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Plastic pollution in the marine environment is a pervasive, global problem that threatens wildlife and human health. Routine monitoring is
required to determine pollution hotspots, focus clean-up efforts, and assess the efficacy of legislation implemented to reduce environmental
contamination. The shoreline represents an accessible area, relative to open water, from which to monitor this. Unmanned aerial vehicles (UAVs)
offer a low-cost platform for remote sensing that operates below cloud coverage, which can interfere with satellite imagery. Detection of plastic
using visible light is limited however, and results may be improved by using short-wave infrared (SWIR) imagery to collect chemical information.
Within the commercial recycling industry, plastic items are sorted successfully based on their composition using SWIR instrumentation that
measures the chemical spectra of waste items under controlled illumination. Here, proof of concept is established for aerial detection of domestic
and shoreline-harvested plastic items on a beach under natural sunlight with a lightweight (800 g), hyperspectral SWIR camera deployed at
an altitude of ∼ 5 m over ∼ 30-m transects. The results of spectral correlation mapping to compare imagery spectra to polyethylene and
polypropylene reference spectra demonstrate that these two polymers can be successfully detected with this novel method.
Keywords: hyperspectral, macroplastics, plastic pollution, remote sensing, shoreline, short-wave infrared, spectral angle mapping.

Introduction

Plastic pollution continues to accumulate in the marine envi-
ronment due to ever-increasing human activity and the pro-
duction and consumption of plastic items—on the order of
millions of metric tons each year (Jambeck et al., 2015; Law et
al., 2020). The already observed consequences include wildlife
entanglement and ingestion by wildlife of plastics of vari-
ous size (Gall and Thompson, 2015; Van Franeker and Law,
2015; Avio et al., 2017; Phillips and Waluda, 2020). Neg-
ative impacts are also anticipated regarding human health,
with the observation of microplastics (< 5 mm) in species
fished for human consumption, as well as in other food
items and beverages (CONTAM, 2016). Macroplastics (>
5 mm), in addition to entanglement risks, are a significant
source of microplastics. This is especially true for beached
macroplastics that encounter greater exposure to ultravio-
let (UV) light and oxygen than waterborne plastics, as well
as often greater temperatures, all of which promote em-
brittlement and fragmentation (Andrady, 2011; GESAMP,
2015).

Researchers have developed methods of observing, collect-
ing, and measuring plastic pollution as diverse as the en-
vironments in which it is found: shoreline surveys (Melvin
et al., 2021), net tows in surface waters (Law et al., 2014),
vessel intake pumps below the water’s surface (Cincinelli
et al., 2017), sediment cores, and extraction from dissected
biota (Mai et al., 2018). Many of these individual meth-
ods present challenges including subjectivity and effort bias,

physical sample storage, destructive analysis techniques, and
limited time and financial resources that restricts sampling
opportunities and coverage. Researchers studying differ-
ent environments or working in different groups use dif-
ferent methodological parameters and units of measure-
ment to record observations and report results (Waller
et al., 2017; Boucher and Billard, 2019). This inconsis-
tency can limit the comparison of findings and conse-
quently, the strength of evidence-based recommendations
to support policy changes regarding the use, manage-
ment, and environmental/health impacts of plastic mate-
rials. The need for data standardization has represented
a key topic of discussion at various scientific meetings
within the field of plastic pollution research (Kershaw et al.,
2019).

Remote sensing (RS) provides an opportunity for objec-
tive, efficient, and scalable observation/monitoring of plas-
tic pollution. Studies using imagery collected by satellite,
manned aircraft, and unmanned aerial vehicles (UAVs) have
reported preliminary success in detecting plastic in the ma-
rine environment (Garaba and Dierssen, 2018; Biermann et
al., 2020; Balsi et al., 2021; Freitas et al., 2021). UAVs com-
plement the two higher-altitude platforms, as they operate be-
low the interference of cloud. UAVs are also more economi-
cal, more readily accessible, and provide additional opportu-
nity to access locations that may be prohibitive to manned
flight due to any combination of logistics, resources, and
safety.
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Plastic materials have characteristic absorption features
throughout the infrared (IR) spectrum that enable their de-
tection. These features provide chemical information and can
strongly support identification of the material, rather than re-
lying solely on colour and geometric information captured by
conventional visible imagery. The IR spectrum is divided into
multiple regimes, defined by different wavelength ranges de-
pending upon field of study and, within the field of RS, sen-
sor specifications. To contextualize this research, we define
these IR regimes as: near-infrared (NIR) 0.7–1.0 μm; short-
wave infrared (SWIR) 1–3 μm; mid-wave infrared (MWIR)
3–5 μm; and long-wave infrared (LWIR) 7–14 μm. These
regimes agree approximately with those summarized by Peck-
ham et al. (2015).

Fourier Transform Infrared (FTIR) spectroscopy is a com-
mon method of characterizing plastic samples in the labo-
ratory (Renner et al., 2017a). This technique uses an active
source of IR light, which spans the MWIR to LWIR regimes.
Numerous studies regarding the detection of plastic debris in
the environment have confirmed, however, that water (includ-
ing that in Earth’s atmosphere) strongly absorbs and attenu-
ates LWIR energy. Mace (2012) indicated that IR penetration
is generally limited beyond the top few millimetres of the wa-
ter column. Veenstra and Churnside (2012) specifically em-
phasized that the penetration of the water column by LWIR
energy is limited to approximately 10 μm for wavelengths of
7–14 μm and in application, the specified spectral range did
not yield good results for detecting abandoned fishing nets.
LWIR would require debris to be floating at the very sur-
face of the sea and for its temperature to contrast sufficiently
with the bulk background of the water. Goddijn-Murphy and
Williamson (2019) reported that the difference in temperature
between the water surface and its surroundings was indeed
key to the RS of floating plastic litter with thermal IR (com-
prising MWIR and LWIR).

