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Abstract: This study was based on a geochemical soil survey of Stoke-on-Trent in the UK of
747 surface soil samples analysed for 53 elements. A subset of 50 of these soil samples were analysed
for their bioaccessible As and Pb content using the Unified Barge Method. Random Forest modelling,
using the total element data as predictor variables, was used to predict bioaccessible As and Pb
for all 747 samples. Random Forest modelling, using inverse distance weighed predictors and
bedrock and superficial geology, was also used to map both total and bioaccessible As and Pb on
a 400 × 400 spatial prediction grid with a 50 m resolution. The predicted bioaccessible As ranged
from ca. 1 to 8 mg/kg and the total As ca. 8 to 45 mg/kg. The bioaccessible Pb and the total Pb both
covered the range ca. 16–1200 mg/kg, with the highest values for both forms of Pb showing similar
spatial distributions. Predictor variable importance and information on past industry suggest that
the source of both of these elements is driven by anthropogenic causes.

Keywords: arsenic; lead; soil; Stoke-on-Trent; bioaccessibility

1. Introduction

Soils act as sinks and sources of potentially harmful elements (PHE), which can be
associated with the underlying geology and deposition of contaminants from previous land
use. The range and distribution of past and present industrial activity provides a challenge
for understanding the complex mixtures of contaminants in soils. The potential hazard to
human health from reuse of this land (e.g., housing and greenspace) can be assessed by the
identification and quantification of the total soil PHE content, but this can overestimate the
potential hazard to human health, as it assumes that the total content will be available for
uptake in the human body after accidental exposure [1,2]. To reflect solubility of soil PHE
after accidental exposure, bioaccessible studies provide a physicochemical estimation of
the amount of contaminant available for uptake in the body. Understanding the sources of
PHE and, as a result, the potential mobility is therefore important in efforts to understand
the potential for—and impacts of—repurposing of land.

Stoke-on-Trent is a post-industrial city in North Staffordshire, UK. The city, an amal-
gam of six towns (Burslem, Longton, Stoke, Tunstall, Fenton and Hanley), covers an area
of 36 square miles (93 km2) and has a combined population of ca. 250,000 (Figure 1) [3].
Known as the ‘potteries’, Stoke was the home of the pottery industry in England, with
over 100 potteries between the 1700s and the present day [4,5]. Many of these were owned
by different generations of the same families and, with others, amalgamated over time.
Notable pottery manufacturers include Royal Doulton, Middleport and Wedgewood in
Burslem, Dresden and Gladstone in Longton and Spode and Minton in Stoke [5]. In ad-
dition to tableware potteries, there were sanitary ware manufacturers, such as Armitage
Shanks and Twyfords. The pottery industry was initially founded on the abundance of
coal and clay suitable for earthenware and brick production (e.g., Grey and Etruria Marls,
Fireclays) which overlay the Coal Measures [6,7]. Later, the importation of China clay
supported the development of more delicate tableware.
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Figure 1. Map of Stoke-on-Trent and surrounding towns.

Manufacture of colours and chemicals for potteries, glazed bricks manufacturers,
glassmakers and enamellers were also present across the area. The variety and colour of
pottery was derived from the metal oxides (Cd, Cr, Cu, Co, Fe, Mn, Ni, U and V) and the
composition of the glazes (SiO2, Al2O3, CaO, SnO2 PbO and FeTiO2) used in the decorative
processes [8].

The Staffordshire coalfield supported the development of Stoke as an industrial city.
Stretching from Madely in the west, the coalfields went as far as the Towerhill colliery in
the north and the Foxfield and Hem Heath collieries in the east and south, respectively [9].
Early workings of the coal measures were established around the Hanley, Burslem, Tunstall
and Longton areas of the city, with deep pits at Chatterly, Whitfield and the Red Street area
central to opencast mining. Naturally elevated concentrations of PHE, such as As, V, Mo,
Cu, Ni, Zn, Pb, can be found in the coal measures that surround the city [8].

