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Abstract  11 

Groundwater is a critical resource enabling adaptation due to land use change, 12 

population growth, environmental degradation, and climate change. It  can be a 13 

driver of change and adaptation, as well as effectively mitigate impacts brought 14 

about by a range of human activities. Groundwater quality is key to assessing 15 

groundwater resources and we need to improve our understanding and coverage of 16 

groundwater quality threats if we are to use groundwater sustainably to not further 17 

burden future generations by limiting resources and/or increasing treatment or 18 

abstraction costs. Good groundwater quality is key to progress on a range of 19 

Sustainable Development Goals, but achievement of those goals most affected by 20 

groundwater contamination is often hindered by of a lack of resources to enable 21 
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adaptation. A range of threats to groundwater quality exist, both natural and 22 

anthropogenic, which may constrain groundwater use. However, groundwater often 23 

provides good quality water for a range of purposes and is the most important water 24 

resource in many settings. This special issue explores some of the key groundwater 25 

quality challenges we face today as well as the opportunities good groundwater 26 

quality and treatment solutions bring to enhance safe groundwater use. Legacy 27 

anthropogenic contaminants and geogenic contaminants may be well documented in 28 

certain places, such as N America, Europe and parts of Asia, however, there is a 29 

real issue of data accessibility in some regions, even for more common 30 

contaminants. This paucity of information can restrict our understanding and ability to 31 

manage and protect groundwater sources. Compared to surface water quality, large 32 

scale assessments for groundwater quality are still scarce and often rely on 33 

inadequate data sets. Better access to existing data sets and more research is 34 

needed on many groundwater quality threats. Identification and quantification of 35 

these threats will support the wise use and protection of this subsurface resource, 36 

allow society to adequately address future challenges, and help communities realise 37 

the full potential of groundwater.  38 
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1. Introduction 45 

Groundwater is the largest freshwater store on earth, its use underpins a huge range 46 

of human activities as well as important ecosystems (Margat and Van der Gun, 47 

2013; Rohde et al., 2017). Historically, groundwater quantity has often been the 48 

focus of groundwater resource assessments, and there is a real need to now focus 49 

more attention towards groundwater quality. There is a direct connection between 50 

stores of available freshwater provided by groundwater and their status and utility in 51 

terms of quality (Gleeson et al., 2020). The excellent quality provided by 52 

groundwater in many regions, often reflecting the degree of protection from surface 53 

contaminants that groundwater provides, is critical for sustaining agriculture, 54 

industry, drinking water services and is fundamental to reaching key Sustainable 55 

Development Goals (SDGs), e.g. SDGs 2, 6, 9, 11 (UN 2019). However, there are 56 

several natural and human-induced water quality threats to groundwater which may 57 

constrain its use and necessitate treatment prior to consumption (WWQA, 2021). 58 

The recent World Bank report ‘Quality Unknown: The Invisible Water Crisis’ 59 

(Damania et al., 2019), made almost no mention of groundwater quality nor a clear 60 

distinction between the threats affecting surface water and groundwater. This is 61 

telling and perhaps exposes two important issues: the lack of visibility of 62 

groundwater quality as an important topic and the more limited compilation of 63 

groundwater-quality data at a global scale compared to surface-water data (WWQA, 64 

2021). Working towards a global groundwater quality assessment is important 65 

because of the significant pressures placed upon quality by human activities and 66 

climate variability. Protection of groundwater resources is necessary for protecting 67 

human health, groundwater-dependent livelihoods and ecosystems. Many regions 68 
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globally rely on naturally clean groundwater as advanced centralised water treatment 69 

is not feasible due to logistics and costs (Howard et al., 2006; Edokpayi et al., 2018; 70 

Khan et al., 2020). Knowing where to source clean groundwater, as well as 71 

understanding threats to this resource, and sustainable treatment solutions is 72 

therefore of paramount importance. 73 

Recent studies assessing the availability of groundwater have begun to consider the 74 

quality dimension and factor in the potential constraints due to poor water quality 75 

