTMN_VC_B03_43_2012 :   1   Min.   :  0.00   LTMN:1270   B10    :100   
##  LTMN_VC_B03_43_2017 :   1   1st Qu.: 14.00               B31    :100   
##  LTMN_VC_B03_44_2012 :   1   Median : 28.00               B41    :100   
##  LTMN_VC_B03_44a_2017:   1   Mean   : 32.03               B49    : 98   
##  LTMN_VC_B03_45_2012 :   1   3rd Qu.: 43.00               B35    : 94   
##  LTMN_VC_B03_45a_2017:   1   Max.   :128.00               B26    : 89   
##  (Other)             :1264                                (Other):689   
##       year          yearF          yearOS        NORTHINGS      
##  Min.   :2010   Min.   :2010   Min.   : 1.00   Min.   : 13607   
##  1st Qu.:2013   1st Qu.:2013   1st Qu.: 4.00   1st Qu.:166227   
##  Median :2015   Median :2015   Median : 6.00   Median :391884   
##  Mean   :2015   Mean   :2015   Mean   : 6.44   Mean   :355943   
##  3rd Qu.:2018   3rd Qu.:2018   3rd Qu.: 9.00   3rd Qu.:495733   
##  Max.   :2019   Max.   :2019   Max.   :10.00   Max.   :643250   
##                                                                 
##     EASTINGS         country      EBERGR_site     EBERGN_site    
##  Min.   :166826   England:1270   Min.   :1.500   Min.   :1.000   
##  1st Qu.:336801                  1st Qu.:2.286   1st Qu.:1.500   
##  Median :377250                  Median :2.571   Median :2.000   
##  Mean   :401619                  Mean   :2.980   Mean   :2.151   
##  3rd Qu.:490188                  3rd Qu.:3.200   3rd Qu.:2.500   
##  Max.   :568388                  Max.   :8.000   Max.   :6.400   
##                                                                  
##   EBERGW_site     CSM_POS_site     CSM_NEG_site    
##  Min.   :4.917   Min.   : 0.000   Min.   : 0.000   
##  1st Qu.:6.359   1st Qu.: 3.000   1st Qu.: 0.000   
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##  Median :7.200   Median : 5.000   Median : 2.000   
##  Mean   :7.088   Mean   : 4.913   Mean   : 2.249   
##  3rd Qu.:7.778   3rd Qu.: 6.000   3rd Qu.: 3.000   
##  Max.   :9.500   Max.   :16.000   Max.   :14.000   
##  

Histograms of each variables 

Five variables of interest: count of CSM positive indicators, count of CSM negative indicators, 
mean Ellenberg N, mean Ellenberg R and mean Ellenberg W. Ellenberg values were not 
weighted by cover. 

Distributional considerations: 

1. CSM values are counts and so a Poisson or negative binomial distribution are likely to be most 
appropriate. We’ll need to think about potential overdispersion (violating the assumption of 
equal mean and variance assumed by a Poisson distribution) 

2. Ellenberg variables are continous. Although techically bound (see below) the mean values 
should lie sufficiently away from the bounds to be treated without modelling the bounds. This is 
something to check 

Theoretical bounds of the Ellenberg values: 

Each Ellenberg score associated with a plant species comes from a scale with defined limits. 
These vary between the different scores: 

Ellenberg N: 1-9 

Ellenberg R: 1-9 

Ellenberg W: 1-12 

To investigate the distributions of each response variable we can plot histograms: 

par(mfrow=c(3,2)) 
hist(LTMN_plot$CSM_POS_site, main = "CSM positive richness", xlab = "CSM p
ositive richness") 
hist(LTMN_plot$CSM_NEG_site, main = "CSM negative richness", xlab = "CSM n
egative richness") 
hist(LTMN_plot$EBERGN_site, main = "Mean Ellenberg N", xlab = "Ellenberg N
") 
hist(LTMN_plot$EBERGR_site, main = "Mean Ellenberg R", xlab = "Ellenberg R
") 
hist(LTMN_plot$EBERGW_site, main = "Mean Ellenberg W", xlab = "Ellenberg W
") 
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Ellenberg N and R distributions are quite right skewed and hit the lower limits of the 
Ellenberg range which may be a problem. Ellenberg W is close enough to normal, although 
slightly left skewed. The CSM positive distribution looks a good fit to the Poisson, while the 
CSM negative distribution might be zero inflated? 

