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Synopsis 22 

There is a strong, site specific, relationship between COVID-19 cases and SARS-CoV-2 viral 23 

RNA load in wastewater treatment plant influent. 24 

 25 

Abstract  26 

Wastewater based epidemiology (WBE) has become an important tool during the COVID-19 27 

pandemic, however the relationship between SARS-CoV-2 RNA in wastewater treatment 28 

plant influent (WWTP) and cases in the community is not well defined. We report here the 29 

development of a national WBE program across 28 WWTPs serving 50% of the population of 30 

Scotland, including large conurbations, as well as low-density rural and remote island 31 

communities. For each WWTP catchment area, we quantified spatial and temporal 32 

relationships between SARS-CoV-2 RNA in wastewater and COVID-19 cases. Daily WWTP 33 

SARS-CoV-2 influent viral RNA load, calculated using daily influent flow rates, had the 34 

strongest correlation (ρ>0.9) with COVID-19 cases within a catchment. As the incidence of 35 

COVID-19 cases within a community increased, a linear relationship emerged between cases 36 

and influent viral RNA load. There were significant differences between WWTPs in their 37 

capacity to predict case numbers based on influent viral RNA load, with the limit of 38 

detection ranging from twenty-five cases for larger plants to a single case in smaller plants. 39 

SARS-CoV-2 viral RNA load can be used to predict the number of cases detected in the 40 

WWTP catchment area, with a clear statistically significant relationship observed above site-41 

specific case thresholds.  42 

 43 

44 
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Introduction 45 

The COVID-19 pandemic has necessitated the rapid implementation of surveillance 46 

programs worldwide to track and control the spread of SARS-CoV-2 (the coronavirus that 47 

causes the disease syndrome known as COVID-19). Initially, such programs relied on 48 

syndromic surveillance, community testing, contact tracing and the monitoring of morbidity 49 

and mortality rates 1-3. Community testing relies on voluntary reporting of clinical signs and 50 

is only partially able to capture the pre-symptomatic, asymptomatic and pauci-symptomatic 51 

cases of SARS-CoV-2 infection that can contribute significantly to community transmission, 52 

and are therefore subject to biases, which can influence estimates of disease burden 1, 2. 53 

Syndromic surveillance based on hospital admissions is less biased, but is subject to delays 54 

between infection and admission 2, while implementing mass swab-testing on a nationally 55 

meaningful scale is not economically feasible for most countries 2.  56 

Early studies identified SARS-CoV-2 RNA in the feces of infected individuals and COVID-19 57 

has subsequently been associated with a range of gastrointestinal symptoms 4. SARS-CoV-2 58 

has been detected in feces from both asymptomatic and symptomatic individuals, with 59 

prolonged shedding observed up to 33 days after the initial onset of symptoms or 60 

hospitalization 1, 4, 5. Consequentially, wastewater-based epidemiology (WBE) has been 61 

explored as a tool to track the spread of SARS-CoV-2 by many countries 1.  62 

Early in the pandemic, Medema et al.6 detected SARS-CoV-2 RNA in the wastewater of three 63 

Dutch cities and a major airport up to six days before the first reported clinical cases 6. Since 64 

then, WBE programs have been started by over 50 countries 1, 7, 8, however a number of 65 

important questions remain relating to the implementation of these programs and the 66 

interpretation of WBE data. These include the impact of viral shedding dynamics in feces, 67 

viral persistence in wastewater and wastewater flow rates on viral detection in wastewater, 68 
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whether differences exist between urban and rural wastewater systems and how viral levels 69 

in wastewater should be normalized with respect to population size 2. Furthermore, there 70 

are a range of techniques available for detecting viruses in wastewater, whilst wastewater 71 

samples are diverse with respect to their physicochemical composition. There is therefore a 72 

need to determine which methodologies and process controls are appropriate when 73 

operationalizing WBE at a national scale 2. 74 

This study describes the development and implementation of a national WBE SARS-CoV-2 75 

surveillance program. We compared and optimized commonly used viral concentration 76 

techniques, validated Porcine Respiratory and Reproductive virus (PRRSv) as a suitable 77 

process control and optimized RT-qPCR assays for SARS-CoV-2 detection in wastewater. This 78 

methodology was adopted by the Scottish Environment Protection Agency (SEPA) and has 79 

been used to routinely monitor viral levels at 28 wastewater treatment plant (WWTP) sites 80 

across Scotland, serving 50% of the Scottish population (2.66 million people). These sites 81 

include large conurbations, as well as low-density rural and remote island communities.  82 

