

Natural Environment Research Council

British Geological Survey

OVERSEAS DIRECTORATE

UK/GOK TECHNICAL COOPERATION EXPLORATION FOR GEOTHERMAL ENERGY PROJECT

report COMPILATION & INTERPRETATION OF ROCK GEOCHEMICAL DATA FOR THE LONGONOT & GREATER OLKARIA VOLCANIC CENTRES

M.C.G.CLARKE

AUG. 1987. REPT. NO. BGS GENKEN/4

PROJECT:

Exploration for Geothermal Energy

(In Cooperation With MERD & UNDP)

c/o British High Commission P.O. Box 30465 Nairobi, Kenya

Office: 8th Floor - Utalii Hse. Tel: 380800 Ext. 35

British Geological Survey Keyworth Nottingham NG12 5GG

Plumtree (060 77) 6111 Telex 378183 BGSKEY G · 4

1349

CONTENTS

ABSTRACT

INTRODUCTION

DATABASE

DATA ANALYSIS LONGONOT OLKARIA

CONSIDERATION OF U + Th DATA

U + Th CONTENT & HEAT PRODUCTION

CONCLUSIONS

REFERENCES

FIGS 1 - 17

APPENDICES (LISTINGS OF DATA)	
TABLE 1 LONGONOT PYROCLASTICS	
TABLE 2 " LAVAS	
TABLE 3 MACDONALD & BLISS OLKARIA COMENDITE	DATA
TABLE 4 NEW BGS DATA (WHOLE ROCK)	
TABLE 5 " " (TRACE ELEMENT ONLY)	

ABSTRACT

187 analyses of lavas and pyroclastics are listed and displayed as bivariant TAS and trace element plots. Compositions at Longonot are slightly oversaturated peralkaline trachytes, while Nb/Zr ratios show a single trend indicating a single source fractionating trachytic magma chamber. Subordinate lavas from the Northern Plain and crater plot as trachytes and benmoreites respectively but other work has shown these to be mixtures of the typical Longonot trachyte with basalt.

Absolute values of incompatable trace elements (ICE) -Nb,Zr,Rb,Th & U - vary widely, being highest in pyroclastics associated with caldera collapse, surge horizons and early plinian beds. ICE contents fall, both during indevidual plinian eruptions, and from early to late in the plinian sequence, indicating magma chamber zonation.

Olkaria compositions are usually alkali rhyolites (comendites) with a tendency for older events to be trachytic. Mixed lavas, having intermediate compositions, and basalts are present north of Olkaria (Ndabibi area). On the plains to the south of Olkaria basaltic looking rocks include mugearites.

ICE content varies widely in comendites, increasing from domes through lavas to pumice paralleling the presumed volatile content. Highest values are found in pumice from surge beds. Nb/Zr & Th/Zr ratios are distinct for different phases of Olkaria activity with the ring fracture related volcanism (O3) having highest Nb,U & Th/Zr ratios and highest absolute contents of these elements (<4000ppm Zr, 1000ppm Nb, 250ppm Th & 43ppm U).

The different ratios exhibited by different phases of volcanism indicate accessing of separate magma batches which may result from different episodes of partial melting.

U & Th contents at Olkaria are higher than at Longonot & Suswa indicating a greater radioactive heating potential.

MCG Clarke Project Team Leader

COMPILATION AND INTERPRETATION OF ROCK GEOCHEMICAL DATA FOR THE LONGONOT AND OLKARIA COMPLEXES

INTRODUCTION

As part of the UK (BGS) input to the understanding of the geothermal potential of the Central Rift Valley in Kenya a study is being made of the rock geochemistry of several of the young volcanic centres. The data available (183 WR analyses and 43 partial analyses) are listed and the main features and trends illustrated by selected bivariant plots.

DATABASE

The analytical data are compiled as 5 tables in the appendix to this report. Each table commences with a listing giving sample nos., map-references and where necessary, brief notes on the Analyses have all been reclassified according to sample. the stratigraphic scheme adopted by BGS for this area, (see accompanying draft geological report). Each unit is generally listed in order of increasing Zr content. Locations of all listed samples are plotted on the accompanying map. Background information on the 5 tables is given below: -

Table 1. LONGONOT PYROCLASTICS - comprises 31 wholerock analyses of pumices collected in 1986 from the Longonot pyroclastic succession by Dr.S.C.Scott of Plymouth Polytechnic, UK, in co-operation with this project. His objective is to establish a detailed history of the development of the Longonot magma chamber BGS is more interested in the broader aspects of the chemistry.

TABLE 2. LONGONOT LAVAS - comprises 52 WR analyses of lavas from Longonot, 49 of which are extracted from Scott's PhD thesis on Longonot (Scott 1977). Also included are 3 analyses of samples collected by BGS for correlative purposes.

TABLE 3. MACDONALD & BLISS DATA- Comprises 43 WR analyses of comendite lavas and pumices from the northern and central part of Olkaria and the Ndabibi area (between Olkaria and Eburru). Most of this data appeared originally in an unpublished thesis on the area (Bliss, 1979) but is now the subject of a publication in preparation, (Macdonald et al). It is emphasised that the grouping of these data is based on the new BGS stratigraphy and not that used by Bliss.

TABLE 4. NEW BGS DATA- comprises 60 WR analyses of lavas and pumice from both the Longonot and Olkaria volcanic sequences. The Olkaria data are mainly from the eastern and southern parts of this complex. Three samples of Limuru Trachytes and one each from Narok and Mara River were also analysed for comparative purposes.

TABLE 5. PUMICE SAMPLES (TRACES ONLY)- 44 pumice samples were collected for correlative purposes to assist tephrochronological interpretation of the western Olkaria area but also form a useful addition to the general data base, especially concerning the highly evolved Olkaria compositions. DATA ANALYSIS

LONGONOT

Major and trace elements of lavas

Lavas (Table 2 and Fig 1) of the Longonot lava pile (Lt2) and recent flank flows (Lt3) all fall in a resticted portion of the Trachyte field of the Total Alkali-Silica (TAS) diagram proposed by LeBas et al (1986). Silica percentages are between 61-63% and the greater variation in total alkali may result, in part, from soda loss during deuteric or even meteoric processes. There is sufficient excess of alkali over alumina to make the Peralkalinity index greater than unity and therefore these are Peralkaline Trachytes.

Lavas of the northern plain (Lmx1/2) plot in a similar 2) but with slightly lower silica. position (Fig. Previous work shown that these are in fact 'mixed' lavas, has having a subordinate basic component as microscopic tongues and 1984?). The crater-floor lavas, together blebs, (Scott, with samples of the co-eval bombs and cinders on the crater rim (Lmx3) also show a restricted composition, plotting in the Benmoreite field of the TAS dia. This group are of mixed basic-trachyte composition also.

Despite the very restricted major element variation between units Lmx1/2, Lt2 & Lt3 the trace element data, eg Nb/Zr content, varies considerably (Table 1 & Fig. 3). This is so both between within Lt2. The recent flank flows (Lt3) units and appear compositionally equivalent to the more evolved portions of the while Lmx1/2 has a much lower incompatable lava-pile, element (ICE) content than the more 'basic' Lmx3 suite.

Trace elements in pyroclastics

Compositional variation in the Longonot pyroclastic sequence is illustrated in Table 1 and, using Nb/Zr ratios, in Fig. 4. The data indicates that:-

a)There is a generally wider intraunit variation in the pyroclastics than in the lavas.

b)The pyroclastic eruptions were generally tapping more evolved magma, ie magma with greater ICE content than in lavas.

c)The decrease in ICE from bottom to top of the lowest bed of Lp5 (Sp. L318,308 & 309 from a 5m+ thick plinian pumice) is an indication of magma chamber zonation revealed during a large explosive eruption, cf Fisher & Schmincke, 1985, table 2-2.

d)The overlying bed contains pumice of more evolved nature than the upper (ie last) part of the previous eruption. This indicates that the magma chamber had refractionated and therefore a time lapse occurred between these two plinian events. The presence of an intervening palaeosol supports this deduction.

e)There is a general decrease of ICE content from early to late Lp5 events, superimposed on the intrabed variation noted in (c) above. This correlates with a general decrease in bed thickness and clast size.

f)The later beds of Lp5 have similar contents of Zr to those of the most evolved Lt2 & 3 lavas (ie ~1000ppm).

Broad correlation of ICE content with volcanic events is illustrated in Fig. 5. It can be seen that higher ICE contents characterise i), units in which ignimbrites are prominent, ie Lp1 & Lp3, ii), the earlier part of the Lp5 plinian sequence and iii), (highest of all) the Lp4 base-surge.

Volcano-tectono inferences can also be drawn from the cyclical nature of the Zr levels versus time and eruptive style. The three troughs may represent tapping of relatively unfractionated (less evolved) magma, following caldera collapse or crater formation. The relatively high Zr levels present in the most recent flows perhapse signal that pyroclastic activity is to be expected in the (volcanological) near future.

OLKARIA

Background to investigation

Field mapping in the area between the western Longonot Caldera scarp and the Hell's Gate Gorge (the Domes area) showed that Olkaria type comendite volcanism is present in the form of domes mantled by a varied sequence of pyroclastics and localising considerable surface geothermal activity. pyroclastics The consist of interbeds of both Longonot and Olkaria tephra and initially samples were selected for analysis to provide confirmation of the model developed from the fieldwork. Initial interpretation of the data showed that not only could tephra from the two centres be distinguished even when partially altered as a result of proximity to surface geothermal activity but that distinct geochemical trends characterise different phases of Olkaria volcanism.

It was therefore decided to extend the mapping program across the Olkaria Complex to increase project understanding of the volcanological setting of the known resource and to compare and contrast this area with what is now concluded to be a significant eastwards extention of that resource.

As a result of the 1987 investigations a unified stratigraphy has been established for the whole Olkaria Complex by a combination of classic field mapping tecniques and extention of the geochemical model introduced at the Feb 1987 TRM. The following data displays and discussion apply to all of the area characterised by comendite volcanism both east and west of the Hells Gate Gorge - an area for which the name - The Greater Olkaria Volcanic Complex (GOVC) - is proposed.

Major element chemistry

Tables 3,4 & 5 contain the available analytical data. Figs. 6,7,8 & 9 display the various comendite groups in terms of the TAS dia. In general the samples of dome and lava analysed plot in a restricted field with SiO2 72-77% and total alkalies between 8.5 and 10.5%, ie as rhyolite. Once again, however, the alkali/alumina ratio gives peralkaline indices in excess of unity and SO the terms peralkaline rhyolite or comendite are appropriate.

The trend towards higher ICE content (see following section) is accompanied by increase in total alkalies and total iron, both

typical of evolution towards increasing peralkalinity. This trend is however accompanied by a decrease in SiO2 and Al and slight decreases in TiO2 and CaO. The increasing iron and alkalies, together with the decrease in alumina, is reflected by the appearence of phases such as aegerine-augite and arfvedsonite, often prominently displayed in late stage small vugs as acicular (vapour-phase ?) aggregates.

The TAS plots show that samples from the Ndabibi area exhibit relatively small variation and have the highest percentage silica. The 02,03,04 & 05 units are generally more evolved with 03 exhibiting the widest range, covering the whole spectrum of comendite compositions sampled at Olkaria. The more restricted fields of 04 & 05 overlap indicating the close association more clearly shown by trace element data.

An important observation is that the two groups of data, from Olkaria and Longonot, plot as quite separate fields on the TAS dia. perhaps indicating no direct petrogenetic relationship.