The recycling industry successfully sorts plastic materials
based on resin type by exploiting absorption features in the
SWIR regime (Masoumi et al., 2012). A greater amount of
SWIR energy emitted by the sun reaches Earth’s surface than
LWIR, and SWIR energy penetrates water to a greater ex-
tent (up to ∼ 3 cm) than LWIR (less than 0.01 cm; Peckham
et al., 2015). Daylight, therefore, offers passive illumination
for the purpose of plastic detection in the outdoor environ-
ment using SWIR. Some SWIR wavelengths are more strongly
absorbed by the atmosphere and are not as useful as oth-
ers for RS. Garaba and Dierssen (2018) highlight that atmo-
spheric absorption especially impacts SWIR reflectance within
the ∼1300–1500 nm range. Within the remainder of the SWIR
regime, common plastic resins exhibit characteristic absorp-
tion features at bands including ∼1200 and ∼1700 nm, useful
for RS of plastic (Masoumi et al., 2012; Garaba and Dierssen,
2018).

Spectral angle mapping (SAM) is a technique to determine
the similarity of spectra to one another, based on the co-
sine similarity, which describes the angle between two vectors
(Kruse et al., 1993). The SAM algorithm is commonly applied
to hyperspectral data cubes to differentiate and classify pixels
of different materials within an image, based on a set of ref-
erence spectra. Bogfjellmo (2016) and Garaba and Dierssen
(2018) each used SAM to characterize plastic objects by their
spectral features in the ranges of 1000–2500 nm and 350–
2500 nm, respectively. Bogfjellmo (2016) observed that with
respect to two other methods—Principal Component Analysis

(PCA) and Partial Least Squares Discriminant Analysis—SAM
yielded the most consistent classification results. Bogfjellmo
(2016) indicated that PCA is very sensitive to varying illumi-
nation, while SAM treats different illuminations equally and
is insensitive to gain. SAM is also independent of linear scal-
ing i.e. the magnitude of compared vectors does not influence
the angle between them. Kulcke et al. (2003) also concluded
that SAM achieved the best polymer classification results (in
the range of 1000–1700 nm), against three other methods (the
Linear and Quadratic Discriminant Classifiers and the Fisher
Linear Discriminant Classifier).

Spectral Correlation Mapping (SCM) is a variant of SAM,
based on the Pearson Correlation Coefficient. SCM dif-

fers from SAM, in that the compared vectors are centred
by their respective means. De Carvalho and Meneses (2000)
demonstrated the difference in outcome of applying SAM
and SCM on artificial spectra, and proposed SCM as an
improvement over SAM due to its ability to capture nega-
tive spectral correlations. Shivakumar and Rajashekararadhya
(2017) achieved better overall classification in a land mapping
study with SCM (73.00% accuracy) than with SAM (69.56%
accuracy).

Researchers have only recently begun to investigate the fea-
sibility and efficacy of detecting plastic in the natural envi-
ronment with SWIR sensors. SWIR absorption features have
been used to identify terrestrial synthetic hydrocarbons in air-
borne visible-infrared imaging spectrometer (AVIRIS) imagery
(Garaba and Dierssen, 2018), as well as floating ocean plas-
tics in SWIR imagery collected via manned aircraft within the
“Great Pacific Garbage Patch” (Garaba et al., 2018). Bier-
mann et al. (2020) applied one of Sentinel 2’s SWIR imag-
ing bands to develop a satellite-based “floating debris index”
with a reported plastic classification accuracy of 86% against
the environmental background and within natural, floating
materials. Freitas et al. (2021) achieved 70–80% precision in
the detection of three different types of floating plastic targets
(10 × 10 m) in hyperspectral SWIR images captured from a
manned aircraft (600 m altitude). Freitas et al. (2021) also
demonstrated that flight altitude did not meaningfully impact
the spectral response absorption bands of plastic targets, by
comparing the spectral data captured at 600 m to that cap-
tured by the same imaging system deployed with a UAV at alti-
tudes between 20 and 35 m. At ground level, Goddijn-Murphy
and Dufaur (2018) evaluated a dual-band NIR/SWIR algo-
rithm to model light reflectance of plastics floating on natural
waters, reporting that measured reflectance was highly depen-
dent upon the chemical and physical properties of the plastic
items. The authors concluded that it was not possible to use
a singular RS algorithm to quantify plastic litter floating on
natural waters from reflectance data alone (Goddijn-Murphy
and Dufaur, 2018).

Shoreline accumulation is a significant fate for water-
borne plastics and represents a key observational scenario
(Martinez-Vicente et al., 2019). From their mass balance
model, Lebreton et al. (2019) estimated that the world’s shore-
lines store approximately 67% of all buoyant macroplastic—
millions of metric tons—released into the marine environ-
ment since the 1950s. SWIR instrumentation offers poten-
tially even greater detection capability in a shoreline appli-
cation relative to water-based observation, given the attenua-
tion of SWIR by water. In comparing the spectral reflectance
of dry and wet microplastics measured outdoors, Garaba and
Dierssen (2018) demonstrated decreased SWIR reflectance of
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approximately 90% for the wet microplastics. Researchers
have studied beached plastic accumulation with aerial image
capture and processing techniques including high resolution
RGB imagery and digital supervised classification (Acuña-
Ruz et al., 2018), and photogrammetry with manual image
screening (Duarte et al., 2020; Andriolo et al., 2021a, b). Fre-
itas et al. (2021) references additional studies implementing
UAV-based RGB image capture for the detection of plastic
debris. There are limited studies, however, that have applied
SWIR imaging techniques to the detection of in situ shore-
line plastic. Recently, Guffogg et al. (2021) demonstrated that
the bulk reflectance SWIR spectra (measured with a hand-
held spectroradiometer) of some sandy beach quadrats con-
taining plastic items were statistically different from those not
containing any plastic. Balsi et al. (2021) reported success-
ful detection of plastic materials (on shore and floating in
seawater) in hyperspectral SWIR imagery collected by UAV
and analysed with Linear Discriminant Analysis for similar-
ity to polyethylene and polyethylene terephthalate reference
spectra.