We demonstrate that daily SARS-CoV-2 viral RNA load can be used to predict the number of 83 

cases detected in the WWTP catchment area, with a clear statistically significant 84 

relationship observed between these two variables above site-specific case thresholds.  85 

 86 

Methods 87 

WWTP site selection 88 

WWTP monitoring sites were selected by Scottish Water and SEPA to represent at least 50% 89 

of the population in each Scottish health board area (Table S2.1), using the minimum 90 

number of sites possible. 91 

Wastewater sample collection 92 
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WWTP influent was collected at most sites using a refrigerated autosampler that obtained a 93 

fixed volume of influent every hour over each 24-hour period (08:00 to 08:00). Refrigerated 94 

autosamplers at Dalbeattie, Allanfearn, Nigg and Fort William obtained a fixed volume of 95 

influent, where the frequency of sampling over each 24-hour period was dependent on the 96 

influent flow rate. Composite 24-hour samples were mixed prior to analysis. Sites were 97 

typically sampled once a week, with increased frequency of sampling in response to 98 

increases in disease incidence in the community. There was no specific disease incidence 99 

threshold that was used to determine sampling frequency, however the local directors of 100 

public health were consulted, with sampling prioritized according to local needs. Due to 101 

resource limitations, any single site was not sampled more than four times a week. Samples 102 

were transported and stored at 4oC prior to analysis, typically within 24-48 hours of 103 

collection.  104 

Wastewater concentration and detection of SARS-CoV-2  105 

Five viral concentration methods, Methods 1 – 5, based on filtration, precipitation and 106 

adsorption were trialed (see Supporting Information). Method 1 was further optimized by 107 

SEPA (Method 6) and used for routine wastewater monitoring. Viral RNA was extracted 108 

from concentrated wastewater samples using commercial kits (see Supporting Information). 109 

SARS-CoV2 was detected by RT-qPCR. During method development (April-May 2020), there 110 

was a national shortage of RT-qPCR reagents, with a number of suppliers providing 111 

contaminated oligonucleotides. Early experiments consequently relied on E gene detection, 112 

however once uncontaminated N1 gene reagents were available, performance of the E gene 113 

and N1 gene assays was compared using RNA extracted using multiple methods. Detection 114 

of the N1 gene was used during routine monitoring. 115 

Data collection 116 
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Two WWTP datasets were provided by SEPA via a publicly available portal 9. The first 117 

dataset reported sample date, location (WWTP name, coordinates, Health Board, and Local 118 

Authority), catchment area (CA) size (population band and population) and SARS-CoV-2 N1 119 

and E gene average concentrations (gene copies/l). The second dataset reported the daily 120 

WWTP influent flow (l/day) and three separate N1 gene technical replicates for each 121 

sample. All replicates (838 of 2967) not returning a detectable signal were marked as 122 

“negative” in the dataset, and they were treated as zeros in the analyses. SEPA also 123 

provided the WWTP dry weather (i.e. licensed) flow (l/day) and Scottish Water provided the 124 

CA shapefiles for the 28 sites.  125 

COVID-19 data in Scotland are collected by Public Health Scotland (PHS) and the dataset 126 

used in this study reports the date and location of first COVID-19 tests and first positive 127 

tests (i.e. such that ‘positivity’ is the proportion of individuals who test positive), with test 128 

results, and deaths, starting from March 1st, 2020. To protect patient anonymity, data were 129 

provided by PHS by “datazone”, a small-scale geographic unit identified by the National 130 

Records of Scotland (NRS) containing approximately 500 to 1000 individuals. Each case was 131 

assigned to a datazone on the basis of the patients’ reported address of residence, 132 

irrespective of where any treatment or testing was administered. Datazone size was set to 133 

avoid the need to mask any data to protect patient confidentiality i.e. each datazone is large 134 

enough so that the identity of a case cannot be inferred from other publicly available 135 

information. Relevant shapefiles and population data were downloaded from the NRS portal 136 

10, facilitating a high resolution allocation of the number of tests, detected cases (i.e. 137 

positive tests), and COVID-19 related deaths for each of the CAs.  138 

Data analysis 139 
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The objective was to understand the association between the concentration and daily viral 140 