Trachytes, Intermediate rocks and Basalts.

trachytes associated with There are the Olkaria complex, southern flanks of the main ring feature the particularly on they map as part of the O2 phase of (BG1366 & 1406)where Trachytes (sl) also occur further south on the plains volcanism. between Olkaria and the Narok road (BG1045 & 1437/1). The latter are of probably earlier age and may represent pre-late Quaternary 'Flood Trachytes' of the region. Plotted on the TAS dia. (Fig. both pairs are distinct from the Longonot lavas, having 10) The samples most closely linked with silica contents. higher Olkaria exhibit mild peralkalinity while those from the southern plains have P.I.<1. A sample of scoria from one of the Ndabibi tuff cones also plots in the trachyte field but is considered to be one of the 'mixed' compositions discussed below.

Basic and intermediate compositioned volcanics (Table 4 and Fig.10) are also present particularly in the Ndabibi area and south of Olkaria. To a lesser extent they also occur within the main complex, eg, in S.Hellsgate and at Central Tower, in both cases intimately associated, (texturally mixed), with 04 comendites.

Compositions range from subalkali (Hyn) basalts building cinder cones at Ndabibi, benmoreites, at both Ndabibi and south of Olkaria, through to a composition near the Trachyte/rhyolite boundary on the TAS dia. The latter sample (with P.I.<1) represents dark inclusions and schlieren within comendite forming the Central Tower O4 plug. The field relations and bimodal outcrop appearence of some of these rocks indicate a mixed origin which the WR compositions do not reflect.

Analyses of two lithic blocks from Olkaria pyroclastics in the domes area are also plotted on Fig. 10. One is a ne normative Alkali Basalt, the other an undersaturated, high soda, basic rock plotting as a Tephri-phonolite on the TAS dia. It is not known whether these rocks represent magmas associated with earlier Olkaria events or are simply samples of the earlier volcanic basement

Two further rocks, collected from west of the rift as type examples, are plotted on Fig. 10. These are an Olivine melilitite (BG1467) and a Phonolite (BG1563), both with Na>K and 18 & 20% Ne in the norm respectively.

East Rift Wall rhyolites compared with comendites.

outcrops from the upper part of the Limuru Trachyte Seveal Fmn., which forms the eastern wall of the Rift at the latitude of Suswa and Longonot, were recognised in the field as being highly They have been analysed for comparison with Olkaria silicic. comendites and plot in similar position on the TAS dia. (Fig. 11). Their Peralkaline Indices, ~1, indicate that they are however more akin to true rhyolites. They do contain high ICE contents and have Nb/Zr ratios similar to the Longonot and Olkaria 03/04 compositions. Their Th/Zr ratios however fall on the O2 trend far from that of Longonot (Fig. 15). These inconsistences show that they are geochemically distinct from both the younger centres. presence however of such highly evolved and silicic The compositions in the Limuru Trachyte Fmn. could be related to large scale explosive volcanism.

Trace element data from Olkaria and Ndabibi

The Nb/Zr plot (Fig. 12) is again used to illustrate the spread of ICE content and relative evolvement of volcanic products. Three features are immediately visible:-

1. There is much greater variation, compared to the equivalent Longonot display, within which separate Olkaria events can be distinguished. These are 02,04 & 03, having successively higher Nb/Zr ratios and plotting as distinct trends.

2. The upper range is greatly extended, especially in the case of O3 where values of almost 4000ppm Zr and over 1000ppm Nb and Rb are recorded (BG3057/2 & 3115, table 5).

3. The Nb/Zr plot does not allow a clearcut distinction of Olkaria from Longonot data to be made.

Most of the O4 data fall in a very restricted field which is shared by the O5 data. The two Ndabibi samples plot amongst the least evolved compositions, near the common origin. Olkaria trachytes are relatively only weakly enriched in ICE and are most closely aligned with the O2 trend. Two of these samples (BG1366 & 1406), from the south part of the main ring feature, are mapped as O2 equivalents.

Fig.13 displays Nb/Zr data, listed in the appendix as Table reported by Macdonald and Bliss and derived from samples 3, collected in the Ndabibi and north and central Olkaria areas. These samples have been reclassified using the BGS stratigraphy. Also shown on Fig. 13 are the 02,04 & 03 trends derived by interpretation of Fig 12. Most of the samples plotted from Table 3 fall on one or other of the established trends except for several O4 samples. The O5 data again plots close to that of the bulk of 04 but shows a small relative depletion of Nb. Sp BL333, classified as 04 from its field relations plots at the less of the O2 trend and does not fit the simple evolved end geochemical/stratigraphic model considered here.

Table 3 includes 9 comendites from the Ndabibi area, all except one of which plot in a very restricted field at the least ICE enriched portion of the plot, and very close to the N samples on Fig. 12. It appears that the Ndabibi volcanism was of different character geochemically and, judging by the low ICE contents, was not particularly explosive. (See later discussion of Fig. 17).

Although Nb/Zr ratios clearly differentiate between phases of Olkaria activity there is complete overlap of Olkaria and Longonot data. A number of other ratios were therefore scanned and it was found that a plot of Th v Zr also separates the various Olkaria volcanic phases but in addition allows distinction of Longonot compositions.

These relationships are displayed in Fig. 14 & 15 for the same data set plotted on Fig. 12. Almost identical Ndabibi and Olkaria groupings and trends result but Longonot samples show a consistent much lower Th/Zr ratio compared to all the Olkaria trends.

Also plotted on Fig. 15 is the field enclosing all Th/Zr data listed in the recent UNDP report on Suswa (Tofarson, 1987). The Suswa sample suite is clearly more enriched in Th (and Nb - see Figs. 5.6 & 5.7 in BGS Rept. GENKEN/2) relative to Zr than is Longonot. Three samples of Rhyolite from the Limuru Trachyte Fmn. (T1) also fall on the Suswa trend displayed on Fig. 15.

Another similarity between the plots of Nb & Th v. Zr is that data sets defining the O3 trend show a marked inflection both the Th/Zr ~500 & 800ppm Zr. In this interval between ratio from ^1:4 to ~1:16 (equivalent figs for Nb/Zr are decreases 1:1 falling to 1:4), ie in that interval Nb & Th are apparently being fixed in the comendites at 4x the normal rate relative to Zr. This marked apparent variation is not exhibited by data defining any other of the trends shown on Fig. 15.

The extremely high absolute levels of ICE present in some 03 samples, particularly pyroclastics, is again demonstrated by Fig. 14. Table 5 includes values >240ppm Th and <43ppm U. In more general terms the available data indicates that the Olkaria complex rocks have a much higher absolute content of radioactive elements (RAE) than is the case at either Suswa or Longonot.

FURTHER CONSIDERATION OF THE TH & U DATA.

& U variation in the Longonot Aspects of Th and Olkaria are illustrated in Fig. 16 where 3 groups of complexes pumice 5, data, extracted from Table are plotted. A colinear relationship exists irrespective of overall composition or phase of volcanism. Relative depletion of RAE at Longonot is clear. The extremely enriched nature of many 03 compositions and relative restricted compositional variation within 04 are well displayed.

Compositional variation related to style of vulcanism is illustrated in Fig. 17, again using Th/U ratios as indicative of ICE content and therefore degree of evolvement. The sample suite plotted comprises all available BGS 03 data. The least evolved compositions are all from domes while the most evolved are all pumice. Intermediate compositions are either of pumice or lavaflows. It is concluded that there is a close relationship between ICE content (degree of magma evolution), and increasing volatility of eruption, ie ICE contents increase from highly viscous dome formation through lava emission to increasingly explosive eruptions including base surges. It is speculated that the most highly evolved compositions represent material from the upper most fractionated part of a large magma chamber.

U & Th CONTENT AND HEAT PRODUCTION

Radioactive elements are the ultimate source of earth heat. cocentrations of U & Th such as present at Olkaria may be High indications that this is an area of particularly thermally anomalous crust. Alternatively these high contents may indicate large highly fractionated magma chamber. the presence a In either case such areas would seem appropriate for geothermal resource investigation. It is not clear yet whether there is a positive relationship between geothermal potential and element content of host rocks as there is useing the radioactive Hot Dry (granite) Rock concept. Factors such as aquifer occurrence and permeability are probably of greater importance. aquifer applying such a criterion alone would suggest Nevertheless that Olkaria, including the Domes area, has a greater potential than Longonot or Suswa.

CONCLUSIONS

A)Longonot, and the Greater Olkaria Volcanic Complex each have distinctive geochemical characteristics. Longonot compositions are slightly oversaturated peralkaline trachytes, while those at Olkaria are comendites i.e, alkali rhyolites, but with some trachyte in the older phases of activity exposed at the surface: Another striking difference is the much higher concentration of incompatible elements (ICE) in the pyroclastics of the latter compared with Longonot.

B)At both Longonot and Olkaria there are subordinate volumes of basic and intermediate rocks exposed. At Ndabibi and Olkaria these range in composition from basalt through benmoreite to trachyte. At Longonot there is strong evidence that the intermediate rocks result from mixing and this is also suspected at Olkaria, except for the trachytes.

C)The bimodal nature of the magmatism at both volcances can be explained by invoking melting of large volumes of felsic crust due to the intrusion of a large basic body into that crust triggered by extensive tectonism consequent on the rifting process.

D)Data from Longonot is interpreted as indicating tapping of a large single magma chamber as the ICE ratios from all phases of volcanism are very similar.

E)At both Longonot and Olkaria the eruption style (effusive or pyroclastic) is closely linked to the ICE content - higher levels

of ICE accompanying more explosive eruptions. At Longonot the highest ICE levels accompany the most powerful events, explosive eruptions which are believed to have preceded caldera or crater collapse.

F)The relatively highly evolved nature of the most recent volcanicity at Longonot (Lt3) indicates that a fractionateing magma chamber still exists and that quite soon (100s yrs) a moderate sized pyroclastic eruption is to be expected.

G)The Olkaria data spread indicates that several distinctly differing magma batchs (chambers ?) were generated and accompany volcanicity of differing character. The occurrence of differing geochemistry could be explained by partial melting of the felsic fraction of the crust at separate times. The case for such is strengthened by recent determinations of high initial 87Sr/86Sr ratios in some Olkaria rocks (R. Macdonald, pers. com.).

G)There is a co-incidence of ring dome formation (O3), present day geothermal activity and high ICE, including radioactive element content, in the area E of the gorge - the Domes area.

H)The generally higher level of radioactive element concentration at Olkaria may be an important factor governing the localisation of a major heat anomaly at high levels in the crust and therefore the occurrence of geothermal activity.

REFERENCES

- GENKEN/2,1987.BGS Progress report: Geological and Geothermal mapping, by M.C.G.Clarke and D.G.Woodhall Prepared for UNDP/GOK TRM Feb 1987, unpub.
- Bliss, C.M., 1979. Geology and petrochemistry of the Naivasha area, nya Rift Valley. Unpublished PhD Thesis, Univ. of Lancaster, UK.
- Fisher, R.V. & Schmincke, H.-U. Pyroclastic rocks. Springer-Verlag
- LeBas, M.J., et al., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Jnl. Petrol. 27. pt: 3. 745-750.
- Scott,S.C. 1977. The volcanic geology and petrology of Mt. Longonot, central Kenya. Unpub. PhD. thesis, Univ. of Reading, UK.
- Scott,S.C., and Bailey, D.K. 1985? Coeruption of contrasting magmas and temporal variations in magma chemistry at Longonot Volcano, central Kenya. Bull. Volc.
- Tofarson, H. 1987. Geology and geothermics of the Suswa Volcano, Kenya. Unpub. Final report, UNDP/DTCD project Exploration for Geothermal Energy.

FIGURES -- 1-17 see following pages.

APPENDIX -- LISTINGS OF ROCK GEOCHEMICAL DATA FROM LONGONOT VOLCANO & THE GREATER OLKARIA VOLCANIC COMPLEX.