The aim of this study is to strengthen and expand upon
existing research that supports the feasibility of automated
RS of shoreline plastic debris by hyperspectral SWIR imaging
(Garaba and Dierssen, 2018; Martinez-Vicente et al., 2019;
Balsi et al., 2021; Guffogg et al., 2021). The presented method-
ology implements and tests an instrument and platform that
is low-cost and lightweight for the intended application of
collecting imagery from a UAV at much lower altitudes than
manned aircraft and satellites. This study explores the detec-
tion of plastic as a general material class with additional focus
specifically on detecting polyethylene (PE) and polypropylene
(PP), which are the most commonly produced resins and the
most abundant in the environment (ter Halle et al., 2017; Ren-
ner et al., 2017b).

Material and methods

Sample items

Plastic sample items were harvested from both domestic (20
items) and natural environments (46 items). These collec-
tions included samples of (in order of numerical resin code)
polyethylene terephthalate (PET), high density polyethylene
(HDPE), polyvinyl chloride (PVC), low density polyethylene
(LDPE), PP, polystyrene (PS), expanded polystyrene (EPS),
acrylonitrile butadiene styrene (ABS), polylactic acid (PLA),
and nylon 6, all verified by FTIR spectroscopy in attenuated
total reflectance mode (ATR–FTIR). An additional melamine
item (ash tray) could not be verified by FTIR—the composi-
tion is assumed, as melamine is commonly used to produce
ash trays because of its flame retardancy.

Preliminary hyperspectral SWIR image collection was per-
formed with the domestic items, as well as two PP ropes, one
fragment each of PE and PP, two fragments of EPS, and a PLA
takeaway cup lid—all seven of which were collected from the
shoreline. This preliminary assortment is described in Table
1. Additional items harvested from the natural environment
were subsequently gathered to support performance compari-
son of detection of domestic plastic items and beached/littered
plastics. The environmentally sourced assortment is described
in Table 2.

Hyperspectral SWIR camera instrumentation

Images of the plastic items were collected with a BaySpec
(San Jose, CA) OCI-F SWIR hyperspectral pushbroom cam-
era (mass 800 g), measuring reflectance in 36 wavelengths be-
tween 900 and 1700 nm (with band intervals between 15.4
and 26.6 nm, and an average band interval of 21.1 nm). The
camera comprises two sensors behind the singular, 16 mm
lens: the pushbroom SWIR sensor (resolution of 250 pixels ×

Table 1. Preliminary assortment of plastic sample items, harvested from the domestic (20 items) and the natural environment (seven items), for spectral
measurement with a SWIR camera. ∗ indicates items collected from the natural environment.

Resin Total items Pieces Description Colour

PET 7

1 Square 5 L bottle Colourless, label one side
1 Round 5 L bottle Colourless with wraparound label
1 2 L bottle Colourless with wraparound label
1 Drink bottle Colourless with wraparound label
1 Washing up liquid bottle Colourless, label one side
2 Produce containers Colourless

PE 5

1 LDPE bag Colourless
1 HDPE milk bottle White
1 HDPE supplement bottle Silver
1 HDPE bottle caps (3 grouped) Red, green, and blue
1 HDPE fragment∗ Grey

PP 10

1 Fragment∗ Dark blue
1 Disposable flat spoon Dark blue
2 Tub and lid White
2 Tub and lid Colourless
2 Cylindrical bottles Off-white
2 Ropes∗ Blue

EPS 3 2 Fragments∗ White
1 Peanuts (3 grouped) Light green

ABS 1 1 Disc (back cover of smoke detector) Off-white

PLA 1 1 Takeaway cup lid∗ White

Total 27
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Table 2. Assortment of plastic sample items collected from the natural environment, for spectral measurement with a SWIR camera.

Resin
Total
items Pieces Description Colour

PET 8

4 Bottles Colourless, no labels
1 Bottle Colourless, no label, heavy fouling
1 2 L bottle Colourless with wraparound label
1 Drink bottle Purple with fouling
1 Reusable drinking pouch Yellow and brown

PE 10

1 HDPE bottle Green, no label
1 HDPE bottle Yellow, no label
1 HDPE jug White
1 HDPE can Green
1 HDPE barrel lid Black
1 HDPE crab bait container Coral
1 HDPE sealant tube White and beige, black text
1 HDPE fragment Black
1 HDPE rectangular tube Dark blue
1 LDPE bottle Red

PVC 3
1 Boat fender buoy White with dark blue ends
1 Boat fender buoy White with fouling
1 Pool float Light blue

PP 7

1 Bucket lid White
1 Seat portion of chair White
1 Seat fragment Colourless, some scorching
1 Beach toy, shovel, no handle Blue
1 Beach toy, sand mould Orange
2 Langoustine box inserts White

PS 5

1 Confectionary gift box Colourless
1 Takeaway cup lid White
1 Single-use cup Red
2 Single-use cups Colourless

PE/PP blend 4
2 Ropes Teal
1 Rope White with fouling
1 Glove Orange with fouling

Nylon 6 1 1 Large bag Colourless

Melamine (not confirmed by FTIR) 1 1 Ash tray Black

Total 39

scan length) as well as a snapshot sensor that collects visible
light to produce interpretable monochrome reference images.
Each sensor was powered through a USB connection to an In-
tel Compute stick (STK2M3W64CC), which also stored the
collected images. The portable configuration was powered by
lithium polymer batteries via a DC/DC converter and an ac-
tively powered USB 3.0 hub. Peak consumption is 50 W, with
a typical consumption of < 10 W, according to BaySpec’s man-
ual for the camera. A sunlight readable touch screen display
was connected to the computer’s HDMI port to operate the
camera with BaySpec’s SpecGrabber software. Exposure was
set automatically according to the environmental background
and fixed prior to image and reference collection. Reference
images were collected of the manufacturer-supplied white ref-
erence (95% reflectance) and dark reference images were col-
lected with the lens cap fully covering the camera’s foreoptic.