(Gleeson et al., 2020). Indeed, in the Indo-Gangetic Basin, the world’s most heavily 76 

abstracted aquifer system, groundwater quality constraints have been shown to 77 

exceed those due to depletions in groundwater stores caused by over-pumping 78 

(MacDonald et al., 2016). Deterioration of groundwater quality is a global threat, 79 

impacting at a range of scales, from localised point sources of contamination e.g. 80 

from septic tanks or pit latrines (e.g. Graham and Polizzotto 2013), to diffuse 81 

pollution affecting large aquifer systems e.g. nitrate contamination (Ascott et al., 82 

2017) or salinity induced by irrigation (Bouafar and Kuper 2012). Natural 83 

groundwater quality may also be compromised, for example geogenic arsenic, 84 

fluoride and natural sources of salinity impacts compromise drinking water quality 85 

use of groundwater for irrigation. Thus, natural groundwater quality needs to be 86 

understood and the risks of groundwater development in compromised environments 87 

mitigated before development and use (Smedley and Kinniburgh 2002; Edmunds 88 

and Smedley 2013; Hug et al., 2020). There are many groundwater quality threats 89 

that occur at a global level, underpinned by common geological controls and drivers 90 

in land use, land management and stewardship. 91 
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It is also important to recognize that surface water and groundwater are closely 92 

linked – pollution of one can pollute the other. Worldwide, a large volume of river and 93 

streamflow discharge is sourced from groundwater as baseflow, with many rivers 94 

deriving over half their flow from groundwater sources (Swanson et al 2020; Beck et 95 

al 2013). Particularly vulnerable are springs and wetlands where subsurface 96 

contamination can directly impact groundwater-dependent ecosystems (Springer et 97 

al. 2008; Kreamer et al. 2015). 98 

This special issue provides a unique collection of papers which address some of the 99 

water quality challenges we face at a global scale. It covers opportunities that 100 

groundwater provides for a range of uses, and covers some treatment and 101 

management solutions for several key groundwater quality threats. Groundwater 102 

quality threats are varied, this Special Issue covers many of these (e.g. faecal 103 

contaminants, salinity, arsenic, fluoride, radionuclides, iron, manganese, pesticides 104 

and per- and polyfluoroalkyl substances) but clearly it was beyond the scope of this 105 

special issue to deal with all groundwater quality challenges. Indeed, many are 106 

covered in other recent publications (e.g. Horst et al., 2018; Stockdyk et al., 2020; 107 

Wang et al., 2020; Andrade et al., 2020; Podgorski and Berg 2020; Bunting et al., 108 

2021; Birhanu et al., 2021). This collection provides evidence from large scale 109 

studies and some examples from data-scarce regions and emphasises the critical 110 

importance of groundwater quality when considering water availability and protection 111 

of water sources for future water use. This special issue comes at a time when our 112 

focus is drawn towards the importance of groundwater - the UN World Water Day 113 

2022 is focussed on “Groundwater: Making the Invisible Visible”, and the threats 114 

from climate change (COP26). The special issue provides a timely reminder of the 115 
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groundwater-quality challenges we continue to face as well as the opportunities it 116 

can bring to build resilient and sustainable water supplies today and in the future.  117 

2. Capacity for aquifers to buffer water quality threats 118 

One of the core attributes of groundwater is its ability to provide high-quality water 119 

which requires limited treatment for drinking water in many cases. This is due to the 120 

protective cover provided by the soil as well in cases with deeper unsaturated zones. 121 

This means that surficial contamination sources can be attenuated through a 122 

combination of physical, chemical and biological processes. While the protective 123 

properties of groundwater systems can be absent or by-passed in some instances, 124 

overall groundwater is much less susceptible to high levels of surface contamination 125 

compared to surface waters. This water-quality buffering capacity mirrors the water-126 

quantity buffering capacity of groundwater compared to surface sources replenished 127 

directly by rainfall and runoff. 128 

Shallow groundwater systems are evidently more susceptible to surficial 129 

contamination threats from anthropogenic sources compared to deeper groundwater 130 

systems with much longer residence times (Lapworth et al., 2015, 2013; Banks et al., 131 