RNA load of SARS-CoV-2 RNA in WWTP influent and the number of detected cases in the 141 

corresponding CA. The daily WWTP influent viral RNA load was calculated by multiplying the 142 

wastewater sample viral RNA concentration with the total WWTP influent flow for the day 143 

of sampling. Since daily flow is not always available, SEPA included a flow estimate obtained 144 

with a linear regression model that considered ammonium concentration (provided by 145 

Scottish Water), catchment population, and site as independent variables (Roberts and 146 

Fang, private communication). Analyses were repeated using both reported flow rates and 147 

these estimates (see Supporting Information).  148 

The number of detected cases and the positive test rate were calculated by counting the 149 

number of positive and total tests over the seven days up to and including the day the 150 

sample was taken. We undertook a sensitivity analysis to test the effect of varying this time 151 

period from zero days i.e. counting only the reported cases on the day of wastewater 152 

sample collection) to 28 days on our results (see Supporting Information).  153 

First, a simple correlation between viral concentration or load and number of cases or 154 

positive test rate was calculated using Spearman’s ρ rank correlation coefficient.  155 

Further, to test the association between observed cases (Yi,j) and daily WWTP viral RNA load 156 

(Xi,j), we fitted a basic linear mixed model 11 157 

𝑌𝑌𝑖𝑖,𝑗𝑗 =  𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖,𝑗𝑗 + 𝑢𝑢𝑗𝑗 + 𝑏𝑏𝑗𝑗𝑋𝑋𝑖𝑖,𝑗𝑗 + 𝜀𝜀𝑖𝑖 , 158 

where β0 and β1 represent the fixed intercept and coefficient of the daily WWTP viral RNA 159 

load Xi,j. Parameters uj and bj are the random intercept and coefficient, associated with each 160 

group j (catchment), while εi represents the error term. We used this model to allow both 161 

the intercept and the slope (i.e. the coefficient of the daily viral load) to be composed by a 162 

common and a group-specific part, therefore for each site j the final intercept and slope 163 
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were, respectively, β0 + uj and β1 + bj. The addition of a random slope was verified with a 164 

Chi2 test 12. Before the estimation, the dependent and independent variables were square 165 

root transformed, which was required to reduce the overdispersion of the distribution prior 166 

to linear mixed model analysis (the untransformed data are reported in Fig S2.9, which 167 

shows the daily viral load average of the three sample replicates).  168 

We evaluated the model using the conditional pseudo-R2, which measures the variance 169 

explained by both fixed and random effects 12 and analyzed the resulting coefficients 170 

(intercept, β0 + uj, and slope, β1 + bj) to assess the consistency of the signal and the potential 171 

causes of the differences between WWTPs. We first fitted a series of univariable linear 172 

regression models with the site’s slope or intercept as the dependent variable and 173 

population, population density, number of wastewater samples, latitude, longitude, 174 

deprivation and access indices 10 as independent variables. Deprivation and access indices 175 

measure the relative deprivation and the access to healthcare services respectively of a 176 

datazone. They were included as potential causes of bias in case detection. We then fitted a 177 

multivariable model to each coefficient, selecting as independent variables those returning 178 

a p-value below 0·2 in the univariable models. This threshold was chosen to allow the 179 

inclusion of variables not significant when considered in isolation, but potentially significant 180 

in a multivariable model. Variables were then further selected through a backward stepwise 181 

selection in order to eliminate the statistically insignificant ones, using the Akaike 182 

Information Criterion (AIC) for evaluation.  183 

All data analyses were done in R 4.0.1 13, using packages tidyverse 1.3.1 14, scales 1.1.1 15 184 

and ggrepel 0.9.1 16 for data manipulation and representation, and packages lme4 1.1.27.1 185 

17, and MuMIn 1.43.17 18 for the mixed model fit and evaluation. 186 

 187 
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Results 188 

Method optimization and detection of SARS-CoV-2 RNA in WWTP influent  189 

Reliable quantification of SARS-CoV-2 in wastewater requires consistent viral RNA extraction 190 

across a broad range of concentrations. To investigate this, aliquots of a single wastewater 191 

sample were spiked with a serial dilution of heat-inactivated SARS-CoV-2. There was no 192 

association between viral concentration and the efficiency of RNA recovery across five 193 

orders of magnitude of SARS-CoV-2 concentration (Fig S1.1.A). Significantly more SARS-CoV-194 