Camera deployment and image collection

Plastic items were placed along dry sandy regions of the shore-
line (above the seaweed strand line) adjacent to the Scottish
Association for Marine Science in Oban, Scotland (approxi-
mately 56◦27′11′′N 5◦26′35′′W).

Images of each plastic item in the preliminary assortment
(Table 1) were first captured individually to collect spectral
data such that image regions containing plastic spectral signal
were easily discernible by visual inspection. The camera was
held at waist height at a 0◦ nadir angle, approximately 1 m
above the plastic targets that had been pre-arranged on the
sand and the camera was manually moved forward at arm’s
length to collect images of these individual items.

To investigate the collection of aerial data, the camera was
attached to a taut line strung at a level height of approxi-
mately 5 m above the beach, between a natural feature on the
shoreline and the top of a telescopic mast. The mast was se-
cured with three lines temporarily anchored in the ground. A
custom camera trolley was used to convey the camera across
the approximately 30-m-long transect line (Figure 1). White
and dark references were captured, and image capture was
started with a delay before disconnecting the display, feed-
ing the trolley on to the line, and securing the free end of the
line to a natural anchor point. The camera trolley was pulled
steadily across the highline at approximately 0.3 m/s (to mini-
mize vibration/sway) with a lightweight line to capture images
of plastic items in each assortment, arranged in a linear tran-
sect on the sand below. Images of the preliminary assortment
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Figure 1. Schematic of hyperspectral SWIR camera deployment on a highline to collect aerial images of plastic items arranged in a linear transect on the
shoreline (not to scale).

were collected on 29 November 2019 and the environmen-
tally sourced assortment on 18 September 2020. Both days
were sunny with negligible cloud. All images were collected
within 2 h of midday, targeting maximum sun angle.

Data processing and spectral comparison

Individual collected frames were stitched together to create an
image of each full plastic item or beach transect with BaySpec’s
CubeCreator software. No spectral binning was applied to the
36 measured bands. MATLAB was used for all subsequent
processing of hyperspectral cube data.

Figure 2. PE and PP reference spectra for spectral comparison of SWIR
imagery of plastic items. Reference spectra represent a mean of spectra
measured from eight PE items and seven PP items. Spectra are trimmed
to exclude wavelengths impacted by noise caused by atmospheric
absorption of IR or by detector sensitivity.

Hyperspectral band selection and noise reduction
The hyperspectral imager used in this study collects im-
ages in 36 SWIR bands, although many of these are im-
pacted by atmospheric absorption, and noise dominates
the imagery. In the collected data, eight bands (num-
bers 19–26) corresponding to wavelengths between 1337
and 1486 nm (1337.529, 1358.599, 1379.683, 1400.781,
1421.893, 1443.020, 1464.160, and 1485.315 nm) were con-
sistently noisy. Bands 1 and 36 (corresponding to wavelengths
960.702 and 1697.645 nm), were also impacted by noise,
owing to detector sensitivity limits. Of the remaining bands,
eight within the ranges of 1169–1233 nm and 1612–1677 nm
(bands 11–14 and 32–35, respectively) were selected for their
relevance to characteristic absorption features of plastic, and
these were used to perform spectral similarity calculations to
detect plastic materials. Salt and pepper noise in the images
collected in the selected bands was reduced with a 3 × 3-
pixel median filter (applied to each band image) to remove
small, sparse noise elements while preserving image detail.

Reference spectra construction
Multiple regions of interest (ROIs), all containing only plastic
pixels, were manually delineated from each image of individ-
ual plastic items collected with the camera at waist height.
The spectra of individual pixels within a given ROI were
averaged to generate a spectrum representative of that ROI.
Reference spectra for PE and PP—the two most abundant
polymers in the natural environment—were constructed from
the mean of all ROI spectra measured from items of these
respective polymers.

Reference spectra for PE and PP are shown in Figure 2,
where only the signal in the spectral bands relevant to plas-
tic materials and minimally impacted by atmospheric absorp-
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tion or other noise is considered. Both spectra exhibit dis-
tinct troughs at ∼ 1200 nm and decreasing reflectance mea-
sured above 1600 nm with a local minimum in the 1677 nm
band.

The mean spectra for the two distinct regions of the PE
and PP reference spectra were calculated separately. The re-
sulting averages were based on 11 and 12 spectra, respec-
tively, for the 1200 and 1700 nm absorption features from
images of eight PE items. For PP, the average spectral re-
gions were based on 17 and 15 spectra, respectively, for 1200
and 1700 nm features from images of seven items. Mul-
tiple rectangular ROIs were delineated on some images to
capture relevant signal, thus yielding more numerous spec-
tra than items. Spectral segments inconsistent with the trend
of the sample data and spectral data presented in the lit-
erature were disregarded and excluded from the calcula-
tion to preserve characteristic spectral features of the tar-
geted materials (Masoumi et al., 2012; Bogfjellmo, 2016;
Zheng et al., 2018; Zhu et al., 2019; Garaba and Dierssen,
2020).