TABLE 1A

LONGONOT PYROCLASTICS - SAMPLE LISTING & MAPREFS

Sample	Map Ref	Sample type O
Lpi		
L383	BJ 266982	EARLY LP1 IGNIMBRITE, MT.MARGARET.
L387	BK 222060	PUMICE LAPILLI FROM LAG DEPOSIT.
L390	BK 222060	DARK IGNIMBRITE.
Lp2		
L380	BJ 195924	PUMICE LAPILLI, AIRFALL UNIT BELOW L378 (Lp3).
L372	BJ 105971	" " " Lp2
L371	BJ 105971	" " " Lp2
L343	BJ 261885	" UPPER PART Lp2 IGNIMBRITE
L342	BJ 261885	" LOWER PART Lp2 IGNIMBRITE
Lp3		
L355	BJ 108943	PUMICE BLOCKS, UPPER Lp3 IGNIMBRITE 1.
L378	BJ 195924	PUMICE BLOCKS, UPPER Lp3 IGNIMBRITE 1.
L302	BJ 156945	PUMICE LAPILLI, LOWER Lp3, S. CALDERA.
L306	BJ 156945	" BLOCKS, UPPER " , " .
L345	BJ 274862	PUMICE " TOP OF Lp3 IGNIMBRITE.
L329	BK 042034	PUMICE LAPILLI, LOWER PART Lp3 IGNIMBRITE
L324	BJ 260893	PUMICE LAPILLI, UPPER PART Lp3 IGNIMBRITE
L358	BJ 108943	WELDED, EUTAXITIC Lp3 IGNIMBRITE
L386	BK 222060	PUMICE LAPILLI, Lp3 IGNIMBRITE.
Lp4		
L334	BJ 105968	PUMICE FROM Lp4 UNIT JUST BELOW SURGE.
Lp5		
L359	BJ 119945	PUMICE LAPILLI, MIDDLE OF 4th BED.
L361		PUMICE LAPILLI, BASE OF 5th BED.
L364		PUMICE LAPILLI, TOP OF 5th BED.
L365		PUMICE LAPILLI, BASE OF 6th BED.
L316	BJ 114944	PUMICE LAPILLI, BASE OF 4th BED.
L367	BJ 115965	PUMICE LAPILLI, BASE OF 7th BED.
L309	BJ 114944	PUMICE LAPILLI, TOP OF 1st BED.
L313	n ·	PUMICE BLOCKS, BASE OF 3rd BED.
L308		PUMICE LAPILLI, MIDDLE OF 1st BED.
L312		PUMICE LAPILLI, UPPERPART OF 2nd BED.
L318	BJ111943	PUMICE LAPILLI, BASE OF 1st BED.
Lp8		· · · · · · · · · · · · · · · · · · ·
L331	BK 042034	PUMICE FROM Lp8 OVERLYING IGNIMBRITE
L337	CRATER	PUMICE BLOCKS FROM LOWER LDB IN CRATER WALL

file d:analist

1

•?

TABLE 1B

S.C.SCOTT 1987 Data LONGONOT PYROCLASTICS (BGS Fmns. Lp1 & 2).

Sp. No	Lp1 D L383	L387	L390	Lp2 L380	L372	L371	L343	L342	
5i02	61.73	 59.75	61.95	61.65	61.92	61.95	60.29	60.72	
Ti 02	0.92	0.44	0.63	0.62	0.62	0.62	0.56	0.57	
A1203	15.86	15.23	15.27	15.66	15.75	15.22	13.57	13.58	
FeO				4.7	4.47		3.64		
Fe203					1.76		5.68		
" (T)	7.95	8.23	7.76	6.85	6.74	7.15	9.73	9.89	
MnO	0.41	0.35	0.32	0.33	0.33	0.32	0.44	0.45	
MgO	0.58	0.27	0.42	0.42	0.33	0.33	0.18	0.19	
CaO	1.21	0.93	1.26	1.12	1.13	0.97	1	1.03	
Na2O	6.7	8.89	7.12	7.58	9.19	8.02	6.83	8.14	
K20	4.86	4.61	5.06	5.13	5.16	4.96	4.79	4.58	
P205	0.17	0.05	0.06	0.08	0.08	0.08	0.06	0.06	
TOTAL									
TRACE	ELEMENTS	ppm							
Rb	108	211	281	122	122	141	171	171	
Sr	70	1	10						
Ba	171			20	21				
Zn	249	310	312	225	230	262	351	370	
Y	109	155	230	95	96	112	140	143	
Ce	207	301	429	177	199	221	267	261	
Nb	183	333	533	178	183	216	295	296	
Zr	576	1327	2072	700	703	846	1065	1102	
٧	44	21	22	29	30	26	20	24	76
РЬ	19	33	40	20	18	22	26	30	
Th	12	31	51	16	16	20	25	28	

file a:/t-ao40

ě.

TABLE 1B contd.

Sp. No	Lp3 L355	L378	L302	L306	L345	L329	L324	L358	L386	
Si02	61.23	61.88	61.08	61.93	60.58	60.75	60.01	62.76	59.09	
Ti 02	0.62	0.62	0.62	0.63	0.57	0.56	0.57	0.58	0.51	
A1203	15.48	15.68	15.5	15.69	15.42	15.65	15.31	15.26	16.54	
Fe0	2.97									
Fe203										
" (T)	6.79	6.89	6.85	6.91	8.1	8.13	8.08	7.38	7.95	
MnO	0.35	0.3	0.32	0.3	0.38	0.37	0.35	0.36	0.36	
MgO	0.38	0.33	0.36	0.38	0.31	0.31	0.32	0.24	0.27	
CaO	1.11	1.09	1.18	1.08	0.99	0.99	1.2	0.9	0.85	
Na20	7.93	7.75	8.04	7.01	9.23	9.4	8.97	8.31	6.98	
K20	5.17	5.26	5.68	5.35	4.87	4.96	5.11	4.97	4.33	
P205	0.09	0.09	0.09	0.11	0.08	0.08	0.08	0.06	0.04	
Total										
TRACE	ELEMENTS	ppm								
RЬ	122	126	134	126	168	170	160	171	236	
Sr									23	
Ba	15		12							
Zn	223	229	232	230	328	323	312	324	359	
Y	95	96	96	114	122	122	120	135	207	
Ce	191	215	201	218	243	252	261	280	403	
Nb	176	183	187	186	255	258	251	268	434	
Zr	684	698	704	708	928	948	945	1064	1855	
v	25	28	31	25	24	24	24	24	23	
РЬ	22	24	14	14	26	27	23	27	39	
Th	17	15	17	18	21	23	19	28	42	

S.C.SCOTT 1987 Data LONGONOT PYROCLASTICS (BGS Fmn. Lp3).

TABLE 1B contd≻

	Lp4 L334	Lp5 L359	L361	L364	L365	L316	L367	L309	
Si02	59.55	61.39	61.96	62.24	61.99	62.22	62.08	60.91	
Ti 02	0.37	0.5	0.5	0.49	0.49	0.47	0.49	0.52	
A1203	15.81	14.25	14.09	14.18	13.9	13.7	13.58	16.1	
FeO		4.55		3.72	4.33				
Fe203		2.72		3.93	3.37				
" (T)	7.42	7.78	7.87	8.07	8.19	8.35	8.57	6.75	
MnO	0.35	0.35	0.35	0.36	0.38	0.33	0.35	0.27	
MgO	0.13	0.12	0.16	0.13	0.15	0.12	0.17	0.21	
CaO	0.8	0.94	0.9	0.94	0.85	0.81	0.85	1.03	
Na2O	9.35	7.68	7.65	7.78	7.91	7.45	8.29	7.51	
K20	4.7	4.81	4.79	4.75	4.73	4.68	4.69	4.93	
P205	0.02	0.05	0.04	0.04	0.04	0.03	0.05	0.06	
Total									
TRACE	ELEMENTS	ppm							
Rb	295	158	159	168	180	189	197	183	
Sr									
Ba									
Zn	438	274	271	305	305	357	350	312	0
Y	252	127	128	150	144	166	156	146	
Ce	484	240	239	237	248	296	307	300	
Nb	517	229	223	246	261	280	288	298	
Zr	2337	900	914	987	1073	1183	1187	1248	
v	12	25	23	22	20	15	21	20	
РЬ	46	26	23	29	27	29	26	30	.5
Th	60	21	18	21	23	26	27	27	

S.C.SCOTT 1987 Data LONGONOT PYROCLASTICS (BGS Fmns. Lp4 & 5).

3.6.30	.011 1707	Data L		TINDELHOITED		ns. cpoce	
	Lp5 c L313	ontd. L308	L312	L318	Lp8 L331	L337	
Si02	62.35	59.48	60.8	60.01	62.02	62.39	
Ti02	0.47	0.43	0.42	0.43	0.61	0.59	
A1203	14.2	15.15	14.8	14.97	13.86	12.99	
FeO							
Fe203							
" (T)	8.39	7.34	8.09	7.66	8.44	9.32	
MnO	0.36	0.32	0.34	0.36	0.35	0.38	
MgO	0.06	0.12	0.08	0.11	0.16	0.14	
CaO	0.93	1.26	0.82	0.78	1.08	1.01	
Na20	7.82	7.84	8.07	8.17	8.03	8.21	
K20	4.68	4.69	4.61	4.7	4.7	4.53	
P205	0.03	0.03	0.04	0.03	0.05	0.06	
TRACE	ELEMENTS	ppm					
Rb	197	245	253	274	151	178	
Sr							
Ba							
Zn	369	373	415	404	297	353	
Y	165	212	221	225	140	156	
Ce	294	413	411	429	255	293	
Nb	304	455	444	487	247	282	
Zr	1271	1888	1843	2037	986	1183	
v	19	14	15	14	27	24	
Pb	33	36	36	44	26	27	
Th	26	41	39	44	22	22	

S.C.SCOTT 1987 Data LONGONOT PYROCLASTICS (BGS Fmns. Lp5contd. & Lp8).

-

TABLE 2A

LONGONOT LAVAS - SAMPLE LISTING AND MAPREFS

.