We can calculate the mean and variance of the CSMs: 
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mean(LTMN_plot$CSM_POS_site);var(LTMN_plot$CSM_POS_site) 

## [1] 4.912598 

## [1] 6.267375 

mean(LTMN_plot$CSM_NEG_site);var(LTMN_plot$CSM_NEG_site) 

## [1] 2.248819 

## [1] 5.27295 

Neither show strong evidence of overdispersion 

Plots of each variable against time 

As the focus of this work is to look at trends in these variables over time (i.e. using year as a 
predictor) it is worth having a look at some exploratory scatterplots to identify any 
potentially non-linear relationships or datasets where there may not be sufficient temporal 
replication to calculate a trend. 

par(mfrow=c(3,2)) 
plot(LTMN_plot$CSM_POS_site ~ LTMN_plot$year, main = "CSM positive richnes
s", ylab = "CSM positive richness", xlab = "Year") 
plot(LTMN_plot$CSM_NEG_site ~ LTMN_plot$year, main = "CSM negative richnes
s", ylab = "CSM negative richness", xlab = "Year") 
plot(LTMN_plot$EBERGN_site ~ LTMN_plot$year, main = "Mean Ellenberg N", yl
ab = "Ellenberg N", xlab = "Year") 
plot(LTMN_plot$EBERGR_site ~ LTMN_plot$year, main = "Mean Ellenberg R", yl
ab = "Ellenberg R", xlab = "Year") 
plot(LTMN_plot$EBERGW_site ~ LTMN_plot$year, main = "Mean Ellenberg W", yl
ab = "Ellenberg W", xlab = "Year") 
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An issue here is that different cohorts of plots are measured in each year e.g. it appears that 
the plots measured in 2016 were particularly wet and acidic. This may make fitting a linear 
trend problematic. 

Plots of each variable against site 
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The model we plan to fit considers repeat visits to plots but not nesting of plots within sites 
or squares. Therefore it is useful to consider how much variation is due to site. 

par(mfrow=c(3,2)) 
par(mgp= c(3,1,0)) 
boxplot(LTMN_plot$CSM_POS_site ~ LTMN_plot$site, main = "CSM positive rich
ness", ylab = "CSM positive richness", xaxt =  "n", xlab = "Site") 
boxplot(LTMN_plot$CSM_NEG_site ~ LTMN_plot$site, main = "CSM negative rich
ness", ylab = "CSM negative richness", xaxt =  "n", xlab = "Site") 
boxplot(LTMN_plot$EBERGN_site ~ LTMN_plot$site, main = "Mean Ellenberg N", 
ylab = "Ellenberg N", xaxt =  "n", xlab = "Site") 
boxplot(LTMN_plot$EBERGR_site ~ LTMN_plot$site, main = "Mean Ellenberg R", 
ylab = "Ellenberg R", xaxt =  "n", xlab = "Site") 
boxplot(LTMN_plot$EBERGW_site ~ LTMN_plot$site, main = "Mean Ellenberg W", 
ylab = "Ellenberg W", xaxt =  "n", xlab = "Site") 
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There is quite a lot of variation due to site i.e. plots within sites are generally more likely to 
be similar. This reflects all sorts of between-site differences we’ve not yet accounted for 
e.g. climate, N deposition. We will need to repeat this exercise once we’ve fit models 
accounting for these factors to assess whether there is still lots of variation due to site, or 
whether this has been explained by adding in the covariates. 
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Plots of each variable in space 

It is quite useful to think about plotting the variables in space, even in a very simplistic way. 
This will achieve two things: 

1. Identify the spatial distribution of the data i.e. how well is the domain of interest covered? 

2. Identify any potential spatial patterns in the response variables e.g. are CSM positive counts 
higher in the south for some reason? At this stage we’ve not included any covariates so spatial 
patterns may be due to climate, for example. We can investigate this later once we have the 
covariate data 

The plots below show the locations of each measurement of the data, with the size of the 
point relative to the value of the response variable 