2 (p > 0.0001) was recovered at a 10-2 dilution, however there was no evidence that this 195 

anomaly was due to PCR inhibition, as no further increase in recovery was observed upon 196 

further sample dilution. As recovery across all other dilutions was comparable, we suggest 197 

this higher efficiency of recovery at 10-2 was the result of handling error.  We next validated 198 

PRRSv (a porcine enveloped nidovirus that can be cultured in vitro at Containment Level 2) 199 

as a suitable surrogate process control virus for SARS-CoV-2. The extraction efficiency of 200 

heat-inactivated SARS-CoV-2 was statistically significantly greater than either live PRRSv (p = 201 

0.0348) or heat-inactivated PRRSv (p = 0.0056) (Fig S1.1.B) when spiked into a single 202 

wastewater sample, however it was within the same order of magnitude (approx. 1% vs. 203 

2%). Extraction efficiencies were also comparable between SARS-CoV-2 and heat-inactivated 204 

PRRSv within wastewater samples from six individual WWTPs (p > 0.05) (Fig S1.1.C). Heat-205 

inactivated PRRSv was chosen as a process control for all subsequent testing. 206 

Viral concentration methodologies based on filtration (Methods 1 - 3), PEG precipitation 207 

(Method 4) and adsorption (Method 5) were compared. The requirement to stir larger 208 

sample volumes for 8 h made the milk powder adsorption method insufficiently scalable 209 

and so it was excluded following initial pilot trials. PRRSv was recovered more efficiently by 210 

filtration than PEG precipitation from samples WWTP2 (p = 0.0162) and WWTP5 (p = 211 
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0.0382) and heat-inactivated SARS-CoV-2 was also recovered more efficiently by filtration 212 

from sample WWTP2 (p < 0.0001) but not WWTP5 (p = 0.3623) (Fig S1.1.D). There was no 213 

difference in the recovery of PRRSv when spiked with heat-inactivated SARS-CoV-2 from 214 

either WW sample. More variability between technical replicates was also observed using 215 

PEG precipitation (Fig S1.1.D).  216 

We compared liquid phase (influent and effluent) and solid phase (primary sludge and 217 

dewatered cake) samples for use in detection of SARS-CoV-2 RNA. Samples were taken 218 

weekly from a single plant, WWTP2, over a three-week period. The median recovery of 219 

PRRSv from influent was 20% across the 3-week sample period (Fig S1.1.E), however SARS-220 

CoV-2 RNA levels were below the limit of quantification (Fig S1.1.F). 221 

SARS-CoV-2 RNA was detected in all primary sludge samples and 2/3 dewatered cake 222 

samples from WWTP2 despite poor recovery of PRRSv from both sludge (0·5 – 3·5%) and 223 

dewatered cake (0·2 – 0·8%). No SARS-CoV-2 RNA was detected in the effluent from WWTP2 224 

(n=3 technical replicates taken weekly over 3 consecutive weeks), however it should be 225 

noted that influent loading of SARS-CoV-2 RNA at WWTP2 during this time was close to the 226 

limit of detection and so the presence of SARS-CoV-2 in effluent at higher influent loads 227 

cannot be excluded. Although sludge and/or dewatered cake may be a more sensitive 228 

sample type for detection of SARS-CoV-2 19, due to sampling difficulty and differences in 229 

sludge processing methods among WWTPs, influent samples were chosen for subsequent 230 

testing. Furthermore, some WWTPs treat sludge from other sites and hence sludge may not 231 

always be representative of the WWTP CA. 232 

As Method 1 was both scalable and was less variable for viral recovery efficiency than PEG 233 

precipitation, this method was selected to determine if SARS-CoV-2 RNA could be detected 234 

and quantified in wastewater collected from WWTPs in Scotland during the start of the 235 
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pandemic. Influent samples from six wastewater treatment plants, WWTP1 – WWTP6, were 236 

tested (Fig S1.2). Samples were taken on 27th March 2020, shortly before the first COVID-19 237 

mortality peak in Scotland. A strong positive SARS-CoV-2 RNA signal of 18,000 genome 238 

equivalents per liter was detected in sample WWTP5 (Fig S1.2.A). SARS-CoV-2 RNA levels in 239 

each of the other five plants fell below our limit of quantification. Method 1 was further 240 

optimized by SEPA (Method 6; Supporting Information) and used for routine wastewater 241 

monitoring. Of note, detection of the N1-gene by RT-qPCR was found to be more sensitive 242 

than the E-gene (Fig S1.2.B) and therefore N1-gene detection was adopted for the national 243 

program. 244 

Data analysis 245 

The weekly number of SARS-CoV-2 reported cases, deaths and positivity are shown in Fig 246 