LONGONOT	LAVA PILE (Lt:	2) LONGONOT	NORTHERN PLAIN LAVAS (LMx2)
L175	BJ 229914	L107a	BK 134096
L70	BJ 213940	L107b	11
L99	BJ 202940	L111a	BK 101088
L67	BJ 217953	KL13a	BK 097085
L65c	BJ 224956	L164	BK 104060
L57	BJ 214990	L105a	BK 146059
L148	BJ 120956	L104	BK 147053
L17	BJ 185028	KL18	BK 148050
L73	BJ 200957	KL19	BK 140050
L124	BJ 174948		
L45	BK 208005		
L87b	BJ 199942	LONGONOT	FLANK FLOWS(Lt3)
L172	BJ 224886	L33	BK 157018
L170	BJ 208901	KL4	BK 151029
L155	BJ 195925	L31a	BK 159020
L154	BJ 196914	L31b	п
L54	BJ 202988	L145	BJ 150969
L71	BJ 203965	L130	BJ 159974
L149a	BJ 146978	KL1a	BJ 141958
L149b	н	KL1b	п
L125	BJ 156955	L146	BJ 156974
L20	BK 168015	BG 1427	BK 151032
L14a	BK 171019		
KL2	BK 124009	LONGONOT	PIT-CRATER LAVAS (Lmx3)
KL15	BK 124039	KL7	BK 174003
KL11	BK 188008	L183b	BJ 167998
L26b	BK 174015	L220	11
		L221	н
		BG1619	BJ 158991
		BG1620	BJ 162983

file d:mapref1-h40

2

•

TABLE 2B

Sp No.	L175	L70	L99	L67	L65c	L57	L148	L17	L73	
Si02	62.17	62.62	62.26	62.48	61.98	62	62.71	62.72	62.6	
Ti 02	0.69	0.69	0.69	0.69	0.7	0.67	0.64	0.63	0.65	
A1203	15.48	15.49	15.55	15.57	15.71	15.54	15.62	14.89	14.49	
FeO									3.69	
Fe203									3.97	
FeO(T)	6.83	6.86	6.94	6.76	6.84	6.93	6.63	7.09	7.29	
MnO	0.25	0.25	0.25	0.27	0.25	0.25	0.26	0.27	0.21	
MgO	0.67	0.48	0.44	0.45	0.52	0.42	0.33	0.34	0.32	
CaO	1.44	1.37	1.36	1.37	1.41	1.38	1.23	1.36	1.46	
Na20	6.32	6.33	6.64	6.87	6.69	6.61	6.97	6.91	7.31	
K20	4.95	4.97	5.01	4.89	5.03	5.06	5.09	4.77	4.96	
P205	0.15	0.14	0.15	0.1	0.15	0.12	0.1	0.09	0.07	
Loss**	0.41	0.23	0.09	-0.02	0.1	0.34	0.83	0.47		
H20+									0.72	
F									0.24	
C1									0.18	
TOTAL	99.36	99.43	99.38	99.43	99.38	99.32	100.41	99.44	100.87	
0=F+C1									-0.14	
TOTAL	99.36	99.43	99.38	99.43	99.38	99.32	100.41	99.44	100.73	
TRACE	ELEMENTS	ppm								
Rb	104	111	9 B	98	105	109	129	122	124	
Sr	10	8	7	9	8	7				
Ba	248	254	233	251	248	173		<50		
Zn	167	174	176	166	169	179	192	209	211	
Yt	76	80	80	85	82	86	83	98	97	
La	86	94	96	89	88	95	111	116	115	
Ce	179	171	176	184	176	187		211	224	
Zr	590	610	589	590	575	632	646	749	740	4
Nb	142	131	130	140	138	152	151	169	175	
Ni										

S.C.SCOTT Thesis data LONGONOT LAVA PILE (BGS Formation Lt2)

** on making fused disc

file d:/s-b140

•

Sp No.	L124	L45	L87b	L172	L170	L155	L154	L54	L71	L149a
Si02	62.65	62.82	61.27	62.03	62.58	62.12	62.82	62.86	62.74	62.42
Ti 02	0.62	0.62	0.61	0.62	0.62	0.6	0.61	0.59	0.59	0.58
A1203	14.72	14.77	13.87	14.32	14.43	14.33	14.49	13.91	13.69	13.1
FeO										6.62
Fe203										2.05
FeO(T)	7.41	7.41	7.43	7.61	7.63	7.42	7.55	8.31	8.21	8.46
MnO	0.28	0.28	0.28	0.29	0.28	0.28	0.28	0.32	0.32	0.33
MgO	0.21	0.24	0.17	0.16	0.18	0.17	0.18	0.17	0.14	0.13
CaO	1.11	1.29	1.07	1.15	1.17	1.08	1.2	1.12	1.05	1.01
Na2O	7.17	6.55	8.93	7.6	7.03	7	6.99	7.05	7.52	8.32
K20	4.96	4.88	4.74	4.73	4.79	5.68	4.88	4.67	4.76	4.6
P205	0.05	0.06	0.15	0.09	0.08	0.09	0.09	0.05	0.04	0.07
Loss**	0.21	0.46	0.56	0.58	0.5	0.56	0.3	0.13	0.14	
H20+										0.22
F										0.33
C1										0.26
TOTAL	99.39	99.4	99.18	99.27	99.29	99.33	99.39	99.18	99.2	100.04
0=F+C1				9						-0.2
TOTAL	99.39	99.4	99.18	99.27	99.29	99.33	99.39	99.18	99.2	99.84
TRACE E	LEMENTS	ppm								
Rb	144	146	132	132	138	141	149	172	168	156
Sr										
Ba	<50	<50	< 50	<50	<50	< 50	<50	<50	<50	< 50
Zn	227	226	230	222	218	231	226	277	275	277
Yt	107	109	108	102	108	113	109	129	133	136
La	128	125	133	128	130	133	133	161	154	159
Ce	233	239	233	239	242	240	246	294	288	302
Zr	815	831	835	871	882	857	878	993	1015	1041
Nb	191	191	192	192	206	200	205	232	235	233
Ni										

S.C.SCOTT Thesis data (BGS Formation Lt2 contd.)

.

Sp No.	L149b	L125	L20	L14a	KL2	KL15	KL11	L26b	
Si02	63.01	62.63	62.8	62.96	62.26	62.26	62.46	62.8	
Ti02	0.58	0.65	0.6	0.6	0.61	0.6	0.6	0.61	
A1203	13.74	13.5	13.91	13.82	12.72	12.78	12.67	12.96	
FeO					6.92	7.06	6.75	4.57	
Fe203					2.01	1.87	2.28	4.96	
FeO(T)	8.31	8.7	8.86	8.76	8.72	8.71	8.79	8.99	
MnO	0.32	0.34	0.35	0.35	0.31	0.31	0.31	0.35	
MgO	0.16	0.18	0.13	0.14	0.12	0.12	0.12	0.13	
CaO	1.08	1.2	1.12	1.13	0.98	0.95	0.98	1.03	
Na2O	7.17	7.1	6.77	7.05	8.54	8.61	8.53	7.33	
K20	4.55	4.63	4.72	4.38	4.63	4.6	4.6	4.7	
P205	0.04	0.06	0.05	0.06	0.07	0.07	0.07	0.05	
Loss**	0.25	0.09	0.5	-0.11					
H20+					0.15	0.14	0.1	0.46	
F					0.36	0.35	0.36		
C1					0.27	0.27	0.27		
TOTAL	99.2	99.08	99.09	99.36	99.93	100.02	100.1	99.95	
0=F+C1					-0.21	-0.21	-0.21		
TOTAL	99.2	99.08	99.09	99.36	99.72	99.81	99.89	99.95	
TRACE E	LEMENTS	ppm							
Rb	168	180	168	156	174	170	172	154	
Sr	5	11							
Ba	<50	<50	<50	<50	<50	<50	<50	< 50	
Zn	274	285	299	302	281	281	283	297	
Yt	128	133	148	142	120	140	143	144	
La	158	164	164	175	172	173	174	173	
Ce	296	304	320	316	314	316	322	321	4
Zr	1016	1052	1124	1125	1066	1080	1096	1108	
Nb	239	249	254	263	258	258	258	257	
Ni									

S.C.SCOTT Thesis data (BGS Formation Lt2 contd.)

٠.,

5.0.	SCUII Thes	is data	olus B	G 1427	K FLUWS	(865 F	ormatio	n Ltsi		
Sp N	o. L33	KL4	L31a	L31b	L145	L130	KL1a	KL1b	L146	BG1427
Si02	61.97	61.43	61.57	61.53	61.86	61.82	61.21	61.48	62.19	62.63
Ti02	0.67	0.28	0.67	0.68	0.69	0.67	0.68	0.67	0.66	0.69
A120	3 12.92	12.99	12.98	13.22	13.05	12.97	12.96	13.03	13.16	12.7
FeO	7.14	7.2					7.28	5.51		5.13
Fe20	3 1.68	2.09					2.01	3.96		5.28
FeO(T) 8.99	9.08	8.89	8.99	8.89	8.94	9.08	9.06	8.89	
MnO	0.36	0.33	0.35	0.35	0.35	0.36	0.33	0.34	0.35	0.4
MgO	0.23	0.22	0.24	0.24	0.34	0.24	0.22	0.22	0.29	0.43
CaO	1.3	1.17	1.22	1.25	1.71	1.26	1.19	1.19	1.46	1.32
Na20	7.98	8.16	8.43	7.48	6.74	8.08	8.33	7.5	6.79	6.31
K20	4.64	4.76	4.64	4.75	4.67	4.62	4.77	4.84	4.69	5.03
P205	0.13	0.09	0.13	0.11	0.12	0.12	0.09	0.09	0.11	0.07
Loss	** -0.25		-0.21	0.29	0.53	-0.14			0.4	
H20+		0.1					0.1	0.16		
F		0.32					0.33	0.3		
C1		0.25					0.25	0.15		
TOTA	L 99.27	99.38	99.33	98.89	98.95	98.94	99.75	99.44	98.99	99.99
0=F+	C1	-0.19				9C	-0.19	-0.16		
TOTA	L 99.27	99.19	99.33	98.89	98.95	98.94	99.56	99.28	98.99	
TRAC	E ELEMENTS	ppm								
RЬ	182	155	171	161	156	171	165	162	159	159
Sr	5	Т	9	8	8	.12	Т	Т	Т	3
Ba	<50	<50	< 50	<50	<50	<50	<50	<50	<50	58
Zn	261	260	268	267	264	266	265	261	260	
Υt	130	136	136	139	136	137	126	131	132	121
La	156	161	159	162	161	156	159	157	156	
Ce	291	294	305	301	303	297	288	297	287	h.
Zr	1070	1023	1069	1069	1070	1051	1017	1031	1041	989
NЬ	242	245	249	245	250	245	241	236	239	223
Ni										

S.C.SCOTT Thesis data LONGONOT FLANK FLOWS (BGS Formation Lt3)

Th=26

4

.

....

s.c.scc)TT Thes PLUS tw	sis data No new B	LONGON GS anal	NOT PIT	CRATER LAVAS	(BGS For	mation	Lmx3)	
Sp No.	KL7	L183b	L220	L221	BG1619	BG1620			
Si 02	55.78	55.99	56.25	55.28	54.94	55.65			
T102	1.44	1.66	1.67	1.75	2.01	1.61			
A1203	14.76	14.72	14.69	14.67	14.25	14.46			
FeO					8.16	7.51			
Fe203					2.58	2.54			
FeO(T)	9.4	10.59	9.44	9.6					
MnO	0.22	0.23	0.24	0.22	0.26	0.23			
MgO	3.84	2.64	2.43	2.94	3.23	3.68			
CaO	4.48	4.87	4.88	5.27	5.41	4.77			
Na20	5.42	5.81	5.47	5.31	5.6	5.78			
K20	3.35	3.36	3.41	3.26	3.09	3.38			
P205	0.35	0.42	0.42	0.46	0.48	0.39			
Loss**		0.17	-0.26	-0.16					
H20+	0.1								
F	0.12								
C1	0.04								
TOTAL	99.63	100.46	98.64	98.55	100.01	100.01			
0=F+C1	-0.06								
TOTAL	99.57	100.46	98.64	98.55					
TRACE E	LEMENTS	3 ррм							
Rb	52	80	80	75	74	74			
Sr	261	291	310	329	354	317			
Ba	574	554	435	486	525	589			
Zn	167	171	165	154					
Yt	66	78	72	68	55	57			
La	75	79	71	69					
Ce	145	159	150	157					
Zr	472	539	532	496	416	435			
Nb	101	108	87	97	83	88			
	49	45	45	52					