#set up for figure by reading in file with GB outline 
 
GB=read.table("GBoutline.txt",header=T) 

par(mfrow=c(3,2)) 
par(mgp= c(3,1,0)) 
cex_ind <- round(LTMN_plot$CSM_POS_site/2) 
plot(LTMN_plot$NORTHINGS ~ LTMN_plot$EASTINGS, pch = 20, cex = cex_ind, ma
in = "CSM positive richness", ylab = "NORTHINGS", xlab = "EASTINGS") 
lines(GB) 
cex_ind <- round(LTMN_plot$CSM_NEG_site/3) 
plot(LTMN_plot$NORTHINGS ~ LTMN_plot$EASTINGS, pch = 20, cex = cex_ind, ma
in = "CSM negative richness", ylab = "NORTHINGS", xlab = "EASTINGS") 
lines(GB) 
cex_ind <- round(LTMN_plot$EBERGN) 
plot(LTMN_plot$NORTHINGS ~ LTMN_plot$EASTINGS, pch = 20, cex = cex_ind, ma
in = "Mean Ellenberg N", ylab = "NORTHINGS", xlab = "EASTINGS") 
lines(GB) 
cex_ind <- round(LTMN_plot$EBERGR/2) 
plot(LTMN_plot$NORTHINGS ~ LTMN_plot$EASTINGS, pch = 20, cex = cex_ind, ma
in = "Mean Ellenberg R", ylab = "NORTHINGS", xlab = "EASTINGS") 
lines(GB) 
cex_ind <- round(LTMN_plot$EBERGW/4) 
plot(LTMN_plot$NORTHINGS ~ LTMN_plot$EASTINGS, pch = 20, cex = cex_ind, ma
in = "Mean Ellenberg W", ylab = "NORTHINGS", xlab = "EASTINGS") 
lines(GB) 
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There are a couple of things to note: 

1. Some of the plots seem to be in the sea off the coast of Cornwall… These look to be from site 
B40 

2. The spread of sites is reasonable 
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3. There don’t seem to be any strong geographic patterns in any variable 

Summaries of data structure 

There are a couple of other useful things we can extract about the data. 

1. It would be useful to know how many times each plot has been revisited. The plot is 
going to be the unit over which we estimate the temporal autocorrelation so if a lot of 
plots have only been visited once then they won’t contribute to this estimation 

#calculate number of repeat visits (note LTMN plot IDs are not unique acro
ss sites) 
 
LTMN_plot$plotID_new <- paste(LTMN_plot$site, LTMN_plot$plotID, sep = "_") 
 
repvis <- tapply(LTMN_plot$year, LTMN_plot$plotID_new, function (x) length
(unique(x))) 
 
#summarise 
table(repvis) 

## repvis 
##   1   2   3  
##  83 459  88 

Most plots have been visited twice. With this dataset there is definitely no ability to look at 
autocorrelation within plots. 

2. The number of plots per site might vary quite a lot between schemes so it would be 
good to extract some statistics about this 

plotspersite <- tapply(LTMN_plot$plotID, LTMN_plot$site, function (x) leng
th(unique(x)))  
 
table(plotspersite) 

## plotspersite 
##  1  3  5 11 12 15 18 20 25 28 33 34 38 40 42 47 49 50  
##  2  1  1  1  1  1  1  2  1  1  1  1  2  1  1  1  1  3 

This suggests that the range of plots per site is very large, from 1 to 57! Most sites have quite 
a lot of plots so we will probably need to think about a random site effect. 
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1.4. National Plant Monitoring Scheme data exploration  

This document includes exploration of the NPMS data and the five calculated indicators 
(CSM + , CSM -, Ellenberg N, Ellenberg R and Ellenberg W) 

First, load data. 