2021). In some cases, geogenic sources of contamination (e.g. As and U) are hosted 132 

in surficial and shallow sediments or deposits which limits the use of these more 133 

easily accessible aquifers for drinking-water supply and irrigation (Nickson et al., 134 

1998; Smedley and Kinniburgh 2002; Van Geen et al., 2006). However, in many 135 

settings the water quality of shallow aquifers is highly suited for other uses such as 136 

industry. This raises the issues of development of deeper groundwater sources 137 

which are replenished over much longer timescales (Bethke et al., 1999; Edmunds et 138 

al., 2006; Hoque and Burgess 2012). At intermediate depths in many sedimentary 139 
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basins fresh paleo waters that are present in some regions provide important 140 

sources of drinking water (e.g. Michael and Voss 2009; Burgess et al., 2010). At 141 

greater depths water quality can deteriorate and at the base of many sedimentary 142 

systems flow is often limited and saline groundwaters are found (Ferguson et al., 143 

2018).  144 

3. Global threats to groundwater quality 145 

There are numerous global treats to groundwater quality, and these can be 146 

categorised broadly into two groups – those controlled by variations in geogenic 147 

contaminants such as arsenic and fluoride, and those introduced by human activities 148 

either at the surface or at depth which compromise groundwater quality. Examples 149 

include the deterioration of groundwater quality due to over pumping of coastal 150 

aquifers (Tam et al., 2014), the mobilisation of buried contaminants due to pumping 151 

and the influx of fresh sources of organic matter (Lawson et al., 2016) and the 152 

stimulation of denitrification due to flooding in alluvial aquifer systems or raised 153 

groundwater levels (Bernard-Jannin et al., 2017). 154 

Threats to groundwater quality have been researched for many decades, necessitate 155 

treatment in some cases and limit water use globally. These include threats from 156 

contaminants derived from agricultural activities, e.g. nitrate, plant protection 157 

products and co-contaminants of fertilisers such as uranium (Kolpin et al., 1998; 158 

Squillace et al., 2002; Liesch et al., 2015; Padilla et al., 2018). Threats from industry 159 

and urban settlements, e.g. heavy metals, petroleum based contaminants, selected 160 

waste water organics and microbiological contaminants (Lapworth et al., 2012; 161 

2017a; Hepburn et al., 2019; Diaw et al., 2020; Steelman et al., 2020). There are 162 

also threats from widely occurring geogenic contaminants, e.g. arsenic, fluoride, 163 
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radionuclides, iron, manganese (Coyte et al., 2018; Johnson et al., 2018; 164 

Bhattacharya et al., 2020). High salinity is perhaps one of the most pervasive and 165 

challenging groundwater quality issues and can arise due to natural sources of 166 

salinity as well as anthropogenic sources and drivers of salinity (Micheal et al., 2013; 167 

Comte et al., 2016; Thorslund and van Vliet 2020). Many of these water quality 168 

threats are the focus of papers within this special issue due to their global footprint. 169 

While the groups of contaminants described above pose a global threat and are 170 

better characterised than other contaminants, there are still many regions for which 171 

basic information on water-quality parameters such as nitrate and salinity are 172 

inaccessible or have not yet been collected. This lack of data and knowledge is in 173 

itself a challenge for using and managing groundwater resources effectively. 174 

There are also many new groups of contaminants, often referred to as ‘emerging 175 

contaminants’ or ‘contaminants of emerging concern’ such as per- or polyfluorinated 176 

organic compounds, pharmaceuticals, microplastics, nanomaterials and a whole 177 

range of organic breakdown products. These new types of threats to groundwater 178 

clearly have a global footprint, but there is still limited evidence globally with which to 179 

understand their occurrence, controls and wider impacts on groundwater quality (Re 180 

et al., 2019; Lapworth et al., 2019; Panno et al., 2019). This is due to both the costs 181 

of analysis for these groups of contaminants, in some cases still developing 182 

protocols for sampling and analysis (e.g. microplastics), and the lack of regulatory 183 

drivers for the collection of this type of water quality data in groundwater in many 184 

regions (Re et al., 2019; Lapworth et al 2019). To date, the focus of many of these 185 