Sp No.	L107a	L107b	Liiia	KL13a	L164	L105a	L104	KL18	KL19
Si02	61.2	61.6	60.6	60.7	60.27	61.39	60.59	60.93	61.13
Ti 02	0.95	0.89	0.99	1.04	1.03	0.91	0.99	1.02	0.66
A1203	16.47	16.6	16.68	15.69	16.92	16.41	16.49	15.93	15.9
FeO				5.59				4.68	5.44
Fe203				1.21				2.22	1.17
FeO(T)	6.17	6.18	6.23	6.68	6.36	6.19	6.26	6.67	6.49
MnO	0.23	0.23	0.22	0.22	0.2	0.22	0.23	0.23	0.23
MgO	0.59	0.59	0.8	0.89	0.94	0.6	0.79	0.89	0.54
CaO	1.71	1.68	2.21	2.32	2.65	1.82	2.15	2.34	1.64
Na20	6.46	6.15	6.21	6.41	5.82	5.92	6.48	5.95	6.83
K20	5.08	5.15	4.97	5.02	4.78	5.15	4.94	5.01	5.27
P205	0.33	0.23	0.35	0.29	0.32	0.34	0.37	0.21	0.19
Loss**	0.22	0.14	0.06		-0.02	0.5	0.05		
H20+				0.37				0.3	0.1
F				0.11			0.1	0.08	0.1
C1				0.06			0.07	0.02	0.06
TOTAL	99.41	99.44	99.32	99.91	99.27	99.45	99.51	99.8	99.26
0=F+C1				0.06			0.06	0.04	0.05
TOTAL	99.41	99.44	99.32	99.85	99.27	99.45	99.45	99.76	99.21
TRACE	ELEMENTS	ppm							
Rb	66	58	54	48	44		60	42	69
Sr	16	Т	41	48	78	15	41	48	5
Ba	432	454	500		516	377	507	535	397
Zn	128	126	112	119	134	130	112	132	123
Yt	45	51	47	42	49	47	45	55	46
La	43	64	48	58	53	52	50	60	62
Ce	109	113	105	98	110	115	105	107	111
Zr	295	298	276	260	267	300	280	280	303
Nb	76	72	62	67	63	92	64	68	75
Ni	34	40	42	34		36	4 1		

S.C.SCOTT Thesis data LONGONOT N. PLAIN LAVAS (BGS Formation Lmx2).

٩

TABLE 3A

.

MALDUNALD & BLISS DAIA	_	+	01	11	10	¢.	TH		. ר כ
------------------------	---	---	----	----	----	----	----	--	-------

٩

Sp.No.	M	AP REF	ROCK TYPE
N (NDABI		MENDITES)	
KN13	AK	942100	OBSIDIAN BLOCKS IN AIREALL
BL 002	AK	942100	OBSIDIAN FLOW
1436	ΔK	958107	
1795		020114	PUMICEOUS OPSIDIAN SLOW
117		720110	FONICEOUS OBSIDIAN FLUW
2105	HK	743183	OPOIDIAN SLOW
2100	HK	748120	UBSIDIAN FLUW
231a	AK	921118	PUMICEUUS UBSIDIAN DUME
184a	AK	924104	CUMENDITE DUME
148a	AK	932085	" (MULLA)
02			
4105	AK	998085	OBSIDIAN FLOW
583b	BK	035080	N N
03			
372	AK	959026	COMENDITE IN EXPLOSION CRATER
570	BK	035061	OBSIDIAN FLOW
504	BK	036039	н н
565	BK	030053	H H
377	AK	958054	AIRFALL PUMICE
361a	AK	980070	и и
04			
333	AK	946072	OBSIDIAN FLOW
524	BK	069039	AIRFALL PUMICE
511d	BK	062054	OBSIDIAN FLOW
KN19	BK	076043	" "
551	BK	062035	0 U .
534d	BK	059054	ATREALL PUMICE
KN21	BK	079017	OBSTRIAN FLOW
KN20	BK	081025	
KN2	BK	001020	0 D
KNA	DK	057010	
517	DK	013018	
401	DK	064031	CONFUNTE
801 (0E	DK	036037	
803	BK	064049	UBSIDIAN FLOW
515	BK	042029	
530	BK	0//02/	
517	BK	018017	AIRFALL PUMICE
3996	AK	971042	OBSIDIAN FLOW
3966	AK	981047	51 13
346	AK	990033	и и
376	AK	955046	U U
05			
KN9	AK	980039	u u
312b	AK	982022	AIRFALL PUMICE
KN6	AK	977025	OBSIDIAN BLOCK IN AIRFALL
KN18	BK	006007	OBSIDIAN FLOW
339c	AK	969001	AIRFALL PUMICE
301a	BK	007006	OBSIDIAN FLOW
file d:	listm	ac-h55	Annual and an

TABLE 3B

•

BGS Fm MAC Fm Sp.No	N Ptb2 KN13	N P1c1 002	N Plc1 143b	N Plc1 179a	N Plc1 117	N Plc1 210b	N Plc1 231a	N Plci 184a	N Plc1 148a	
SiO2 TiO2 A12O3 Fe2O3	75.9 0.14 12.13 0.79	75.2 0.17 12.11 0.83	74.7 0.15 12.11 0.94	75.4 0.18 12.09 0.87	75.2 0.2 12.17 0.88	74.9 0.15 12.11 0.92	74.9 0.26 12.09 0.93	75 0.23 12.33 2.25	75.7 0.26 11.09 2.65	
FeO MnO MnO	1.11 0.04	1.06	1.05	0.97	1.04	1.02	0.98	0.03	0.04	
CaO Na20	0.39	0.44	0.65	0.46	0.53	0.48	0.43	0.17	0.26	
P205 H20+	4.89 0 <0.10	4.73 nd 0.06	4.75	4.73 nd 0.1	4.71 nd 0.12	4./5 nd 0.1	4./4 nd 0.17	nd 0.13	4.52 nd 0.04	
H2O- F C1	- 0.32 0.15	0.12 0.37 0.22	0.22 0.23 0.16	0.21 0.44 0.13	0.12 0.13 0.08	0.2 0.48 0.16	0.06 0.27 0.18	0.09 nil 0.03	0.1 0.19 0.12	
O=F,C1 TOTAL	0.17 100.32	0.21 99.8	0.13 99.7	0.22	0.08 99.91	0.24 99.73	0.15 99.5	0.01 99.87	0.1 99.6	
TRACE	ELEMENTS	(SELEC	TED) 285	288	279	287	293	254	740	
Sr Ba	- 9	6.15	7.852	- 8	- 15	- 15	- 10	6.025 23	1.665	
Zn Y Ce	118	129 108 142	135 105 143	113 109 141	115 112 143	116 109 143	113 111 143	65 77 205	171 149 158	
Nb Zr Pb	202 393 33	200 439 28	211 444 27	204 447 31	211 450 28	207 450 29	210 462 29	190 502 19	289 891 36	
Th U	-	38.8 7.1	39.5	38.1	38.7 6.8	38.8 7.5	39.3 7.8	37.2 5.8	52.1 9.9	

MACDONALD & BLISS DATA - NDABIBI AREA

.

file a:blissdata-az41

•

, TABLE 3B

BGS Fm MAC Fm Sp.No	02 P1c2 410b	02 P1c2 583b	03 Ptb2 372	03 P1c2 570	03 (Gorge 504	0.3 Fm) 565	0p3 Ptp2- 377	Op3 -G.Farm 361a	
Si 02	73.7	73.8	76.4	73.1	72.9	72.5	72	69.9	
1102	0.23	0.22	0.16	0.33	0.23	0.24	0.18	0.24	
A1203	10.64	10.64	11.41	10.52	10.44	10.32	10.54	11.15	
FeZUS	1.93	1.72	1.89	1.93	1.9	1.93	-		
reu	1.62	1.81	0.08	2.15	2.21	2.25	4.10*	4.5/*	
mnu Ma0	0.04	0.05	0.02	0.04	0.08	0.08	0.09	0.12	
ngu Ca0	0.01	0.01	0.01	0.02	0.02	0.02	0.15	0.06	
	5 44	5 5	4 34	5 74	5.54	5 04	7 04	0.88	
Na20 K20	J.40 A AA	J.J A A1	4.54	J./4 A A5	1.14	J.00 1 30	J.00 1 70	4.00	
P205	7.77 pd	nd L	0 02		4.00 nd	4.37	4.37	4.33	
H205	0.19	0 09	0.02	0 13	0 27	0.23	7 70	3 73	
H20-	0.07	0 11	0.01	0.13	0.07	0.23	3.30	3.73	
F	0.57	0 71	0.44	0.91	0.07	0.03	0 72	1 11	
С1	0.38	0.31	0 1	0 44	0 47	0.75	0.72	1.11	
0=F,C1	0.33	0.37	0.21	0.48	0.49	0.51	0.3	0.46	
TOTAL	99.16	99.23	99.72	99.5	99.03	98.89	99.48	99.93	
TRACE E	ELEMENTS	(SELEC	TED)						
Rb	439	429	387	593	602	637	606	653	
Sr	0.875	1.079	-	1.586	-	1.253	-	15.451	
Ba	< 1	<1	3	1	2	3	<1	1	
Zn	376	396	107	349	394	448	446	481	
Y	240	246	149	275	276	296	336	394	
Ce	120	121	139	288	300	310	-	-	h
Nb	346	346	281	531	541	590	599	696	
Zr	1859	1905	489	1832	1882	2018	2170	2573	
Pb	52	54	27	62	62	68	88	95	
Th	69.5	77.7	55.1	108	111	124	-	-	· ·
U	11.9	16.2	10.1	22.9	22.5	25.1	-	-	

MACDONALD & BLISS DATA - OLKARIA COMPLEX

file a:blissdata

. .

TABLE 3B

BGS Fm MAC Fm Sp.No	04 P1c2-3 333	0p4 Ptp2 524	04 P1c2-3 511d	04 P1c2 KN19	04 P1c2 551	0p4 Ptp2 534d	04 Ptp2 KN21	04 P1c2 KN20	04 P1c2 KN2	04 P1c2 KN4
Si 02	74.9	74.8	74.5	74.6	74.1	74.6	74.8	74.2	74.5	74.3
Ti 02	0.35	0.19	0.3	0.18	0.21	0.19	0.18	0.18	0.18	0.16
A1203	10.81	10.94	10.75	10.67	10.67	10.66	10.46	10.62	10.42	10.36
Fe203	1.36	-	1.41	1.38	1.87	-	1.51	1.61	1.55	1.61
FeO	1.82	3.26*	1.77	1.89	1.87	3.58*	2.04	2	2.05	2.02
MnO	0.05	0.07	0.04	0.06	0.05	0.09	0.06	0.06	0.06	0.06
MgO	0.03	0.17	0.02	0.01	0.01	0.17	0.01	0.01	0.01	0.01
CaO	0.36	0.2	0.26	0.18	0.25	0.19	0.14	0.15	0.14	0.14
Na20	5.11	3.8	5.2	5.25	5.31	4.06	5.53	5.7	5.49	5.83
K20	4.6	4.36	4.55	3.51	4.47	4.23	4.42	4.37	4.44	4.43
P205	0.04	0.03	0.01	0	nd	0.02	0	0	0	0
H20+	0.09	1.82	0.03	0	0.15	2.21	0	0	0	0
H20-	0.24	-	0.17	-	0.06	-	-	-	-	-
F	0.3	0.4	0.49	0.55	0.59	0.49	0.62	0.65	0.64	0.61
C1	0.23	-	0.26	0.28	0.22	-	0.15	0.38	0.33	0.35
0=F,C1	0.18	0.17	0.27	0.3	0.3	0.2	0.3	0.36	0.34	0.34
TOTAL	100.11	99 . 87	99.49	99.26	99.53	100.29	99.62	99.57	99.47	99.54
TRACE	ELEMENTS	(SELE	CTED)							
Rb	233	314	328	322	357	374	383	382	396	394
Sr	3.399	-	2.594	-	2.334	-	-	-		**
Ba	19	3	2	1	3	<1	1	1	3	3
Zn	184	252	253	253	274	307	307	307	312	314
Y	130	171	158	176	177	217	219	218	224	223
Ce	258	-	242	-	101	-	-	-	-	
Nb	203	278	273	297	305	296	310	301	315	312
Zr	889	1026	1065	1083	1169	1356	1384	1389	1398	1413
РЬ	29	43	38	42	39	48	51	50	49	50
Th	36.4	-	50.8	-	59	-	-	-	-	-
U	6.6	-	12.7	-	13.8	-	-	-	-	