This has already been filtered to include only heath and bog plots (as defined by the cluster 
analysis) and only inventory level surveys. 

npms <- read.csv("NPMS_modelling_dataset_v3.csv") 
 
summary(npms) 

##                     ID           plotID            year      
##  NPMS_154_145208_2017:  44   Min.   : 43894   Min.   :2015   
##  NPMS_154_163653_2018:  43   1st Qu.:144793   1st Qu.:2016   
##  NPMS_154_144927_2015:  41   Median :146622   Median :2017   
##  NPMS_154_136287_2015:  37   Mean   :154221   Mean   :2017   
##  NPMS_154_163653_2017:  37   3rd Qu.:165348   3rd Qu.:2018   
##  NPMS_154_165425_2017:  37   Max.   :222145   Max.   :2019   
##  (Other)             :6006                                   
##      yearF          yearOS       scheme          site      
##  Min.   :2015   Min.   :1.000   NPMS:6245   NN4282 : 311   
##  1st Qu.:2016   1st Qu.:2.000               NC0429 : 297   
##  Median :2017   Median :3.000               NC5762 : 291   
##  Mean   :2017   Mean   :3.151               SU7253 : 277   
##  3rd Qu.:2018   3rd Qu.:4.000               SN9143 : 276   
##  Max.   :2019   Max.   :5.000               SN8834 : 252   
##                                             (Other):4541   
##                   species         EBERGR          EBERGN      
##  Calluna vulgaris     : 272   Min.   :1.000   Min.   :1.000   
##  Potentilla erecta    : 262   1st Qu.:3.000   1st Qu.:2.000   
##  Erica tetralix       : 186   Median :4.000   Median :2.000   
##  Molinia caerulea     : 185   Mean   :3.974   Mean   :2.999   
##  Anthoxanthum odoratum: 144   3rd Qu.:5.000   3rd Qu.:4.000   
##  Nardus stricta       : 133   Max.   :8.000   Max.   :9.000   
##  (Other)              :5063   NA's   :654     NA's   :654     
##      EBERGW          CSM_POS        CSM_NEG      EBERGR_site    
##  Min.   : 2.000   Min.   :1      Min.   :1      Min.   :1.667   
##  1st Qu.: 6.000   1st Qu.:1      1st Qu.:1      1st Qu.:3.000   
##  Median : 7.000   Median :1      Median :1      Median :3.875   
##  Mean   : 6.793   Mean   :1      Mean   :1      Mean   :3.974   
##  3rd Qu.: 8.000   3rd Qu.:1      3rd Qu.:1      3rd Qu.:4.537   
##  Max.   :11.000   Max.   :1      Max.   :1      Max.   :7.833   
##  NA's   :654      NA's   :3690   NA's   :4221   NA's   :2       
##   EBERGN_site     EBERGW_site     CSM_POS_site     CSM_NEG_site   
##  Min.   :1.333   Min.   :4.500   Min.   : 0.000   Min.   : 0.00   
##  1st Qu.:2.130   1st Qu.:6.154   1st Qu.: 5.000   1st Qu.: 3.00   
##  Median :2.750   Median :6.800   Median : 7.000   Median : 6.00   
##  Mean   :3.000   Mean   :6.795   Mean   : 7.581   Mean   : 6.68   
##  3rd Qu.:3.558   3rd Qu.:7.421   3rd Qu.:10.000   3rd Qu.: 9.00   
##  Max.   :6.500   Max.   :9.000   Max.   :18.000   Max.   :28.00   
##  NA's   :2       NA's   :2                                        
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##     LATITUDE       LONGITUDE        CRS                   country     
##  Min.   :50.16   Min.   :-7.483   4326:  35   Britain         :5866   
##  1st Qu.:52.08   1st Qu.:-4.595   OSGB:5866   Northern_Ireland: 379   
##  Median :54.25   Median :-3.618   OSIE: 344                           
##  Mean   :54.58   Mean   :-3.614                                       
##  3rd Qu.:56.91   3rd Qu.:-2.856                                       
##  Max.   :58.99   Max.   : 1.500                                       
##  

#still contains NI data which we'll remove for now 
 
npms <- npms[npms$country != "Northern_Ireland",] 

Currently the dataset retains the species-level information so that we can recalculate new 
indicators if we need to at a later date. However, Hannah has already calculated the square 
level average/sum indicator scores (EBERGR_site etc) 

We can aggregate to plot level (by ID) 

npms_plot <- aggregate(cbind(EBERGR_site, EBERGN_site, EBERGW_site, CSM_PO
S_site, CSM_NEG_site) ~ ID + plotID + scheme + site + year + yearF + yearO
S + LATITUDE + LONGITUDE + CRS + country, data = npms, FUN = mean) 