1A. As of 29/1/2021, 989 wastewater samples, with three technical replicates each, have 247 

been analyzed across 28 WWTPs, with the earliest samples taken from late May 2020 (Fig 248 

1B). The number of samples per WWTP ranged from 12 (Stornoway, Outer Hebrides) to 112 249 

(Shieldhall, Greater Glasgow). The CAs are distributed across Scotland (Fig 1C) and despite 250 

covering only 1·2% of Scotland’s land mass, they cover 50% of the population. Daily WWTP 251 

influent flow data was missing for 18% of the samples.  252 

 253 
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254 

Figure 1. A, Number of weekly COVID-19 cases, deaths (multiplied by ten, for visualization purposes), and 255 

positive test rate in Scotland; B, weekly number of wastewater samples across the 28 study sites; C, spatial 256 

distribution of the 28 wastewater treatment plant sites with their catchment area (orange). Shape denotes the 257 

total number of samples by site (square: less than 20, circle: 21 to 40, triangle: 41 to 60, plus: 61 to 80, cross: 258 

over 80).  259 

260 
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As evident in Fig 2, wastewater RNA viral concentration (panels A, C and E) and daily WWTP 261 

viral RNA load (panels B, D, and F) mimic the trends of the daily positive test rate (number of 262 

positive tests over the total) and the daily incidence curves, respectively. This was 263 

independent of the CA population size (Fig S2.1 to S2.5 for remaining WWTPs).  264 

265 
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 266 

Figure 2. Trends of the first test positivity rate (green) and SARS-CoV-2 N1 gene concentration (brown, gc/l) in 267 

wastewater samples (panels A, C, and E); trends of COVID-19 incidence per 100,000 people (blue), deaths per 268 

1,000,000 people (purple), and N1 gene daily load (brown, gc/day) in wastewater samples (panels B, D, and F). 269 
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For positive test rate, cases, and deaths, points represent the daily value, and lines the seven-day rolling mean. 270 

For N1 gene concentration and daily load, points represent each reading of the samples, and the line was 271 

obtained by fitting a locally estimated scatterplot smoothing (LOESS) function. Data for three sites of different 272 

size are visualized here: Nigg (Grampian, panel A and B), Philipshill (Lanarkshire, panel C and D), and Fort 273 

William (Highland, panel E and F). The remaining 25 are shown in the Supporting Information. Vertical lines 274 

mark the changes in restrictions: local or minor policy changes (orange dotted lines), the introduction of the 275 

regional tier system (dashed red line) and the post-Christmas national lockdown (black thick line). LOESS fitting 276 

was undertaken using the fANCOVA R package (v0.6-1) 20, which allows automatic selection of the smoothing 277 

parameter.  278 

 279 

Preliminary correlation analyses between the WWTP daily viral RNA concentration and the 280 

number of COVID-19 cases detected in the CA in the previous week resulted in a Spearman’s 281 

ρ = 0·79, while the correlation between WWTP viral concentration and positive test rate 282 

resulted in ρ = 0·83. Using the viral load (i.e. multiplying the concentration by the WWTP 283 

daily flow rate), the correlation improved for the number of cases, ρ = 0·91, while it 284 

decreased for the positive test rate, ρ = 0·77 (all p ~0). This result was robust to the choice 285 

of the period length considered to calculate the number of cases or the positive test rate 286 

(see Fig S2.6). In this case, the correlations improve as the number of contributing days for 287 

case counts before sampling increases from zero to five, at which point it stabilizes.  288 

  289 

The full mixed model explained 78% of the variance in the number of cases in the CA 290 

(conditional R2 = 0·78), while the daily viral RNA load as a fixed effect (i.e. the component of 291 

the slope constant across all sites) explained 45% of the variance (marginal R2 = 0·45). The 292 

null hypothesis that the sites’ random slope variance was zero, which can be interpreted as 293 

the absence of significant differences between the cases-viral load relationship strength 294 
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across sites, was rejected with a Chi2 test (p ~ 0). The normality assumption about the 295 

distribution of model residuals was verified graphically (Fig S2.10). When the model was re-296 

run using a different time period to calculate the number of detected cases, the conditional 297 