Stoke-on-Trent was also home to numerous steel and iron works. The largest of these
was the Shelton Bar Steelworks, which stretched across the Etruria Valley. The works, at
its height, employed a workforce of 10,000 and included multiple coal mines, steelworks,
rolling mills and blast furnaces before finally closing in 2000. To reduce the distance
between the fuel and the furnace, furnaces would be on the same site as the coal mine.

Industrial activity in Stoke, including provision of raw materials for both the pottery
and steel industries (and exportation of products), was supported by multiple transport
links. Railway lines running through the city included what is now known as the West
Coast Mainline (WCM) and the North Staffordshire Railway (NSR). Tramways and mineral
railway lines crossed the region, providing vital links between the coalfields and claypits
and the potteries and local industries. One such linkage was the potteries’ loop line [10].
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The loop line ran from the Etruria works to Kidsgrove. Additional support was provided
through the construction of the Trent/Mersey and Cauldon canals, which ran alongside
the WCM and NSR, respectively. Engineering, carriage and wagon works were situated in
the area to support rail activity.

The rapid growth of the local pottery and steel industries (and the large supporting
coal industry) resulted in a large conurbation mixing residential, retail and industrial
developments. The by-products of the range of activities in Stoke included furnace slag
and ceramic waste, which were often repurposed as sources of urban fill and made into
ground material for the building of required urban infrastructure as the city grew [8].

The industry of Stoke has left a landscape rich in industrial heritage, as shown in
Figure 2, characterised by the once widespread bottle kilns, canals, wharfages and dis-
used railways. Regeneration of Stoke has repurposed large areas of previously used and
potentially contaminated land for industrial, residential and community/greenspace use
(Figure 3, Table 1) today, over one third of the city is green, open space [11].

In this work, we chose to study the total bioaccessible concentrations and spatial
distribution of As and Pb, common priority soil contaminants, for human health risk
assessment. The work used modelling approaches to identify PHE relationships to naturally
occurring and anthropogenic elements from historical land use found concurrently in soil
samples for the development of predictive distribution maps to support future urban
planning activities.
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Table 1. Regeneration of Industrial sites.

Location/Land Use Land Use Post Regeneration

Apedale Mine/Ironworks Country Park

Birchenwood Colliery Tip Industrial Estate

Chatterly Whitfield Parkland

Chell Railway Cutting Colliery infill Parkland

Chell Quarry Athletic Stadium

Cobridge Clay Pit Industrial Estate

Etruria, Festival Park Country Park

Fenton Colliery Tip Industrial Estate

Lightwood Quarry Housing Estate

Parkhouse Colliery Tip Industrial Estate

Red Street Opencast Mine Housing

Rowhurst Clay Pit Industrial Estate

Silverdale Colliery Tip Pasture/Country Park

Shelton Colliery Tip/Ironworks Industrial Estate

Sneyd Hill Community Land

Tunstall Clay Pit Industrial Estate



Geosciences 2021, 11, 515 5 of 22

2. Materials and Methods
2.1. Soil Sampling and Analysis

The soil samples were part of the British Geological Survey (BGS) Geochemical Survey
of Urban Environments (GSUE) project [8], an integral part of the wider G-BASE and
TellusNI programmes. The aim of the programme was to provide an overview of the
geochemical signature of urban environments. Four samples were collected from within
each national grid—one km square on 1:25,000 topographic Ordnance Survey map. Each
was collected from the least disturbed area of unbuilt ground as close as possible to the
centre of 500 m sub-cells. Areas sampled included domestic gardens, allotments, parks,
recreational ground, or road verges, avoiding point sources of contamination. The surface
soils (n = 747), collected in 1993, were sampled at a depth of 0.15 m using a handheld auger,
air-dried and sieved to <2 mm. Fordyce et al. [8] described the details of the sampling
procedures and soil preparation as well as analytical details for the measurement of total
element concentrations by X-Ray fluorescence (XRF).