SAM and SCM
SAM is based on the cosine similarity [Equation (1)], which
describes the similarity of two vectors by the angle between
them (Kruse et al., 1993). In this equation, Ai and Bi are the
components of n-dimensional vectors A and B, separated by
angle θ , in radians. The more similar the compared vectors,
the smaller the value of θ .

cos θ = A · B
‖A‖‖B‖ =

∑n
i = 1 AiBi√∑n

i = 1 A2
i

√∑n
i = 1 B2

i

. (1)

SCM centres vectors Ai and Bi by their respective means, Āi

and B̄i, and captures negative correlation [Equation (2)].
Where results of SAM range between θ = 0◦ and 90◦, results
of SCM vary between θ = 0◦ and 180◦.

cos θ =
∑n

i = 1

(
Ai − Āi

) (
Bi − B̄i

)
√∑n

i = 1

(
Ai − Āi

)2
√∑n

i = 1

(
Bi − B̄i

)2
. (2)

SCM was used to compare the trimmed spectrum (contain-
ing bands 11–14 and 32–35) of each pixel in a collected im-
age to the reference spectra, to evaluate the similarity of each
pixel’s spectrum to each trimmed reference spectrum. Within
this operation, each spectrum was mean-centred, to eliminate
dissimilarities owing to differences in the absolute values of
measured reflectance. The result, in radians, was converted to
degrees. An 8-bit greyscale value for each pixel was assigned
based on spectral angle, where the brightest pixels have the
smallest spectral angles and the most similarity to the refer-
ence spectrum, and normalized to the range of 0–255 for each
image.

Threshold selection
Histograms of pixel values from SCM analysis were visually
inspected to determine an initial threshold value of similarity
at which pixels were considered to contain the material rep-
resented by the reference spectrum. A typically bimodal dis-
tribution for images of individual plastic items corresponded
to the plastic item (SCM angle close to zero) and background
substrate (greater SCM angle). Applying a binary classifica-

tion at this initial threshold value yielded maps classified into
plastic (pixel value 1, white) and background substrate (pixel
value 0, black).

For each reference spectrum and image containing the re-
spective polymer (PE or PP), the threshold value (consider-
ing {θ |θ ∈ Z, 0◦ ≤ θ ≤ 180◦}) was refined by inspecting pix-
els outside the delineated plastic target area yet identified
incorrectly as plastic. The purpose of this refinement is to
minimize false positives in the application of the SCM al-
gorithm, i.e. a conservative estimate. The mean threshold
values (from nine images of PE and ten of PP) served as
the thresholds to apply to aerial images of plastic items
collected at a greater height, where the signal measured
from the plastic was reduced, relative to the environmental
background.

The MATLAB function, “imdilate” was used to expand
white pixels considered to be plastic to assist visualization
of the mapped results of threshold application—especially in
the case of large composite images where the image resolu-
tion may exceed the display resolution and the disparity in
resolution masks individual pixels. Each pixel considered to
be plastic was expanded to also occupy the pixels surround-
ing it in a 5 × 5-pixel square, which formed the structuring
parameter of the dilation.

Results

Examples of greyscale visible reference images and IR images
used to manually delineate ROIs for reference spectra creation
are shown in Figure 3, which depict a PE milk bottle and a PP
margarine tub. Distorted spatial features in the IR band im-
ages are artefacts of stitching individual pushbroom scans to-
gether given inherently unsteady motion of the camera during
image capture.

Histograms of SCM between pixels within images of in-
dividual plastic items to the selected reference spectrum re-
vealed bimodal distributions (Figure 4). These distributions
were used to determine the initial threshold value for clas-

Figure 3. Reference images of a PE milk bottle (a) snapshot in the visible
light regime and (b) pushbroom in the in the 1044.0 nm SWIR band, as
well as a PP margarine tub (c) in the visible and (d) in the 1044.0 nm
SWIR band. A 3 × 3-pixel median filter was applied to smooth images (b)
and (d).
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Figure 4. Results of spectral comparison by SCM algorithm of hyperspectral SWIR images of (a) PE milk bottle to a PE reference spectrum and (b) PP
margarine tub to a PP reference spectrum. Colour scales in (a) and (b) range from 0◦ to 180◦ where lower values indicate greater spectral similarity and
pixels are assigned greatest brightness. Histograms of pixel values in (a) and (b) appear in (c) and (d), respectively, indicating the proportions of pixels
with given spectral angle values, in degrees.

sifying plastic and non-plastic material. The mean threshold
value, after refining to yield no false positive pixels (as de-
scribed in “Methods”) was 17◦ for PE items as well as PP
items. Detection of plastic items can be visualized by ap-
plying the selected threshold to the SCM image (Figure 5).
Since the selected threshold is a mean value instead of the
most conservative and minimum threshold value observed
for a single image, some individual classified images con-
tain false positive pixel detections after applying the mean
threshold.

Aerial transects of the preliminary and environmentally
sourced assortments of plastic are shown in Figures 6 and 7.
Plastic items are observable by eye in the 1044.0 nm SWIR
band shown, and SCM results highlight pixels classified as
plastic based on a 17◦ similarity to the PE and PP reference
spectra. Several plastic items were detected at this threshold
in each scenario that compares the pixels within each tran-

Figure 5. SWIR imagery of (a) PE milk bottle and (b) PP margarine tub on
a beach, with pixels classified as the respective polymer (white), by SCM
with a classification threshold of 17◦.

sect to each of the reference spectra. In each of these com-
binations, the SCM application detected plastic items that
match the polymer type of the reference spectrum, as well
as other items of different polymer types. Detection sensi-
tivity was explored as a function of classification threshold
for values between θ = 16◦ and θ = 20◦, at 1◦ intervals.
A true detection was considered as the presence of at least
one white pixel in a region estimated to be spatially corre-
lated to a plastic item by visual inspection and pixel posi-
tion comparison. A summary of total detected items, as well
as PE and PP items detected with the respective reference
spectra are quantified in Table 3 (detailed detection results
are provided in Supplementary Tables S1 and S2). The re-
sulting proportions of items positively detected are shown in
Figure 8.