emerging contaminants has been in surface-water bodies due to the dominant risk 186 

posed by many of these contaminants, but more work clearly needs to be 187 
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undertaken to improve our understanding of pathways and threats to groundwater 188 

sources from these types of contaminants. 189 

The field of microbial contamination in groundwater is arguably still a rapidly 190 

progressing research area, particularly for more challenging microbes such as 191 

viruses (Stokdyk et al., 2020; Sorensen et al., 2021). The issue of anti-microbial 192 

resistance (AMR) is a very active and developing field of research. However, there 193 

are still only limited studies focussing on groundwater systems as hosts for 194 

conditions which enhance AMR including drivers due to complex mixtures of organic 195 

contaminants and other stress factors (Andrade et al., 2020). Much like the field of 196 

‘emerging organic contaminants’, recent advances in analytical and data processing 197 

capabilities are rapidly advancing our ability to understand biological threats and the 198 

complexity of groundwater biomes in more detail. Several contributions in this 199 

special issue address these more emerging threats, including microbiological 200 

contamination and remediation, and contamination from pharmaceuticals and other 201 

emerging organic compounds.  202 

4. Opportunities for groundwater development and assessment 203 

While there is considerable evidence from many regions globally that over-204 

abstraction is depleting groundwater stores (Wada et al., 2010), there are many 205 

regions with underutilised groundwater potential (MacDonald et al., 2012; Cobbing 206 

and Hiller 2019). There are large humid regions in Africa for example, that have 207 

sufficient recharge and groundwater stores to support more abstraction and 208 

adaptation to climate impacts (MacDonald et al., 2019; 2021). Many of these regions 209 

are relatively sparsely populated, have had more limited surficial contaminant loads 210 

compared to many other regions (e.g. Europe) with a long legacy of use of synthetic 211 
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fertilisers and plant protection products, and generally contain groundwaters with 212 

good water quality even when drinking-water quality standards are used as the 213 

criterion for assessment (Silliman et al., 2007; Anku et al., 2009; Rivett et al., 2018; 214 

Lapworth et al., 2013; 2019). Many shallow basement and sedimentary aquifers 215 

contain groundwater with low total dissolved solids contents due to the nature of 216 

recharge and water-rock interactions and are suitable for irrigation use (e.g. 217 

Lapworth et al., 2021; 2020; 2017b). However, often assessments of the suitability of 218 

groundwater for irrigation ignore groundwater quality (Altchenko and Villholth 2015) 219 

or only feature once water quality problems are well documented and widespread 220 

(e.g. Feng et al., 2005). In basement settings, it is often water quantity and the rate 221 

of replenishment that may constrain development of groundwater for a range of uses 222 

(MacDonald et al., 2021). While there is a critical role for deeper groundwater 223 

resources in settings where shallower sources are contaminated it is important to 224 

monitor abstraction and changes in water quality to ensure that there is no 225 

contaminant breakthrough from shallower aquifers as a result of abstraction or poor 226 

borehole construction (Ravenscroft et al., 2018; Lapworth et al., 2018a, 2018b). 227 

A range of Managed Aquifer Recharge (MAR) schemes exist at different scales 228 

which can potentially enhance groundwater recharge and quality locally. Many 229 

schemes have taken water quality considerations into account, either through the 230 

use of the unsaturated zone or though pre-treatment technologies prior to injection or 231 

infiltration into aquifers. However, where this has not been factored in or where there 232 

is opportunity for rapid by-pass flow it is possible that groundwater quality may be 233 

compromised under such schemes – this is a particular risk for direct injection 234 

schemes (Dillon et al., 2020a). MAR may in some circumstances promote the 235 

improvement of groundwater quality (Dillion et al., 2020b) through changes in redox 236 
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conditions and subsequent denitrification or sorption of contaminants, or through 237 

dilution in regions impacted by salinity. 238 

Groundwater of varying natural quality can be used for different purposes, for 239 

example industry, aquaculture, irrigation and livestock all have different water quality 240 

considerations. As such, there may be opportunities to exploit groundwater for 241 

livelihoods even if it is not suitable for human consumption without prior treatment. A 242 