Bioaccessibility measurements (As and Pb) were carried out on a subset of 50 of the
747 soil samples collected. In order to ensure that the 50 samples were representative of the
overall data set, the soil geochemical data was clustered according to elemental groupings.
The geochemistry dataset was mean-centered and scaled to unit variance and clustered
using the “mclust” model-based clustering algorithm based on parameterized finite Gaus-
sian mixture models [12] within the R programming language [13]. Four clusters were
identified as being a parsimonious representation of different variations in geochemistry
over the region. They also represented the underlying geology. Between 10 and 17 samples
were randomly chosen from each group to make up 50 samples.

The <2 mm soil samples were further sieved to <250 µm for total and bioaccessible
PHE determination. Total element (e.g., Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo,
Na, Ni, P, Pb, Se, Si, Sr, V and Zn) concentrations in each sample were determined after
mixed acid (HNO3, HF, HClO4

−) digestion. The PHE bioaccessibility was measured after
simulated gastrointestinal extraction using the Unified Barge Method (UBM). The UBM
simulated the physicochemical conditions of the mouth, stomach and intestine by a 3-stage
sequential extraction. Details of the background to the UBM and the procedure have been
described in previous publications [14,15]. The total and bioaccessible concentrations were
measured using Inductively Coupled Plasma-Mass Spectrometry as described in works by
Middleton et al. [16] and Watts et al. [17].

For quality control purposes, one duplicate, one quality control soil (BGS 102) and one
blank were extracted within every batch, at maximum, 10 unknown samples. Extraction
data were in good agreement with the consensus values [18], with bioaccessible As and
Pb concentrations for BGS 102 of 3.96 ± 0.12 mg/kg and 16.22 ± 1.62 mg/kg, respectively,
and were also within the guidance values [18] and those reported by Hamilton et al., [19].
The repeatability (RSD) of both total and bioaccessible extraction duplicates was <10% RSD.
All blank extractions (total and bioaccessible) returned values below the method detection limits.

2.2. Bioaccessibility Modelling

Bioaccessibility modelling, in this work, refers to the statistical analysis, data process-
ing and quality assessment of actual measurements made in a subset of 50 representative
samples for the production of reliable As and Pb bioaccessibility estimates for all 747 soil
samples used in this study. Random Forest (RF) models for the bioaccessibility of As and
Pb were set up using the UBM-measured bioaccessibility of the selected 50 samples as the
dependent variable and a combination of the total element concentrations of 53 elements
obtained by the G-BASE programme, with the sample elevations and the superficial and
bedrock geology as possible predictor variables. The modelling was carried out using
the R programming language [13] with the ranger library for RF modelling [20] and the
Boruta library for selecting significant predictor variables [21]. The Boruta algorithm has
been described in detail [21]; however, briefly: the Boruta Algorithm produces a duplicate
predictor data set with each predictor randomly shuffled and joins the shuffled data set
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with the original predictors. It then builds a random forest model on the merged dataset,
making a comparison between the importance of the original variables with the randomised
variables. Only variables having higher importance than the randomised variables are
considered important.

The RF model set up for the two elements followed the procedure below:

1. Make an RF model for the bioaccessibility of the element in question using the
ranger library.

2. Use the Boruta package to select out the significant predictors.
3. Optimise the new RF model r-square by varying the “mtry” parameter (the number of

variables randomly sampled as candidates at each split) [20].
4. Run the optimised model 500 times, each time on a resampled dataset, predicting the

bioaccessibility at all 747 sampling locations.
5. Take median and median absolute deviation (mad) values for the 500 predictions at

each location to provide an estimate of the bioaccessibility and its associated modelled
uncertainty at each location.