R2 ranged from 0·71 to 0·89, with an average of 0·76 across the 29 periods considered (Fig 298 

S2.11).  299 

The mixed model fit by site is reported in Fig 3 (and Fig S2.12). While the daily WWTP viral 300 

RNA load coefficients, or slope, are an indicator of the strength of the relationship between 301 

viral RNA load and cases, the intercept provides an estimate of the limit of detected cases in 302 

each CA.  303 

304 
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 305 

Figure 3. Linear regression mixed model fit for the 28 wastewater treatment plants, ordered by their 306 

catchment population size. Each WWTP regression is plotted with independent axes limits, see Figure S.2.10. 307 

for a version of the plot with fixed axes. Grey dots represent the observations, the green lines represent the 308 

regression model fit. 309 

310 
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The median [interquartile] estimated slope across sites was 5·2 × 106 [4·50-5·37 × 106], and 311 

was positive in all sites, including the confidence interval (Fig 4A). The median [interquartile] 312 

intercept was 2·01 [0·90-3·77]. The intercept varied substantially between WWTPs of 313 

different size: median 0·84 [0·63-0·90] for the smaller sites (< 10,000 population), 2·25 314 

[1·72-3·78] for the medium-sized sites (10,000 to 100,000 population), and 5·30 [3·2-6·95] 315 

for the larger sites (> 100,000 population). This translates to a threshold of less than one 316 

recorded case from which the relationship between viral RNA load and cases is detectable in 317 

small catchments, five recorded cases in the medium-sized catchments and twenty-five 318 

cases in the large catchments. Among the latter group, Dalmuir and Meadowhead were 319 

outliers, with higher intercept and lower slope compared with similar-sized catchments (Fig 320 

4C).  321 

322 
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 323 

Figure 4. Linear mixed model coefficients: slopes (panel A) and intercept (panel B), ordered by coefficient size. 324 

Points correspond to the mean and bars correspond to confidence interval. Panel C shows the relationship 325 

between slope and intercept, with points and labels colored by catchment population size.  326 

 327 

The variables that best explain differences in mixed model slopes across WWTPs were the 328 

population size and the number of samples taken, although geographical longitude (not 329 

significant) was retained after multivariable model stepwise selection (Table 1). The CA 330 

population size and deprivation index were significant in explaining the differences in the 331 

mixed model intercepts (see Fig S2.10 for single variable plots).  332 

333 
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 334 

Dependent 
variable 

Independent 
variable 

Univariable linear model Multivariable linear model 

Coefficient p Coefficient p 

Mixed 
model 
groups 
slopes 

Number of samples 0·42 0·012 0·30 0·042 

Population 0·56 <0·001 0·47 0·003 

Density 0·27 0·129 (dropped by stepwise selection) 

Latitude 0·15 0·435 - - 

Longitude 0·31 0·179 0·28 0·109 

Deprivation index 0·15 0·373 - - 

Access index -0·44 0·007 (dropped by stepwise selection) 

Multivar. intercept - - 0·15 0·133 

Mixed 
model 
groups 
intercepts 

Number of Samples 0·20 0·236 - - 

Population 0·53 <0·001 0·45 0·002 

Density 0·48 0·001 (dropped by stepwise selection) 

Latitude -0·16 0·370 - - 

Longitude -0·25 0·242 - - 

Deprivation index 0·37 0·009 0·27 0·030 

Access index -0·42 0·005 (dropped by stepwise selection) 

Multivar. intercept - - 0·01 0·908 

 335 

Table 1. Results of the univariable and multivariable linear models to determine the variables that influence 336 

the mixed model slope and intercept for different sites. The R2 of the two multivariable linear models was 0.45 337 

for the slope, and 0.50 for the intercept (both p < 0.001).  338 

339 
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Discussion 340 

SARS-CoV-2 WBE has rapidly become an important surveillance tool for COVID-19 around 341 

the world, with studies from a number of countries identifying a close relationship between 342 

SARS-CoV-2 levels in wastewater and COVID-19 cases in the CA, including in the USA 21-24, 343 

Australia 25, France 26, and Spain 27. Importantly, our work uniquely describes the 344 

establishment of a WBE program covering 50% of a country’s population across a wide 345 

range of WWTP sizes. We demonstrate how WBE can be adopted across a range of 346 

catchments, from densely populated urban areas (Edinburgh and Glasgow), to smaller 347 

towns, rural areas and islands.  348 

We have used granular geospatial data to determine accurate estimates of recorded COVID-349 