Spectral comparison of image pixels to the PP reference
spectrum, rather than PE reference spectrum, consistently re-
sulted in more items being detected within both item assort-
ments, and across varying spectral angle thresholds. In the
preliminary assortment, the percentage of total items detected
ranged between 15 and 33% for the PE reference and 30
and 56% for the PP reference. The detection rates for PP
items (60–80%) were consistently at least twice as great as
for PE items (20–40%) when comparing pixels to the respec-
tive reference spectra. Spectral comparison to the PP refer-
ence also detected all but one of the PET bottles within the
assortment (at the least conservative threshold value tested
and all bottles having a label on at least one side). Only
PE and PP items and PET items with labels, but no other
types of resins, were detected within the preliminary assort-
ment. Spectral comparisons to the PE and PP reference spec-
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Figure 6. (a) Visible reference image of plastic items in the preliminary assortment; (b) image “a” masked to highlight placed items; (c) IR image of the
scene in in the 1044.0 nm band (3 × 3-pixel median filter applied for smoothing); pixels classified as plastic by the SCM algorithm based on a 17◦

similarity to (d) a PE reference spectrum (solid lines between “c” and “d”) and (e) a PP reference spectrum (dashed lines between “c” and “e” or
between “d” and “e”). In order of resin code, PET items are denoted by yellow lines, PE by red, PP by blue, EPS by grey, and “other” by indigo.

tra each yielded detections of the other polymer—between 30
and 60% of the PP items (three to six out of ten) detected
with the PE reference and between 20 and 60% of the PE
items (one to three out of five) detected with the PP refer-
ence. In consideration of this overlap, combining the results
of the two spectral comparisons (total items detected with ei-
ther of the reference spectra) provided increases in detection
rates relative to detection rates based on individual spectral
comparisons. These increases were greater relative to PE ref-
erence comparisons and modest relative to PP reference com-
parisons.

None of the seven PET bottles (regardless of transparency
and fouling) in the environmentally sourced assortment were
detected within the applied thresholds for either reference, in-
cluding the only bottle with a label. The opaque PET drink-
ing pouch was detected with both references. Spectral com-
parison with the PE reference detected one of three PVC
items, whereas the PP reference detected all three. The PP
reference also detected three of four PS items while the PE
reference detected just one (at thresholds greater than 17◦).
The preliminary assortment does not contain PVC and PS
items—the collection was harvested primarily from recycling

and neither PVC nor PS are commonly recycled. Both PE
and PP references detected the nylon 6 bag. All four PE/PP
blend items were detected by both references at at least
one applied threshold value. Black items (an HDPE bar-
rel lid, an HDPE fragment, and a melamine ash tray) were
not detected with either reference at any tested threshold
value.

Detection rate as a percentage of the total items
within an assortment increases with spectral angle
threshold for the selected threshold values. As the
threshold value increases, however, so do false pos-
itives, i.e. non-plastic pixels erroneously classified as
plastic. At greater threshold values, false positives become
so numerous that their quantity and scattered distribution
compromise reliable, manual matching of highlighted pixels
to true plastic items in the visible and IR reference images. For
this reason, plastic items were counted for a lower range of
threshold values for the comparison of the environmentally
sourced assortment transect to the PP reference spectrum.
Detection rates among the environmentally sourced assort-
ment are consistently greater than those attained from the
preliminary assortment.
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Figure 7. (a) Visible reference image of plastic items in an environmentally sourced assortment; (b) image “a” masked to highlight placed items; (c) IR
image of the scene in the 1044.0 nm band (3 × 3-pixel median filter applied for smoothing); pixels classified as plastic by the SCM algorithm based on a
17◦ similarity to (d) a PE reference spectrum (solid lines between “c” and “d”) and (e) a PP reference spectrum (dashed lines between “c” and “e” or
between “d” and “e”). In order of resin code, PET items are denoted by yellow lines, PE by red, PVC by green, PP by blue, PS by grey, PE/PP blend by
violet, and “other” by indigo. Note that the white dashed line between panels “b” and “c” indicates the location of a paper white reference.

Table 3. Plastic items detected by SCM algorithm and manually counted in SWIR imagery transects of preliminary and environmentally sourced assort-
ments of plastic items on a beach, with respect to a PE and PP reference spectrum, where classification threshold is specified by spectral angle (◦).
Greater threshold values increase true positive detections, as well as false positive pixel classifications. Classification and counting were performed at a
lower range of threshold values for the comparison of the environmentally sourced transect to the PP reference due to an abundance of false positives
at 19◦ and greater.

SCM threshold 16◦ 17◦ 18◦ 19◦ 20◦

Preliminary assortment

PE reference
Of 27 total items – 4 5 8 9

– 15% 19% 30% 33%

Of 5 PE items – 1 1 2 2
– 20% 20% 40% 40%

PP reference
Of 27 total items – 8 11 12 15

– 30% 41% 44% 56%

Of 10 PP items – 6 8 8 8
– 60% 80% 80% 80%

Either PE or PP reference Of 27 total items – 9 12 14 17
– 33% 44% 52% 63%

Environmentally sourced
assortment

PE reference
Of 39 total items – 20 21 22 22

– 51% 54% 56% 56%
Of 14 PE and PE blend
items

– 11 11 12 12
– 79% 79% 86% 86%

PP reference
Of 39 total items 23 25 27 – –

59% 64% 69% – –
Of 11 PP and PP blend
items

10 10 11 – –
91% 91% 100% – –

Either PE or PP reference Of 39 total items – 26 27 – –
– 67% 69% – –
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Figure 8. Percentage of total plastic items in preliminary (“prelim”; triangles) and environmentally sourced (“enviro”; circles) assortments detected on a
beach by spectral angle comparison of SWIR imagery to PE (solid black markers) and PP (open markers) reference spectra, and to either of these
reference spectra (solid grey markers).