٠

MACDONALD & BLISS DATA - OLKARIA COMPLEX

file a:blissdata

1-

BGS Fm	04	04	04	04	04	Op4	04	04	04	04
MAC Fm	P1c2	Plc3	P1c2	P1c3	P1c2	Ptp2	R1c4	P1c2	R1c4	R1c4
Sp.No	512	601	605	515	530	517	399b	396b	346	376
Si02	73.5	74.9	74.5	74.1	73.9	74.2	73.3	73.5	73	73.5
Ti 02	0.34	0.3	0.22	0.3	0.27	0.18	0.22	0.23	0.29	0.22
A1203	10.59	10.62	10.57	10.64	10.55	10.59	10.45	10.46	10.32	10.23
Fe203	1.67	3.09	1.64	1.67	1.71	-	1.61	1.66	1.89	1.87
FeO	1.93	0.71	1.98	2	1.98	3.55*	2.01	1.99	2.3	2,27
MnO	0.04	0.06	0.06	0.06	0.05	0.09	0.04	0.05	0.06	0.05
MgO	0.03	0.02	0.01	0.01	0.01	0.08	0.01	0.02	0.01	0.02
CaO	0.55	0.21	0.21	0.22	0.17	0.17	0.19	0.59	0.21	0.18
Na2O	5.57	4.83	5.53	5.39	5.68	4.21	5.56	5.52	5.9	5.95
K20	4.46	4.49	4.36	4.41	4.48	4.14	4.45	4.44	4.41	4.41
P205	0	nd	nd	nd	0.01	0.02	0.01	0.01	0.02	nd
H20+	0.26	0.08	0.17	0.18	0.09	2.2	0.6	0.52	0.03	0.03
H20-	0.15	0.02	0.04	0.03	0.14	-	0.13	0.18	0.19	0.2
F	0.8	0.39	0.66	0.76	0.59	0.47	0.62	0.55	0.82	0.67
C1	0.35	0.07	0.41	0.42	0.35	-	0.32	0.38	0.37	0.38
0=F,C1	0.45	0.18	0.37	0.41	0.33	0.2	0.33	0.32	0.43	0.37
TOTAL	99.79	99.61	99.99	99.78	99.65	99.7	99.19	99.78	99.39	99.61
TRACE	ELEMENTS	(SELEC	TED)							
Rb	408	433	416	400	398	381	403	398	471	486
Sr	-	-	-	1.919	-	-	1.513	-	-	2.029
Ba	1	1	1	2	1	0.5	1	1	3	3
Zn	321	326	332	289	302	335	333	323	408	421
Y	207	196	209	221	219	235	222	224	258	259
Ce	110	268	111	279	113	-	259	271	345	348
Nb	358	347	361	363	362	311	357	356	446	457
Zr	1419	1426	1459	1469	1488	1529	1577	1590	1892	1909
РЬ	48	43	50	50	50	54	52	51	60	62
Th	70.9	72.7	70.1	72.3	72.7	-	66.9	69.7	88.6	90.6
U	15.2	17.5	17	15.2	15.2	-	13.6	14.1	16.1	17.1

MACDONALD & BLISS DATA - OLKARIA COMPLEX

file a:blissdata

e.

BGS Fm MAC Fm Sp.No	05 R1c5 KN9	Op5 Rt5 312b	05 Rt5 KN6	05 R1c5 KN18	0p5 Rt5 339c	05 R1c5 301a	
Si02	74.7	75.5	74.5	74.6	75.4	74	
Ti 02	0.18	0.18	0.18	0.18	0.19	0.2	
A1203	10.47	10.94	10.38	10.53	10.95	10.44	
Fe203	1.58		1.58	1.55		1.61	
FeO	2.05	3.47*	2.05	2.05	3.68*	2.03	
MnO	0.06	0.08	0.06	0.06		0.05	
MgO	0.01	0.13	0.01	0.01	0.1	0.02	
CaO	0.14	0.17	0.14	0.15	0.21	0.18	
Na20	5.48	4.71	5.45	5.68	4.59	5.62	
K20	4.44	4.49	4.45	4.39	4.47	4.54	
P205	0	0.03	0	0.01	0.03	0.02	
H20+	0	0.85	0.12	0	1.52	0.11	
H2U-	~	~ ~ ~	~ ~ ~	~ ~ ~		0.21	
F	0.64	0.4/	0.62	0.64	0.48	0.6	
	0.31	~ ~	0.33	0.37		0.36	
U=F,C1	0.34	0.2	0.34	0.35	0.2	0.34	
TOTAL	99.72	100.82	99.53	99.87	101.42	99.65	
TRACE E	LEMENTS	(SELEC	TED)				
Rb	389	384	387	393	391	407	
Sr	-	-		-	-	1.59	
Ba	1	2	2	1	1	< 1	
Zn	327	326	323	342	336	312	
Y	237	234	236	239	238	225	
Ce	-	-		-	-	263	
Nb	315	315	134	313	315	360	
Zr	1535	1540	1549	1571	1576	1604	
Pb	54	50	51	55	55	49	
Th	-	-		-	-	67.5	
U	-	-		-	-	11.9	

MACDONALD & BLISS DATA - OLKARIA COMPLEX

file a:blissdata

TABLE 4A

LISTING OF NEW BGS ANALYTICAL DATA

LONGONOT AFFINITY PYROCLASTICS (BGS Fmn Lp5) Sp.No. Sh No Map. Ref. ROCK TYPE BG1544/4 133/3 AK 963026 GREY PUMICE LAPILLI 1606 133/4 BK 030038 PORPHYRITIC, CINDERY GREY PUMICE LAPILLI 1217 BJ 175947 BLOCKEY TRACHYTE LAVA OR ASH FLOW 15 1544/3 AK 963026 GREY PUMICE LAPILLI ... 1394/1 BJ 016979 GREY-GREEN PUMICE CLASTS 1608 n 119947 BJ н GREY PUMICE LAPILLI 1034/2 ΒJ 119945 1034/1 BJ 119945 1445 AJ 946925 GREY-GREEN PUMICE LAPILLI . ALTERED GREYISH PUMICE LAPILLI 1371 AJ 971949 11 1547/2 AK 959024 GREY-GREEN PUMICE LAPILLI Lt2 11 1427 BK 151032 RECENT LONGONOT FLANK FLOW OLKARIA AREA TRACHYTES 1366 AJ 975960 PORPHYRITIC TRACHYTE LAVA н 1406 BJ 008969 FLOWBANDED PALE PUMICEOUS LAVA AT DOME TOP 1437/1 147/2 BJ 002859 PORPHYRITIC TRACHYTE 1045 BJ 025863 SCORIACEOUS LAVA RESIDUAL OLKARIA COMENDITES (BGS Fmns 02 & 03) 1144 133/4 BJ 039958 GLASSY BANDED LAVA 1422 ... AJ 975979 PORPHYRITIC COMENDITE AT DOME TOP 1584 11 AK 947158 COMENDITE AT SHALLOW CRATERED DOME ... 1160/1 PALE-GREY PORPHYRITIC COMENDITE BK ' 058009 ... 1544/2 AK 962026 PORPHYRITIC COMENDITE ... 1317 AJ 943936 AT DOME TOP н 1547/1 AK 959024 1331 BJ 025937 AT DOME TOP n 1140 BJ 063999 ... LAVA . 1325 п BJ 064984 BANDED COMENDITE . 1208 BJ 061976 COMENDITE LAVA H 1206 BJ 065970 PUMICEOUS COMENDITIC LAVA 11 BREY MICROPORPHYRITIC COMENDITE LAVA 1344 BJ 007910 н 1503/2 BK 004127 GLASSY, FLOWBANDED DARK GREEN HIPPO POINT LAV 11 1358 979952 BJ ALTERED PALE PUMICE LAPILLI н 1381 016974 ΒJ FLOWBANDED (EUTAXITE?) DARK GREEN COMENDITE 1616/1 BK 007005 CREAM PUMICE CLASTS 1196 BJ 059938 ... 11 FROM SURGE HORIZON 1330/6 11 BJ 064984 11 . . 1582 BK 024011 ... 11 OLKARIA COMENDITES (BGS Fmns 04 & Op4) 1121/2 ... ΒK 064048 FLOW BANDED COMENDITE LAVA . " 1124/2 BK PALE CREAM COMENDITE LAVA 063052 ... 1352/1 BJ 006910 PUMICEOUS COMENDITIC OBSIDIAN 1152 н BJ 068989 CREAM OLKARIA AIRFALL PUMICE ... 1162 ΒK CREAM OLKARIA AIRFALL PUMICE 054008 11 1338 CREAM OLKARIA AIRFALL PUMICE BJ 022966 11 1514 BK WHITE PUMICE BLOCKS 056023 n 1599 BK 018040 "WELDED FALL" COMENDITE

BASIC & "MIXED" COMPOSITIONS (BGS Fmns BASIC LITHIC FROM Op4 1136/2 063999 BJ 11 1148/7 BJ 039968 FRESH BLOCK OF BASIC LAVA FROM Op4 1449/1 ... AJ 960913 BASIC LAVA FROM ERODED CRATER WALL ... 019012 BASIC CINDERS FROM INTRUSIVE BRECCIA 1531/5 BK 11 BK 019013 GREY "MIXED" DYKE ROCK 1310 11 1587/1 AK 955165 BASIC CINDERS FROM SCORIA CONE 11 1587/2 AK 955165 BASALT BLOCK FROM SCORIA CONE 1577 133/3 AK 925132 APHYRIC BASIC LAVA 1580/2 AK 937164 BASIC CINDERS FROM SCORIA CONE LONGONOT BASICS (BGS Fmns Lmx3) BASIC CINDERS FROM LONGONOT CRATER RIM 1619 133/4 BJ 158991 н 10 1620 BJ 162983 BASIC BOMB 11 38 RHYOLITES FROM LIMURU TRACHYTES 1433/2 148/1 BJ 268636 GREY APHYRIC ACID LAVA 11 1433/3 BJ 268636 OBSIDIAN PORPHYRITIC LIMURU "TRACHYTE" 1466 148/1 BJ 311838 TWO EXAMPLES OF UNDERSATURATED TERTIARY LAVAS WEST OF THE RIFT VALLEY 1467 146/2 ZP 190844 MELILITE NEPHELINITE 7km N. OF NAROK 1563 145/1 YP 262655 PHONOLITE FROM MARA RIVER

file d:mesalist-j85

TABLE 4B

. .

NEW BGS Data

LONGONOT AFFINITY PYOCLASTICB (BGS Fmn.Lp5).