2.3. Spatial Modelling

Spatial modelling here refers to the statistical analysis, data processing and quality
assessment procedures for the production of reliable estimates of As and Pb totals and
bioaccessibility across a regular prediction grid of points covering the area of interest from
747 soil locations. Spatial modelling and prediction, for the purposes of illustrating the
2D distribution of a contaminant in soil, has traditionally been carried out using kriging-
related techniques [22,23]. Recently, Hengl et al. [24] summarised the problems associated
with kriging and demonstrated the use and advantages of a machine learning method
(Random Forest, RF) for spatial modelling where buffer distances from observation points
were used as explanatory variables. In other studies, Kirkwood et al. [25] used an RF model
with high resolution geophysics and remote sensed data as covariates to produce a high
resolution geochemical map of the South West of England. Additionally, Sekulić et al. [26]
successfully demonstrated a similar RF approach using the nearest observations and their
distances to the prediction location as covariates.

Random Forest (RF) is a popular machine learning algorithm that consists of an
ensemble of randomised decision trees. Each tree is grown on a random subsample
of the training data and a random subset of the predictor variables to choose from at
each decision node. In this study, we used the RF modelling approach suggested by
Cave [27], in which inverse distance weighted (IDW) covariates are used as the predictor
variables and subsequently used to predict the spatial distribution of persistent organic
pollutants in London [28]. Inverse distance weighted (IDW) interpolation explicitly makes
the assumption that samples that are close to one another are more alike than those that are
further apart [29]. To predict a value for any unmeasured location, IDW uses the measured
values surrounding the prediction location. The measured values closest to the prediction
location have more influence on the predicted value than those further away. IDW assumes
that each measured point has a local influence that diminishes with distance. It gives greater
weights to points closest to the prediction location, and the weights diminish as a function
of distance—hence, the name inverse distance weighted [29]. IDW predictions require
2 parameters (the inverse distance power (p) and the number of nearest neighbours (n)) to
use. While the premise behind IDW is broadly correct, the choice of p and n is subjective
and there is no relation between the prediction and the actual spatial variability as in many
other methods (e.g., in kriging, the model relates to the spatial variance of the parameter of
interest through the variogram). In this instance, we took a series of IDW predictors with
varying combinations of p and n and used these as the predictor covariates. Then, the RF
model combined these covariates to model the estimated soil parameters at the prediction
locations. The training set was produced by using leave-one-out (loo) IDW predictions for
each sampled point and its associated contaminant concentration at each combination of p
and n. IDW pseudo-predictions at the points where the predicted soil concentrations were
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required were then calculated and used as predictor variables on the RF model produced
on the training data.

The underlying geology of a region has been shown to be an important control on the
geochemical composition of surface soils [30]. In addition to the IDW predictor covariates,
the superficial geology and bedrock geology were used as predictor variables by attributing
both the soil sample points and the prediction grid with the two geology variables.

2.3.1. Spatial Modelling Procedure

The data analysis was carried out using the R programming Language [13] and
associated libraries. The “sf” R library [31] was used to attribute the geology data to the
sampling points and prediction grid. The “ranger” R library [20] was used to carry out RF
modelling. The Boruta R library [21] was used to select the significant predictor variables
in the RF model. Preliminary checks (not reported) showed that, after the top 5–10 most
important IDW predictor combinations, the inclusion of further IDW predictors did not
meaningfully improve the root mean square error of prediction (RMSEP). The modelling
and interpolation were carried out in the following stages:

1. A series of IDW predictor variables were made up from all combinations of nearest
neighbour values of 3, 5, 7, 9,11,13,15 and inverse distance power values of 0.1, 0.5,
0.9, 1.3, 1.7, 2.1, 2.5, 2.9 (56 combinations). For the training set, the IDW predictors
were calculated for each individual point using a leave-one-out strategy. An RF model
was set up using the 56 IDW combinations as predictor variables for the determinand
in question.