Total of 433 plot visits (we removed 38 from NI) 

summary(npms_plot) 

##                     ID          plotID        scheme         site     
##  NPMS_154_145208_2017:  2   Min.   : 43894   NPMS:431   NN4282 : 20   
##  NPMS_154_182261_2017:  2   1st Qu.:144631              SU7253 : 20   
##  NPMS_154_135109_2015:  1   Median :146657              NC5762 : 16   
##  NPMS_154_135109_2016:  1   Mean   :155529              SE0173 : 15   
##  NPMS_154_135109_2017:  1   3rd Qu.:165351              SN8834 : 15   
##  NPMS_154_135109_2019:  1   Max.   :222145              NC0429 : 12   
##  (Other)             :423                               (Other):333   
##       year          yearF          yearOS         LATITUDE     
##  Min.   :2015   Min.   :2015   Min.   :1.000   Min.   :50.16   
##  1st Qu.:2016   1st Qu.:2016   1st Qu.:2.000   1st Qu.:51.81   
##  Median :2017   Median :2017   Median :3.000   Median :54.15   
##  Mean   :2017   Mean   :2017   Mean   :3.158   Mean   :54.27   
##  3rd Qu.:2018   3rd Qu.:2018   3rd Qu.:4.000   3rd Qu.:56.80   
##  Max.   :2019   Max.   :2019   Max.   :5.000   Max.   :58.99   
##                                                                
##    LONGITUDE        CRS                  country     EBERGR_site    
##  Min.   :-7.371   4326:  0   Britain         :431   Min.   :1.667   
##  1st Qu.:-4.276   OSGB:431   Northern_Ireland:  0   1st Qu.:2.750   
##  Median :-3.308   OSIE:  0                          Median :3.500   
##  Mean   :-3.114                                     Mean   :3.914   
##  3rd Qu.:-1.982                                     3rd Qu.:4.500   
##  Max.   : 1.500                                     Max.   :7.833   
##                                                                     
##   EBERGN_site     EBERGW_site     CSM_POS_site     CSM_NEG_site    
##  Min.   :1.333   Min.   :4.500   Min.   : 0.000   Min.   : 0.000   
##  1st Qu.:2.000   1st Qu.:6.185   1st Qu.: 3.000   1st Qu.: 2.000   
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##  Median :2.571   Median :6.750   Median : 6.000   Median : 4.000   
##  Mean   :3.031   Mean   :6.790   Mean   : 6.316   Mean   : 5.151   
##  3rd Qu.:3.598   3rd Qu.:7.400   3rd Qu.: 9.000   3rd Qu.: 7.000   
##  Max.   :6.500   Max.   :9.000   Max.   :18.000   Max.   :28.000   
##  

Histograms of each variables 

Five variables of interest: count of CSM positive indicators, count of CSM negative indicators, 
mean Ellernberg N, mean Ellenberg R and mean Ellenberg W. Ellenberg values were not 
weighted by cover. 

Distributional considerations: 

1. CSM values are counts and so a Poisson or negative binomial distribution are likely to be most 
appropriate. We’ll need to think about potential overdispersion (violating the assumption of 
equal mean and variance assumed by a Poisson distribution) 

2. Ellenberg variables are continous. Although techically bound (see below) the mean values 
should lie sufficiently away from the bounds to be treated without modelling the bounds. This is 
something to check 

Theoretical bounds of the Ellenberg values: 

Each Ellenberg score associated with a plant species comes from a scale with defined limits. 
These vary between the different scores: 