Discussion

This study establishes the viability of detecting beached ma-
rine plastics in a natural, shoreline environment with hy-
perspectral SWIR imaging deployed at below-cloud altitude.
Positive detections of assorted plastic items were achieved
through the application of an SCM algorithm, comparing im-
age spectra to PE and PP reference spectra, within a spectral
similarity threshold range of 16–20◦.

Distinct contrast between the reflectance of plastic items
and their terrestrial surroundings in the captured SWIR im-
agery supports the viability of the technology as a tool for de-
tection of plastic debris under natural sunlight. In this study,
the identified absorption features at ∼1200 and ∼1700 nm in
the measured spectra of PE and PP items are consistent with
those observed in other SWIR characterization studies of plas-
tic materials (Masoumi et al., 2012; Bogfjellmo, 2016; Zheng
et al., 2018; Zhu et al., 2019; Garaba and Dierssen, 2020).

The mapped results of applying the SCM algorithm to the
SWIR imagery collected at waist height, and spectrally com-
pared to the absorption features of the PE and PP reference
spectra, also yields contrast between the plastic and surround-
ings that is discernible visually and by inspection of the im-
age histograms. The selected threshold of θ = 17◦ for classify-
ing pixels as “similar” to plastic with SCM aligns reasonably
with thresholds reported in the literature regarding similar ap-
plications, using the SAM algorithm. An investigative, rather
than direct comparison is made here because SCM accounts
for negative correlations and is defined over the range of 0–
180◦ whereas SAM results are defined by the range of 0–90◦.
Garaba and Dierssen (2018) created a discrete scale to de-
scribe the spectral similarity of marine-harvested macroplas-
tics to one another: very strong (0◦ ≤ θ ≤ 5◦), strong (5◦ <

θ ≤ 10◦), moderate (10◦ < θ ≤ 15◦), weak (15◦ < θ ≤ 20◦),
and very weak (θ > 20◦). While Garaba and Dierssen (2018)

compared individual beached macroplastics to one another,
our study compares the spectra of a variety of domestic and
environmentally sourced plastic items to mean reference spec-
tra also based on a collection of multiple items from the same,
varied sources. The increased diversity of targets may account
for the greater, less conservative angle yielded as a classifica-
tion threshold in our study.

Further, Garaba and Dierssen (2018) measured spectra with
a spectroradiometer over a greater spectral range and with
greater spectral resolution (350–2500 nm interpolated to a
1 nm resolution) than the BaySpec imager offers. SAM was
applied in a piecewise approach to compare spectra within
individual SWIR regions that capture absorption features:
905–955, 1160–1260, 1380–1480, and 1715–1750 nm. The
maximum spectral angle reported within these ranges was
10.5◦. Our study simultaneously compares spectra between
1169–1233 and 1612–1677 nm with just four measured data
points within each region. The potential for discrepancy be-
tween spectra increases with greater spectral range consid-
ered. Garaba and Dierssen (2018) reported that over the full
350–2500 nm range that includes visible light (acknowledging
that item colour influences spectral characteristics), the range
of spectral similarity for macroplastics was 5.7–38.2◦ with a
mean of 19.1◦—a weaker similarity than yielded by piecewise
comparisons. Garaba and Dierssen (2018) additionally point
to SAM thresholds of θ = 17.2◦ and θ = 11.5◦ used, in land
use and coral mapping hyperspectral imagery studies, respec-
tively (Kutser et al., 2006; Petropoulos et al., 2013).

Detection of the plastic sample items used in this study
did not appear to be compromised by the items’ exposure to
the natural environment, relative to detection of items har-
vested from recycling. Greater proportions of total plastic
items, as well as specifically PE and PP items, were detected
with each reference spectrum in the environmentally sourced
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assortment, against the preliminary assortment. PE, PP, and
PE/PP blend items comprised 54% of the items in both assort-
ments. Only PET items with labels were detected in the pre-
liminary assortment, and those without were not detected in
either assortment (except for the opaque drinking pouch with
no fouling). Based on this result, PET materials are not likely
to be detected by spectral comparison to PE and PP reference
spectra. No other resins were detected in the preliminary as-
sortment. Masoumi et al. (2012) demonstrated that the spec-
tral characteristics of PET differ noticeably from those of PE
and PP within the spectral regions compared here and Balsi
et al. (2021) specifically emphasized the spectral differences
between PET and PE. The spectral characteristics of PVC and
PS bear more similarity (by visual inspection) to those of PE
and especially to those of PP (Masoumi et al., 2012). The lo-
cal maximum absorption in the ∼ 1200 nm region occurs at
a greater wavelength for PE than PP, PVC, and PS in the Ma-
soumi et al. (2012) data and the same observation is made in
the PE and PP reference spectra generated in this study. The
greater similarity between PP, PVC, and PS spectral charac-
teristics supports the greater detection rates of plastic items
achieved with the PP reference spectrum than with the PE ref-
erence spectrum. Balsi et al. (2021) noted that PP items were
classified as PE or as both PE and PET in aerial surveys due to
PP’s spectral similarity to these other polymers.

In addition to PE and PP, PVC, and PS items were detected
in the environmentally sourced assortment and the nylon 6
item was detected in each reference/threshold combination.
These three additional resins comprise another 23% of the
environmentally sourced items. Considering PE and PP (and
their blends), PVC, PS, and nylon 6 as probable detectable ma-
terials by spectral comparison to PE and PP spectra, the pro-
portions of such items are 54% and 74%, respectively, in the
preliminary and environmentally sourced assortments. This
difference in resin proportions can account for discrepancy in
total detection rates between the two assortments. Items with
surface contamination in the environmentally sourced assort-
ment were detected despite this fouling. Masoumi et al. (2012)
demonstrated strong similarity between spectra of clean items
and items with a contamination layer thinner than 0.5 mm, for
a given plastic type. These results directly support the feasibil-
ity of detecting shoreline plastic debris by RS and the analysis
methods presented in this study.