wide range of existing and new technologies (e.g. filtration methods, osmosis, new 243 

membrane technology and the use of nanotechnology) to improve water quality and 244 

remove or reduce bacteria, arsenic, fluoride, iron and salinity, to name a few 245 

examples are available (WHO 2009; Boving et al., submitted; Richards et al., 246 

submitted). These new technologies represent an opportunity to increase the use of 247 

groundwater and develop new groundwater resources and is the topic of some of the 248 

contributions to this special issue.  249 

The use of machine learning and other statistical methods have, in some cases, 250 

enabled regional- or global-large-scale assessments to be made, but these are still 251 

constrained by the availability of reliable observations and the use of proxy input 252 

data sets (Podgorski et al., 2018; 2020). The use of sensors can also improve our 253 

understanding of particular threats to groundwater quality and may enable more 254 

high-resolution data (in both space and time) to be gathered rapidly for selected 255 

parameters such as nitrate, salinity (e.g. Dulaiova  et al., 2010; Opsahl et al., 2017) 256 

and threats from faecal contamination (e.g. Sorensen et al., 2016; Ward et al., 2020). 257 

However, there is still a fundamental issue of poor coverage of groundwater-quality 258 

data and limited availability in many regions (much of Africa, parts of Asia and S 259 

America), as well as data bias in certain regions and for certain parameters (e.g. S 260 
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Asia for arsenic and parts of Europe and N America for many parameters), which 261 

limit assessments undertaken at scales comparable to those for rivers and lakes.  262 

4. Concluding remarks and future outlook 263 

Groundwater quality treats arise due to due to human activities and due to naturally 264 

occurring geogenic sources of contamination.  Anthropogenic activities can also both 265 

enhance and mitigate threats to groundwater quality. Groundwater should also be 266 

recognised as an opportunity and underutilised resource in some settings with 267 

enormous adaptive potential.  The recent World Bank assessment of global water 268 

quality (Damania et al., 2019) highlights the critical need for more emphasis on 269 

groundwater quality as an important aspect of water resource assessment. It also 270 

demonstrated the limited visibility of both global groundwater quality threats and 271 

opportunities. Very few studies have been able to make truly ‘global’ assessments of 272 

groundwater quality (e.g. Ascott et al., 2017; McDonough et al., 2020; Thorslund and 273 

van Vilet 2020; Podgorski and Berg, 2020) and for those which have, there are 274 

clearly large data gaps for many regions. There is an urgent need to improve data 275 

coverage in some regions such as Africa and parts of Asia and South America and 276 

to coordinate initiatives focussed on making data more accessible (WWQA 2021). 277 

Good groundwater quality underpins progress on a range of Sustainable 278 

Development Goals and can provide safe and resilient water supplies, able to buffer 279 

changes in climate extremes as well as other anthropogenic pressures such as land-280 

use change. The adage ‘you can only manage what you know’ is true in many 281 

senses regarding groundwater quality. It is probably fair to say that while there has 282 

been massive progress in the last three decades on the understanding of 283 
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groundwater quality threats, their complexities, as well as the opportunities 284 

groundwater quality brings, a great deal remains to be done on this topic.  285 

There are many potential threats to groundwater quality that we are aware of and 286 

which are well understood, and other ‘emerging threats’ that we are only just starting 287 

to investigate. There continue to be rapid advances in analytical techniques, 288 

statistical methods and treatment technology which will, over the coming years 289 

broaden our understanding of groundwater threats and also provide potential 290 

solutions. Large stores of shallow groundwater with water quality suitable for a range 291 

of uses still have the potential to be utilised, these include humid regions with high 292 

annual recharge, as well as less humid and more water-scarce regions where 293 

groundwater is the only reliable source of water (MacDonald et al., 2021). However, 294 

water quality and quantity assessments are rarely undertaken in parallel to allow a 295 

more complete assessment of water security, and this is clearly an area where 296 

improvements can be made. The quality of groundwater is key to assessing 297 

groundwater resources at a range of scales from local to global and this assessment 298 

needs to be improved if we are to realise their potential.  299 

 300 
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