Sp. No	1544/4	1606	1217	1544/3	1394/1	1608	1034/2	1034/1	1445	1371
Si02	63.58	61.54	63.06	64.6	64.97	63.4	61.34	61	60.61	60.06
Ti 02	0.66	0.6	0.5	0.59	0.53	0.48	0.51	0.43	0.39	0.38
A1203	15.74	16.66	13.74	15.4	13.34	13.29	15.47	14.58	15.53	15.46
FeO	4.68	4.14	2.76	4	3.91	4.56	3.36	3.85	3.78	3.69
Fe203	2.56	1.43	5.64	4.06	5.65	3.97	4.37	4.27	4.14	4.04
MnU	0.28	0.22	0.31	0.32	0.34	0.3	0.3	0.31	0.29	0.29
MgO	0.38	0.48	0.16	0.4	0.19	0.04	0.3	0.12	0.2	0.41
CaO	1.2	1.27	0.99	1.12	0.97	0.85	1.24	1.15	0.99	0.85
Na20	5.2	8.01	7.77	4.06	4.86	7.93	7.94	9.23	7.84	8.62
K20	5.63	5.55	5.03	5.39	5.2	5.14	5.12	5.01	6.18	6.16
P205	0.09	0.1	0.04	0.05	0.03	0.04	0.06	0.04	0.05	0.05
TOTAL	RECALCUL	ATED ON	LOI FF	REE BAS	IS TO 10	0%.				
TRACE	ELEMENTS	ppm								
Rb	122	133	151	169	169	178	209	246	294	301
Sr	4	37	2	7	3	2	12	4	8	3
Ba	59	305	33	36	42	36	59	19	23	17
Y	75	75	106	107	128	125	140	186	190	193
Nb	145	172	197	220	223	231	318	418	447	448
Zr	611	701	849	915	1020	1050	1370	1860	1994	1999
Th	18	20	23	27	28	28	37	50	55	56
U	5	3	2	4	6	5	6	В	11	9
LOI	5.8	1.87	0.38	7.05	6.22	3.28	1.63	3.59	4.14	4.09

Per.I. 0.93 1.15 1.33 0.81 1.02 1.4 1.2 1.41 1.26 1.35

1

file d:newbgs-as40

×

.

	Data					
	Lp5	Lt2	OLK	ARIA ARE	A TRACHYTES	
Sp. No	1547/2	1427	1366	1406	1437/1	1045
Si02	62.53	62.63	65.74	65.64	63.41	65.7
Ti02	0.4	0.69	0.44	0.51	0.68	0.48
A1203	15.79	12.7	15.76	14.48	15.75	15.78
FeO	3.29	5.13	1.32	2.2	4.22	2.66
Fe203	5.16	5.28	3.27	4.45	2.31	2.25
" (T)						
MnO	0.33	0.4	0.09	0.12	0.19	0.13
MgO	0.37	0.43	0.35	0.53	0.43	0.27
CaO	0.97	1.32	1.11	0.48	2.35	1.47
Na20	4.82	6.31	5.72	5.56	4.49	5.36
K20	6.31	5.03	6.15	5.99	0.04	5.85
P205	0.03	0.07	0.04	0.05	0.13	0.05
P205 TOTAL F	0.03 RECALCULATE	0.07 D on loi fhee Bi	0.04 A916 TO 10	0.05	0.13	0.05
P205 TOTAL F TRACE E	0.03 RECALCULATE ELEMENTS pp	0.07 D ON LOI FHEE Bi	0.04 A915 TO 10	0.05	0.13	0.05
P205 TOTAL F TRACE E Rb	0.03 RECALCULATE ELEMENTS pp 286	0.07 D ON LOI FREE B m 159	0.04 A915 TO 10 135	0.05 0%. 499	106	122
P205 TOTAL F TRACE E Rb Sr Ba	0.03 RECALCULATE ELEMENTS pp 286 10 21	0.07 D ON LOI FREE B m 159 3 50	0.04 ASIS TO 10 135 28	0.05 0%. 499 21	0.13 106 72	0.05 122 23
P205 TOTAL F TRACE E Rb Sr Ba Y	0.03 RECALCULATE ELEMENTS pp 286 10 21	0.07 D ON LOI FREE B m 159 3 58	0.04 ASIS TO 10 135 28 418	0.05 0%. 499 21 490 222	0.13 106 72 1741	0.05 122 23 207
P205 TOTAL F TRACE E Rb Sr Ba Y Nb	0.03 RECALCULATE ELEMENTS pp 286 10 21 192 455	0.07 D ON LOI FREE B m 159 3 58 121	0.04 ASIS TO 10 135 28 418 48	0.05 0%. 499 21 490 228	0.13 106 72 1741 51	0.05 122 23 207 72
P205 TOTAL F TRACE E Rb Sr Ba Y Nb Zr	0.03 RECALCULATE ELEMENTS pp 286 10 21 192 459 2047	0.07 D ON LOI FREE B m 159 3 58 121 223	0.04 ASIS TO 10 135 28 418 48 113	0.05 0%. 499 21 490 228 478	0.13 106 72 1741 51 87	0.05 122 23 207 72 138
P205 TOTAL F TRACE E Rb Sr Ba Y Nb Zr Tb	0.03 RECALCULATE ELEMENTS pp 286 10 21 192 459 2043	0.07 D ON LOI FREE B m 159 3 58 121 223 989	0.04 ABIS TO 10 135 28 418 48 113 786	0.05 0%. 499 21 490 228 478 2045	0.13 106 72 1741 51 87 355	0.05 122 23 207 72 138 1002
P205 TOTAL F TRACE E Rb Sr Ba Y Nb Zr Th	0.03 RECALCULATE ELEMENTS pp 286 10 21 192 459 2043 55	0.07 D ON LOI FREE B m 159 3 58 121 223 989 26	0.04 ABIS TO 10 135 28 418 48 113 786 26	0.05 0%. 499 21 490 228 478 2045 102	0.13 106 72 1741 51 87 355 17	0.05 122 23 207 72 138 1002 30
P205 TOTAL F TRACE E Rb Sr Ba Y Nb Zr Th U	0.03 RECALCULATE ELEMENTS pp 286 10 21 192 459 2043 55 8	0.07 D ON LOI FHEE B m 159 3 58 121 223 989 26 4	0.04 ASIS TO 10 135 28 418 48 113 786 26 4	0.05 0%. 499 21 490 228 478 2045 102 15	0.13 106 72 1741 51 87 355 17 3	0.05 122 23 207 72 138 1002 30 3
P205 TOTAL F TRACE E Rb Sr Ba Y Nb Zr Th U LOI	0.03 RECALCULATE ELEMENTS pp 286 10 21 192 459 2043 55 8 6.79	0.07 D ON LOI FHEE B m 159 3 58 121 223 989 26 4 0.24	0.04 ASIS TO 10 135 28 418 48 113 786 26 4 0.18	0.05 0%. 499 21 490 228 478 2045 102 15 0.79	0.13 106 72 1741 51 87 355 17 3 3 0.39	0.05 122 23 207 72 138 1002 30 3 0.95

•

2

)

Sp. No	1144	1422	1584	1160/1	1544/2	1317	1547/1	1331	1140	1325
Si 02	75.57	77.71	76.96	76.47	76.4	76.86	76.29	75.78	75.54	75.33
Ti 02	0.12	0.11	0.1	0.15	0.09	0.1	0.09	0.12	0.15	0.15
A1203	12.05	11.21	11.56	11.38	11.53	11.67	11.77	11.9	10.72	10.67
FeO	1.26	0.67	0.37	1.47	1.39	0.4	0.83	0.26	0.24	1.71
Fe203	0.72	1.37	1.68	1.04	0.65	1.86	1.23	2.49	3.92	1.9
" (T)										•••
MnO	0.04	0.04	0.04	0.06	0.04	0.04	0.03	0.05	0.05	0.06
MaD	0.1	0.12	0.04	0.1	0.12	0.01	0.19	0.01	0.03	0.01
CaO	0.36	0.09	0.07	0.05	0.24	0.05	0.28	0.04	0.02	0.1
Na20	4.59	4.09	4.56	4.52	3.87	4.43	4.7	4.21	4.56	5.61
K20	5.18	4.59	4.62	4.75	5.65	4.59	4.58	5.13	4.78	4.45
P205	0	0	0	0	0	0	0	0.01	0	0
TOTAL	RECALCUL	ATED ON	LOI FI	REE BAS	IS TO 10	00%.				
										<u>j</u>
TRACE	ELEMENTS	ppm								
Rb	290	274	327	259	386	342	382	422	601	546
Sr	2	0	1	2	0	2	2	0	0	0
Ba	22	12	25	47	0	17	18	19	0	12
Y	110	34	31	79	136	28	106	105	139	202
Nb	203	198	249	176	283	253	287	303	514	455
Zr	447	487	502	548	554	555	567	890	1613	1665
Th	49	38	34	41	62	38	60	75	102	100
U	7	6	8	5	10	8	11	10	16	15
LOI	3.07	0.24	0.11	0.05	3.48	0.24	1.34	0.37	0.08	0.24
Per.I.	1.09	1.04	1.08	1.11	1.08	1.05	1.08	1.05	1.18	1.32

NEW BGS Data OLKARIA COMENDITES (BGS Fmns.02 + 03)

2%

Sp. No	1208/1	1206	1 3 4 4	1503/2	1358	1381	1616/1	1196	1330/6	1532
Si02	75.02	73.5	75.91	71.98	75.36	75.03	74.23	74.15	73.87	75.89
TiO2	0.15	0.15	0.18	0.39	0.19	0.17	0.18	0.17	0.17	0.18
A1203	10.73	10.37	10.77	10.98	11.11	10.27	10.55	10.5	10.97	10.7
FeO	1.13	0.01	2.1	1.31	2.14	2.31	2.5	2.44	2.59	2.47
Fe203	3.08	4.39	2.82	4.87	2.85	2.35	1.74	1.99	1.96	2.21
" (T)										
MnO	0.06	0.09	0.11	0.15	0.08	0.07	0.07	0.07	0.06	0.1
MgO	0.01	0.03	0.02	0.19	0.06	0.02	0	0.04	0	0.18
CaO	0.11	0.11	0.11	0.28	0.25	0.1	0.28	0.25	0.2	0.12
Na20	5.04	6.54	1.83	4.92	2.15	5.1	5.72	5.96	5.53	3.91
K20	4.67	4.8	6.16	4.94	5.81	4.57	4.73	4.42	4.65	4.25
P205	0.01	0.01	0	0	0	0.01	0	0	0	0
TOTAL	RECALCUL	ATED ON	LOI FI	REE BASIS	TO 100%					
TRACE	ELEMENTS	ppm								
Rb	615	693	678	182	484	600	696	753	732	676
Sr	0	Ö	2	4	0	0	2	0	0	0
Ba	12	14	18	28	9	14	0	19	12	10
Y	220	359	371	39	311	310	345	370	360	379
NЬ	532	576	660	273	445	476	640	692	688	719
Zr	1829	2179	2504	1124	2674	2802	2489	2577	2577	2658
Th	114	137	152	39	111	118	137	153	154	159
U	19	21	27	3	16	18	26	25	25	27
LOI	0.42	1.33	5.1	0.55	3.36	0.16	3.78	3.47	3.41	5.47
Per.I.	1.24	1.54	0.9	1.22	0.88	1.3	1.38	1.39	1.29	1:03

٠

NEW BGS Data OLKARIA COMENDITES (BGS Fmns 03, 0p2 & 0p3)

.