19 cases within each CA and demonstrate the existence of a strong and measurable 350 

statistically significant relationship between the SARS-CoV-2 daily WWTP viral RNA load and 351 

the number of detected cases in the week preceding wastewater sample collection. Whilst 352 

the importance of using viral load, rather than viral concentration, has been demonstrated 353 

by other authors 24, we have gone further to validate the use of ammonium concentration 354 

to calculate viral load when daily influent flow data is missing. We have also used granular 355 

geospatial and longitudinal data to characterize, in detail, the relationship between viral 356 

load and community cases over the month preceding sample collection.  357 

In keeping with work examining levels of SARS-CoV-2 RNA in WWTP settled solids 22, we 358 

show that the precision of the relationship between influent viral load and community cases 359 

varies between sites, with differences in the slope mostly attributed to the size of the 360 

population being served. Our results identified a stronger relationship between cases and 361 

viral RNA load in the larger WWTPs. Uniquely, we also explored the impact of population 362 

density, longitude, latitude, and deprivation and healthcare access indexes on the 363 
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relationship between influent viral load and community cases. The identified threshold for 364 

detection was typically under 25 cases, and for some smaller WWTPs, a single detected 365 

community case was sufficient to yield a positive wastewater result. Compared to similar-366 

sized WWTPs, Meadowhead and Dalmuir were outliers (Fig 4C); given their size, the slopes 367 

imply a poorer relationship between detected cases and WWTP daily viral RNA load, and 368 

intercepts a poorer sensitivity than expected. These WWTPs are defined by fragmented and 369 

highly dispersed CAs compared to most WWTPs of this size. Thus network architecture may 370 

be important, and sub-catchment sampling may be necessary for large, fragmented, and/or 371 

dispersed networks. Deprivation also had a significant impact on the intercept, possibly due 372 

to differences in case reporting and/or viral RNA load per case, or the impact of higher 373 

industrial discharge. Combined, these factors meant that the limit of detection of cases per 374 

100,000 population was highly variable between WWTPs: median[interquartile] 9·2 [5·6-375 

16·9] for the smaller sites, 19·8 [9·4-31·9] for the medium-sized sites, and 10·8 [6·2-24·6] for 376 

the larger sites. 377 

In contrast to most previous studies 21,25-27,30, we demonstrate the value of obtaining flow 378 

measurements from WWTPs to calculate daily viral RNA loads, which display a stronger 379 

correlation with detected community case numbers, compared with viral concentration 380 

data alone (Fig S2.7). The daily influent flow is mostly affected by the weather and the 381 

WWTP size and, because of the latter, the correlation between flow and population 382 

connected to the WWTP sewage system is very strong (see Fig S2.6). The improvement of 383 

the correlations and model performance observed when using the daily viral load suggest 384 

that, not only can this substitute for scaling the cases by the total population, but that it 385 

might include other effects (i.e. dilution or weather) which would remain hidden otherwise.  386 

Our Spearman’s rank correlation ρ = 0·79 when not normalizing using the influent flow rate 387 
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is almost identical to ρ = 0·73 reported by other authors 23, who obtained mixed results 388 

when attempting to normalize using other methods, and serves to further highlight the 389 

utility of normalizing using influent flow rate. 390 

Our typically low limits of detection show that wastewater surveillance can be particularly 391 

valuable for areas reaching low prevalence and is therefore suitable as a logistically 392 

sustainable early warning system, making a targeted community testing strategy viable. For 393 

WWTPs collecting wastewater from cities, it is harder to isolate small clusters of infections. 394 

This hurdle can be overcome by sampling a site “upstream” to the WWTP (i.e. within the 395 

sewerage network) to improve spatial resolution. This is currently taking place in Scotland, 396 

with local health boards using sub-catchment wastewater sampling to direct surge testing.  397 

For smaller catchments, the size and the spatial resolution is already fine enough to inform 398 

community interventions, however a potential issue here is the variability in the signal. 399 

Specifically, we observed sudden spikes in the viral RNA load or viral concentration in many 400 

small WWTPs (Fig 2, E and F; Fig S2.4; Fig S2.5). While smaller catchments might be more 401 

sensitive to individual variations in shedding, these spikes might also be caused by one or 402 

two households being infected in a short period of time. Given the sensitivity of these 403 

smaller WWTPs to a small number of cases, this may explain these sudden variations in the 404 