Transparent PET evidently presents a challenge for reli-
able detection of this material. Bogfjellmo (2016) reported
that pixels containing transparent PET were influenced by
background spectra and remained unclassified by SAM within
SWIR imagery captured indoors on a glass background. PE,
PP, PVC, and PS samples were reliably classified under the
same conditions, as were white fragments of PET on a black
cardboard background. Positive detections with the PP refer-
ence spectrum of transparent PET items in the present study
correspond to bottles partially covered with labels. This result
suggests that the labels may be comprised of PP, and responsi-
ble for the spectral similarity to the PP reference. A 2-L bottle
with a label was, however, not detected within the environ-
mentally sourced assortment of plastics. The absence of labels
on all but one of the bottles (including PET and HDPE) in
the environmentally sourced assortment is likely due to envi-
ronmental factors such as UV exposure and wave action that
may weaken adhesive and mechanically remove labels. Ma-
soumi et al. (2012) were able to optically sort PET bottles
(from HDPE, PVC, PP, and PS items) that were covered up to

35% by a label, under controlled illumination with a measure
of relative reflectance, specifically tailored to an absorption
feature characteristic of PET. The application of such an ap-
proach, or comparison with SCM to a PET-specific reference
spectrum may aid detection of PET items in the environment;
however, the influence of background spectra remains a con-
sideration for transparent items. The positive detection of the
opaque, reusable drinking pouch, and the negative detection
of the opaque, purple drinking bottle in this study may be due
to the smaller size of the latter, contributing less signal within
the scene.

Black plastics were not detected, which is consistent with
the limitation within the recycling industry to sort black mate-
rials with SWIR technology due to the black pigment’s strong
absorption and low reflectance of IR energy (Masoumi et al.,
2012; Kassouf et al., 2014; Bogfjellmo, 2016). Only the en-
vironmental assortment contained black plastic items. Of the
three of these, one was melamine and the others PE. Presuming
it is not possible to detect black plastics with SWIR instrumen-
tation, the maximum possible detection rate was 92% (36/39)
for total items and 80% (8/10) for PE items.

There is no evident correlation in the collected and analysed
data regarding the location of false positive detections. False
positive pixels appear at greater threshold values in the images
collected at waist height of individual items on a relatively uni-
form sand background, as well as in the longer, stitched tran-
sect mosaics whose backgrounds are more varied and include
seaweed debris.

We observed gaps and distortions in the stitched pushb-
room images presented here, which could be addressed with
an active stabilization solution to counter the motion and vi-
bration of a necessarily mobile platform and to increase image
and data quality. Petrie (2005) indicates that pushbroom in-
struments must be operated from a stable platform and that
changes in instrument altitude and attitude will otherwise pro-
duce gaps and double imaging in the collected imagery. The
manufacturer’s documentation for the BaySpec instrument
specifies the necessity of a gimbal for UAV applications to
keep the lens of the imager perpendicular to the scene below.
Further, Turner et al. (2017) indicate that mounting a pushb-
room imager on a gimbal can reduce the impact of aerial plat-
form movement and Sigernes et al. (2018) demonstrate suc-
cessful imaging campaigns with bespoke hyperspectral push-
broom imagers stabilized by commercial, off-the-shelf gimbals
in both handheld and UAV-based operations.

This study focused on shoreline, rather than floating plas-
tics because pushbroom imagery is better suited to scenes
with discernible, stationary features as spatial references with
which to stitch individual images together. Balsi et al. (2021)
addressed this challenge associated with pushbroom imagery
with a real-time detection solution that uses a computation-
ally efficient Linear Discriminant Analysis, which does not rely
upon post-processed, mosaic imagery. SCM also has low com-
putational requirements and may also be suitable for real-time
detection applications.

Deploying the SWIR imaging technology on a UAV would
allow for evaluation of the impact of altitude, towards deter-
mining a limit of detection for plastic items of a given size or
type. The flexibility of such an aerial platform would also sup-
port deployment of the imager at a variety of sites and with
different terrain and environmental background, e.g. sand,
rock, kelp detritus, and snow and ice. Melvin et al. (2021) dis-
cuss the importance of considering a greater variety of shore-
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line environments in plastic pollution research, as landscape
features such as sediment grain size, accumulated organic ma-
terial, and winter precipitation may affect how plastic mate-
rials are deposited on the shoreline. As discussed by Arroyo-
Mora et al. (2021) regarding vegetation-focused RS applica-
tions, analysis of data collected under different cloud coverage
is needed to investigate the method’s performance especially
under diffuse illumination when less natural light might be
available, relative to a clear sky.

Conclusion

This study demonstrates that hyperspectral SWIR imaging
and SCM can be applied to successfully detect plastic as a
broad material class, including the most abundant types of
plastic debris (PE and PP) and additional polymers in a sandy
shoreline environment. As different polymers are character-
ized by different spectral features (Balsi et al., 2021), further
comparisons to reference spectra specific to other types of
plastic (e.g. PET, PVC, and PS) could support more reliable
detection of these distinct types of plastic.

The detection performance of the technology could be com-
pared in practical application to clean-up methods, by cap-
turing and analysing the imagery of a beach before and after
a clean-up, where visual observations and data recorded by
volunteers serve as the ground truth. Simultaneous capture of
aerial RGB imagery could support the verification of any true
detections in the SWIR imagery not verified directly by the
volunteers’ observations.
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