Ellenberg N: 1-9 

Ellenberg R: 1-9 

Ellenberg W: 1-12 

To investigate the distributions of each response variable we can plot histograms: 

par(mfrow=c(3,2)) 
hist(npms_plot$CSM_POS_site, main = "CSM positive richness", xlab = "CSM p
ositive richness") 
hist(npms_plot$CSM_NEG_site, main = "CSM negative richness", xlab = "CSM n
egative richness") 
hist(npms_plot$EBERGN_site, main = "Mean Ellenberg N", xlab = "Ellenberg N
") 
hist(npms_plot$EBERGR_site, main = "Mean Ellenberg R", xlab = "Ellenberg R
") 
hist(npms_plot$EBERGW_site, main = "Mean Ellenberg W", xlab = "Ellenberg W
") 
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Interestingly, it appears that whilst the range of Ellenberg W does not come close to the 
bounds, both Ellenberg N and Ellenberg R distributions have values close to the theoretical 
bounds. This is most evident for Ellenberg N which has communities with a mean Ellenberg 
N or 1. 
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Ellenberg W has a roughly normal distribution but both Ellenberg N and R show skewed and 
slightly bimodal distributions. We might need to consider appropriate distributions carefully, 
although we can use a normal initially and inspect residuals. 

At first glance it appears that overdispersion may be more of a problem for CSM negative 
richness than CSM positive richness. We can look at this in more detail by calculating the 
mean and variance of each variable and comparing: 

mean(npms_plot$CSM_POS_site);var(npms_plot$CSM_POS_site) 

## [1] 6.315545 

## [1] 16.4909 

mean(npms_plot$CSM_NEG_site);var(npms_plot$CSM_NEG_site) 

## [1] 5.150812 

## [1] 20.75627 

Both show larger variance than mean. This is probably enough to justify modelling a 
separate variance component (using a negative binomial or quasipoisson). 

Plots of each variable against time 

As the focus of this work is to look at trends in these variables over time (i.e. using year as a 
predictor) it is worth having a look at some exploratory scatterplots to identify any 
potentially non-linear relationships or datasets where there may not be sufficient temporal 
replication to calculate a trend. 

par(mfrow=c(3,2)) 
plot(npms_plot$CSM_POS_site ~ npms_plot$year, main = "CSM positive richnes
s", ylab = "CSM positive richness", xlab = "Year") 
plot(npms_plot$CSM_NEG_site ~ npms_plot$year, main = "CSM negative richnes
s", ylab = "CSM negative richness", xlab = "Year") 
plot(npms_plot$EBERGN_site ~ npms_plot$year, main = "Mean Ellenberg N", yl
ab = "Ellenberg N", xlab = "Year") 
plot(npms_plot$EBERGR_site ~ npms_plot$year, main = "Mean Ellenberg R", yl
ab = "Ellenberg R", xlab = "Year") 
plot(npms_plot$EBERGW_site ~ npms_plot$year, main = "Mean Ellenberg W", yl
ab = "Ellenberg W", xlab = "Year") 
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In this dataset the main issue is the small number of survey years. However, fitting a 
continuous trend against year is probably just about justifiable. 

Unsuprisingly there is little evidence of temporal trends in the data, reflecting the short time 
span covered. There are not enough years to evaluate non-linearity. 
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Plots of each variable against site 

The model we plan to fit considers repeat visits to plots but not nesting of plots within sites 
or squares. Therefore it is useful to consider how much variation is due to site. 

par(mfrow=c(3,2)) 
par(mgp= c(3,1,0)) 
boxplot(npms_plot$CSM_POS_site ~ npms_plot$site, main = "CSM positive rich
ness", ylab = "CSM positive richness", xaxt =  "n", xlab = "Site") 
boxplot(npms_plot$CSM_NEG_site ~ npms_plot$site, main = "CSM negative rich
ness", ylab = "CSM negative richness", xaxt =  "n", xlab = "Site") 
boxplot(npms_plot$EBERGN_site ~ npms_plot$site, main = "Mean Ellenberg N", 
ylab = "Ellenberg N", xaxt =  "n", xlab = "Site") 
boxplot(npms_plot$EBERGR_site ~ npms_plot$site, main = "Mean Ellenberg R", 
ylab = "Ellenberg R", xaxt =  "n", xlab = "Site") 
boxplot(npms_plot$EBERGW_site ~ npms_plot$site, main = "Mean Ellenberg W", 
ylab = "Ellenberg W", xaxt =  "n", xlab = "Site") 
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There is quite a lot of variation due to site i.e. plots within sites are generally more likely to 
be similar. This reflects all sorts of between-site differences we’ve not yet accounted for 
e.g. climate, N deposition. We will need to repeat this exercise once we’ve fit models 
accounting for these factors to assess whether there is still lots of variation due to site, or 
whether this has been explained by adding in the covariates. 
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Plots of each variable in space 