Sp.No	1121/2	1124/2	1352/1	1152	1162	1338	1514	1599
Si02	74.7	75.4	75.15	74.63	74.82	75.08	74.7.	74.18
Ti 02	0.18	0.17	0.19	0.18	0.18	0.18	0.17	0,17
A103	10.57	10.47	10.79	10.66	10.66	10.78	10.55	10.46
FeO	2.49	0.73	1.38	2.56	2.65	1.19	1.35	0.13
Fe203	1.37	3.44	2.75	1.28	1.25	2.88	2.63	4.37
" (T)								
MnO	0.08	0.06	0.06	0.06	0.06	0.07	0.05	0.06
MgO	0.05	0.05	0.11	0.06	0.05	0.01	0.14	0,04
CaO	0.2	0.05	0.11	0.27	0.23	0.18	0.31	0,13
Na203	5.87	5.08	4.87	5.41	5.21	4.95	5.03	5.9
K20	4.49	4.54	4.59	4.86	4.87	4.66	5.07	4.55
P205	0	0.02	0.01	0.01	0.01	0.02	0	0
TOTAL	RECALCUL	ATED O	N LUI FREE	BASIS TO 10	00%			
TRACE	ELEMENTS	6 ррм						
Rb	446	448	403	429	418	434	425	143
Sr	2	0		6	2	3	0	2
Ba	19	21	19	30	14	13	12	9
Y	228	72	51	222	223	69	217	356
Nb	386	368	379	368	367	382	368	661
Zr	1644	1688	1679	1590	1588	1676	1582	2488
Th	82	71	84	83	81	78	77	133
U	16	13	8	14	15	9	15	
LOI	1.09	0.21	0.26	5.93	4.15	0.42	2.72	0.82
Per.I.	1.37	1.27	1.2	1.33	1.3	1.22	1.3	0.4

NEW BGS Data OLKARIA COMENDITES (BGS Fmns 04 & Op4)

file d:bgs2-ar40

1.

.

.

٩

Sp.No	1136/2	1148/7	1449/1	1531/5	1310	1587/1	1587/2	1577	1580/2
Si02	48.02	52.64	56.3	60.49	68.17	49.55	51.54	57.77	61.7
Ti02	2.9	2.16	1.78	1.9	0.96	0.98	1.87	1.25	0.91
A103	14.64	17.33	14.78	12.69	1.52	15.02	14.97	13.8	13.79
FeO	10.91	4.25	6.32	6.76	4.34	6.89	9.2	6.96	8.62
Fe203 " (T)	2.35	4.2	3.43	3.27	0.3	4.65	1.52	1.85	0.87
MnO	0.2	0.19	0.16	0.21	0.12	0.21	0.2	0.15	0.38
MgO	5.47	2.69	3.36	2.24	1.08	6.37	5.99	4.77	0.62
CaO	10.16	5.76	6.69	4.79	2.19	10.06	9.25	7.63	2.57
Na203	3.28	6.66	3.88	3.97	5.11	3.46	3.47	3.37	5.21
K20	1.48	3.62	2.78	3.05	3.93	1.19	1.42	2.22	5.12
P203	0.58	0.51	0.51	0.62	0.28	0.61	0.56	0.23	0,2
TOTAL	RECALCU	LATED O	N LOI F	REE BAS	IS TO 100)%			
TRACE	ELEMENTS	3 ррм							
Rb	30	88	86	201	340	22	39	112	42
Sr	605	1064	295	238	21	506	478	262	2
Ba	621	1616	572	1386	713	917	859	293	162
Y	30	32	51	119	167	32	34	54	47
Nb	34	128	80	168	303	31	41	91	53
Zr	167	377	336	698	1286	131	144	237	224
Th	9	17	14	35	61	1	2	22	8
U	0	5	2	7	10	0	0	3	0
LOI	0.27	0.99	0.03	3.28	0.05	0.05	0	0	0.08
Per.I.	0.48	0.86	0.64	0.77	1.1	0.46	0.48	0.58	1.02

NEW BGS Data BASIC & "MIXED" COMPOSITIONS (BGS Fmns

NEW BGS Data Lgn't BASICB,LIMURU TRACHYTES,NAROK MELILTITE,MARA PHONOLITE

٠

Sp.No	1619	1620	1433/2	1433/3	1466	1467	1563	
Si02	54.94	55.65	10.28	70.28	73.73	40.97	56.61	
Ti 02	2	1.61	0.55	0.55	0.46	3.14	0.95	
A103	14.25	14.46	14.11	13.61	12.19	8.79	19.8	
FeO	8.16	7.51	0.6	2.77	1.05	7.35	3.03	
Fe203 " (T)	2.58	2.54	3.15	0.93	3.01	5.23	1.96	
MnO	0.26	0.23	0.07	0.16	0.17	0.24	0.29	
MgO	3.23	3.68	0.42	0.46	0.34	14.76	1.25	
CaO	5.41	4.77	0.26	1.01	0.26	12.71	1.87	
Na20	5.6	5.78	5.16	4.72	3.67	4.09	8.15	
K20	3.09	3.38	5.38	5.44	5.1	2.09	5.85	
P205	0.48	0.39	0.02	0.06	0.01	0.64	0.23	
TOTAL	RECALCUL	ATED ON	LOI FREE BAS	IS TO 10	0%			
TRACE	ELEMENTS	ppm						
Rb	74	74	220	221	367	55	144	
Sr	354	317	53	54	27	847	175	
Ba	525	589	275	273	65	547	669	
Y	55	57	66	97	90	28	54	
Nb	83	88	297	293	636	2	211	
Zr	416	435	1163	1140	2233	285	602	
Th	14	9	46	40	90	7	22	
U	2	2	5	7		4	5	
LOI	0	0	0.56	0.45	0.43	0.11	3.92	
Per.I.	0.88	0.91	1.01	1	0.95	1.02	1	

TABLE 5A

.

•

LISTING OF PUMICE	SAMPLES FOR	TRACE A	NALYSIS ONLY (JUNE 1987)
Sp. No. Lab. No.	Sheet no	0.R.	Notes
BG1492 KG1	133/3 AK	925093	LIGHT GREY AIRFALL PUMICE
1673 2	" AK	894033	GREY-GREEN SURGE PUMICE
3015/1 3	133/4 BJ	010947	PUMICE CLASTS BELOW 04 LAVA
3021/1 4	" BJ	012949	CREAM AIRFALL PUMICE
3021/2 5	"BJ	012949	WEATHERED CREAM AIRFALL PUMICE
3029 6	" BK	033039	PUMICE CLASTS FROM SURGE
3030 7	" BK	031044	CREAM AIRFALL PUMICE
3031 8	" ВК	025048	CREAM PUMICE CLASTS FROM SURGE
3033 9	" BK	021047	AIRFALL PUMICE BLOCKS
3034 10	" BK	022045	n n n
3037 11	" ВК	018021	CREAM PUMICE FROM SURGE
3040 12	" AK	996034	TRIPARTITE AIRFALL OLK PUMICE
3043 13	" AK	015063	PROXIMAL BLOCKEY OLK PUMICE
3047/1 14	" AJ	958995	0 0 0 0
3049/1 15	" AK	966005	H H D H
3049/2 16	" AK	966005	
3052 17	" AK	982043	PROXIMAL BLOCKEY OLK PUMICE
3056/1 18	133/3 AK	934076	GREY AIRFALL PUMICE
3056/2 19	" AK	934076	U 11 11
3057/1 20	133/4 AK	998090	LONGONOT AIRFALL PUMICE
3057/2 21	" AK	998090	WHITE OLK PUMICE
3057/3 22	" AK	998090	PUMICEOUS OBSIDIAN LAVA
3067/2 23	" ВК	018013	PALE PUMICE CLASTS
3071 24	" ВК	016013	N N N
3075 25	133/3 AJ	877987	DARK GREY PUMICE (MAU ASH?)
3076 26	" AJ	883993	THIN, LATE OLK PUMICE
3078/1 27	" АК	879072	BASIC CINDERS - BIMODAL AIRFALL
3078/2 28	" AK	879072	FELSIC PUMICE - " "
3079/1 29	" AK	883095	'MAIELLA TYPE' PUMICE
3079/2 30	" АК	883095	WHITE OLK PUMICE OVER 29
3084 31	133/4 AJ	964933	PORPHYRITIC Lp5 CINDER
3090/1 32	" AJ	953943	PROX. OLK PUMICE BLOCKS
3110 33	133/3 AK	919019	PALE-GREY AIRFALL PUMICE
3115 34	133/4 AK	966133	CREAM OLK AIRFALL PUMICE
3121 35	" BK	016097	GREY-GREEN AIRFALL PUMICE
3122/1 36	" ВК	?	CREAM AIRFALL PUMICE
3122/3 37	." ВК	?	GREY-GREEN AIRFALL PUMICE
3122/4 38	" ВК	?	CREAM-WHITE AIRFALL PUMICE
3125 39	" BK	015080	" PROX. OLK PUMICE
3126 40	" BK	014078	" PUMICE BLOCK
553 41	ВК	220060	BASAL PUMICE OF Lp2
2628 42	133/3 AK	939053	PUMICE BLOCK
2637 43	133/4 AK	972068	И И
2716/2 44	133/3 AJ	919977	и и

file d:pumlist-i53

a.c

TABLE 5B

Sp.No.	Rb	Sr	Ba	Y	Nb	Zr	Th	U	INTERPRETED FORMATION
BG1492	285	1	96	194	451	1998	66	10	Op2 or Maiella
1673	166	2	59	113	229	935	27	5	Lp
3015/1	429	7	70	217	362	1555	81	14	Op 4
3021/1	407	6	50	214	356	1531	77	13	Op 4
3021/2	349	6	58	135	240	1122	29	7	Op 2
3029	510	2	34	234	420	1568	92	18	0 p 3
3030	443	2	23	246	375	1641	82	13	Op 4
3031	432	4	32	220	366	1567	90	15	0 p 4
3033	727	1	17	360	655	2494	148	25	0 p 3
3034	699	2	41	356	640	2456	144	27	0 p 3
3037	804	1	23	392	737	2717	165	29	0 p 3
3040	511	5	25	292	474	2131	105	18	Op 4
3043	914	2	30	480	875	3324	205	35	0 p 3
3047/1	433	2	28	240	378	1782	82	16	0 p 5
3049/1	423	3	<8	232	365	1727	81	15	0p5
3049/2	434	1	22	240	379	1785	82	15	Op 5
3052	506	4	27	286	501	2236	110	17	Op 4
3056/1	255	5	200	151	225	1220	45	5	0 p 2
3056/2	432	6	40	292	386	2320	91	14	0 p 2
3057/1	295	6	52	204	475	2111	61	10	Lp
3057/2	1092	7	27	568	1065	3940	241	43	Op 3
3057/3	419	8	18	271	376	2021	90	9	02
3067/2	183	4	48	155	307	950	71	11	0 p 3
3071	125	57	266	92	192	763	28	6	Op 2
3075	201	6	92	155	330	1301	40	7	Lp (Mau ash)
3076	313	4	35	221	334	1726	57	10	Op 2?
3078/1	58	340	266	45	56	204	10	3	Bimodal fall
3078/2	288	9	28	108	197	465	44	9	Np
3079/1	301	14	33	198	464	2076	59	10	Maiella pum
3079/2	977	17	30	511	96B	3581	217	38	Op 3
3084	131	27	254	71	157	627	15	2	Lp
3090/1	411	4	15	228	305	1762	72	11	0p2
3110	209	13	25	119	212	974	23	5	Lp
3115	1013	12	57	544	1045	3917	246	42	0 p 3
3121	120	48	381	69	146	590	17	4	Lp
3122/1	246	8	30	151	349	1490	40	8	Op2 or Op3
3122/3	282	9	28	200	472	2142	58	10	Lp
3122/4	458	6	18	256	356	1171	80	13	0p3
3125	1004	4	11	572	98 B	3660	224	39	0p3
3126	451	3	12	220	336	1066	73	12	0 p 3
333	252	4	26	178	247	1366	47	7	Lp
2628	249	2	19	171	246	1352	44	6	0 p 2
2637	470	1	9	5.20	370	1995	83	14	0p2
2716/2	478	32	40	213	397	1448	88	16	0 p 3

1

BGS NEW DATA - TRACE ELEMENT REBULTS ON 44 PUMICE SAMPLES COLLECTED FOR CORRELATION BTUDIES

file d:listpum-k53

 f^{2}