SARS-CoV-2 daily viral RNA load. This also raises important questions with respect to the 405 

frequency of sampling, where it may be necessary to sample smaller sites more frequently 406 

to ensure that brief intense signals are not missed. 407 

Whilst we have shown that daily viral RNA load has the best correlation with detected cases 408 

(Figure S2.7), daily WWTP flow measurements are not always available. This may be more of 409 

a problem in smaller WWTPs, where flow rates regularly exceed the working range of the 410 

flow meter or in low resource settings, however our model retained substantial detection 411 
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power when daily flow was estimated using easily obtained ammonium concentrations, 412 

with the conditional R2 dropping by only 2% (R2= 0·76).  413 

To better understand the relationship between WWTP viral RNA load and infected 414 

individuals, we need to consider the level of viral shedding in feces and how this varies over 415 

time. Whilst SARS-CoV-2 RNA can be detected in the feces of hospitalized patients for over 416 

four weeks 28, 29, our work and that of others 30 implies a relatively short period of time over 417 

which infected individuals substantially contribute to the wastewater signal. This was 418 

observed in two distinct sensitivity analyses, one on correlations and the other on mixed 419 

model performance (see Supporting Information). Specifically, the correlation between 420 

cases and viral RNA load (and between positive test rate and viral concentration) stabilizes 421 

once detected cases are included up to and including the five days prior to wastewater 422 

sampling. Furthermore, even with declining incidence, when the cumulative effect of older 423 

infections would be expected to have a greater contribution to the overall signal if shedding 424 

duration was long, the conditional R2 of the mixed models did not deteriorate significantly 425 

(0·76 compared to 0·78 when incidence was increasing), and was consistent with a short 426 

period of peak viral shedding. Unfortunately, there is currently very limited data on fecal 427 

shedding of SARS-CoV-2 RNA in non-hospitalized individuals. Our understanding of the 428 

relationship between the WWTP viral RNA load and infected individuals is further 429 

complicated by the biases in community testing and movement (although restricted during 430 

lockdowns) of individuals between CAs.  Specifically, testing of symptomatic individuals is 431 

unlikely to fully reflect the population incidence, with an analysis of English data suggesting 432 

that approximately 1 in 4 cases were being reported via community testing up to November 433 

2020 31. It is therefore likely that the model in this study underestimates the true prevalence 434 

of infection within the community. It is also possible that factors that have not been 435 
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considered in this study, such as the degree of movement in and out of a CA, complicate the 436 

relationship between WWTP viral load and reported cases attributed to residents within the 437 

CA.  438 

The value of our results extends beyond the first year of the COVID-19 pandemic. We have 439 

demonstrated how COVID-19 WBE can be implemented at a national scale across a diverse 440 

range of urban and remote communities. At the time of writing, this program has been 441 

expanded to cover 75% of the population of Scotland and is being used by local health 442 

boards to direct surge testing within the community. This program will continue to be 443 

important during the rollout of COVID-19 vaccinations, particularly with respect to disclosing 444 

areas of on-going disease transmission and surveillance for novel SARS-CoV-2 variants 32, 33. 445 

There is currently no data comparing the fecal shedding of SARS-CoV-2 RNA between 446 

different variants, however the lower Ct values observed in respiratory swabs from patients 447 

infected with variant B.1.617.2 (Delta) 34 imply that fecal shedding may also vary between 448 

some variants. It is possible that models that relate influent viral load to cases within the 449 

community may need to be adjusted in the future to account for the prevalence of specific 450 

variants within the population served by the WWTP CA. It also provides public health 451 

authorities with an unbiased surveillance network for other viral and bacterial infections, 452 

including antimicrobial resistance genes, shed in feces. Until the COVID-19 pandemic, WBE 453 

was predominantly limited to the surveillance of a narrow range of viruses (e.g. polio, 454 

norovirus, Hepatitis A/E) in low resource, sewered settings 35-37. This study demonstrates the 455 

rapid inception, development, validation and operationalization of a national COVID-19 WBE 456 

program to provide community surveillance during the pandemic. 457 

 458 
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Supporting information: Additional experimental details, materials, methods and results, 459 

including the relationships between SARS-CoV-2 viral RNA concentration or load and test 460 

positivity or reported cases for each wastewater treatment plant included in the study. 461 

 462 

463 
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