It is quite useful to think about plotting the variables in space, even in a very simplistic way. 
This will achieve two things: 

1. Identify the spatial distribution of the data i.e. how well is the domain of interest covered? 

2. Identify any potential spatial patterns in the response variables e.g. are CSM positive counts 
higher in the south for some reason? At this stage we’ve not included any covariates so spatial 
patterns may be due to climate, for example. We can investigate this later once we have the 
covariate data 

The plots below show the locations of each measurement of the data, with the size of the 
point relative to the value of the response variable 

#set up for figure by reading in file with GB outline 
 
GB=read.table("GBoutline_latlong.txt",header=T) 

par(mfrow=c(3,2)) 
par(mgp= c(3,1,0)) 
cex_ind <- round(npms_plot$CSM_POS_site/10) 
plot(npms_plot$LATITUDE ~ npms_plot$LONGITUDE, pch = 20, cex = cex_ind, ma
in = "CSM positive richness", ylab = "Latitude", xlab = "Longitude") 
lines(GB) 
cex_ind <- round(npms_plot$CSM_NEG_site/10) 
plot(npms_plot$LATITUDE ~ npms_plot$LONGITUDE, pch = 20, cex = cex_ind, ma
in = "CSM negative richness", ylab = "Latitude", xlab = "Longitude") 
lines(GB) 
cex_ind <- round(npms_plot$EBERGN/2) 
plot(npms_plot$LATITUDE ~ npms_plot$LONGITUDE, pch = 20, cex = cex_ind, ma
in = "Mean Ellenberg N", ylab = "Latitude", xlab = "Longitude") 
lines(GB) 
cex_ind <- round(npms_plot$EBERGR/2) 
plot(npms_plot$LATITUDE ~ npms_plot$LONGITUDE, pch = 20, cex = cex_ind, ma
in = "Mean Ellenberg R", ylab = "Latitude", xlab = "Longitude") 
lines(GB) 
cex_ind <- round(npms_plot$EBERGW/4) 
plot(npms_plot$LATITUDE ~ npms_plot$LONGITUDE, pch = 20, cex = cex_ind, ma
in = "Mean Ellenberg W", ylab = "Latitude", xlab = "Longitude") 
lines(GB) 
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A few things to note from these basic maps: 
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1. The distribution of NPMS plots at heath and bog sites is reasonably good. There is probably an 
over-representation of this habitat in England and an under-representation in Scotland but this 
is not too dramatic. 

2. The distribution of sites defined as heath and bog seems reasonable given the distributions of 
these habitat types (i.e. no plots in central London, plots largely concentrated in upland areas) 

3. For Ellenberg N and Ellenberg R there is some indication that more southerly sites tend to have 
larger values. However, it is difficult to conclude much from these patterns as at each location 
there are likely to be multiple plot values overlaid. 

Summaries of data structure 

There are a couple of other useful things we can extract about the data. 

1. It would be useful to know how many times each plot has been revisited. The plot is 
going to be the unit over which we estimate the temporal autocorrelation so if a lot of 
plots have only been visited once then they won’t contribute to this estimation 

#calculate number of repeat visits 
repvis <- tapply(npms_plot$year, npms_plot$plotID, function (x) length(uni
que(x))) 
 
#summarise 
table(repvis) 

## repvis 
##  1  2  3  4  5  
## 72 51 26 23 17 

38% plots have only a single visit meaning they won’t contribute to calculating the 
autocorrelation coefficient. Only 9% of plots have all five visits. This means we do not expect 
particularly good estimates of temporal autocorrelation in this dataset. 

2. The number of plots per site might vary quite a lot between schemes so it would be 
good to extract some statistics about this 

plotspersite <- tapply(npms_plot$plotID, npms_plot$site, function (x) leng
th(unique(x)))  
 
table(plotspersite) 

## plotspersite 
##  1  2  3  4  5  
## 51 27 15  9  1 

This suggests that the majority of NPMS squares have a single plot. This might contrast 
substantially with other schemes where the number of plots may be much higher. 
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