2. The top 5 most important IDW combinations (measured in the RF model by the gini-
index [17]) were chosen and combined with the geology data and used to produce a
second RF model for the determinand in question. The second model was then sub-
jected to the Boruta algorithm, which selected out the significant predictors (compared
to randomly shuffled predictor variables [21]).

3. A third RF model using the significant geology and IDW predictors was then opti-
mised to get the best value of “mtry” (the number of variables randomly sampled as
candidates at each split in the decision trees used in the RF model [20]).

4. Finally, the third optimised RF model was applied to 100 bootstrap resamplings of
the original sampling points (recalculating the IDW predictors for each bootstrap
resample), with each of the resampling rounds producing data on the model fit
and predictions for the determinand in question on the prediction grid. The final
determinand prediction values at the prediction grid were calculated as the median
value from the 100 resampling rounds.

2.3.2. Modelling Accuracy and Precision

Accuracy and precision [20] for the RF bioaccessibility modelling of As and Pb were
assessed by comparing the so called “out of bag” (OOB) predicted values against the
measured bioaccessible values for the selected 50 soil samples used to set up the model.
The OOB data were, in effect, equivalent to cross-validated data (i.e., independent samples
with measured values not used in setting up the model) because, within each of the RF
model decision trees, bootstrapped samples of the original data were used so that the
samples left out by the resampling could act as independent check samples.

A similar approach was used to estimate accuracy and precision [20] for the RF spa-tial
modelling, this time using all 747 soil samples.

2.3.3. Selecting Significant Predictors

The Boruta algorithm [21] selects significant predictors by comparing their perfor-
mance to a shadow set of predictors formed by randomly shuffling the original data.
Through an iterative process, those parameters which perform better than the shadow pre-
dictors are selected as significant. The DALEX library in the R programming language [31]
provides a method for post-analysing the RF model to derive the relative importance of the
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predictor variables by measuring how much the root mean square error (RMSE) increases
when a given parameter is randomly shuffled.

Similar approaches were used for both bioaccessibility and spatial modelling using 50
and 747 soil samples, respectively.

2.4. Relationship with Industry

The geochemistry maps were superimposed onto the Ordnance Survey New Popular
Edition Historic map (1 inch to the mile) of Stoke-on-Trent (1940s) using QGIS [32] to
visualise linkages between the industrial past and the spatial soil geochemistry of the area.
This information, in conjunction with field notes taken at the time of sampling (e.g., waste
material at the sampling locations) and information on the History of the County of
Stafford [33] was used to identify previous land uses. Eight land uses were chosen for
further discussion, but the sites referenced in this work were not a complete history of the
activities, as a myriad of industries were prolific across the whole area. Table 2 provides an
overview of land uses for the purposes of this work.

Table 2. Land use classifications.

Area Dominant Industries

Tunstall (including Chell) Potteries, coal and ironstone mining, foundry,
Al works

Burslem (including Longport,
Middleport and Cobridge)

Potteries, coal and ironstone mining, brickworks,
gasworks, flint mill

Longton Potteries, coal and ironstone mining, brickworks

Hanley (including Shelton and Etruria) Potteries, foundry, flint mill, coal mining, brick and
tileworks, gasworks

Stoke (including Boothen) Potteries, gasworks

Fenton Potteries, flint mill, coal and ironstone mining,
brickwork and tileworks, locomotive works, foundry

3. Results
3.1. Bioaccessibility Modelling

The samples identified for bioaccessibility testing came from a variety of land uses,
including industrial and railway sites, road junctions, housing estates and urban green
spaces. The bioaccessible As concentration ranged between 0.66 and 11.4 mg/kg and
bioaccessible Pb ranged from 5.77 to 413.9 mg/kg.

3.1.1. Arsenic Bioaccessibility

The fifty selected samples for bioaccessibility testing were originally analysed (<2 mm)
for their total element content using XRF [8]. When the bioaccessibility of the <250 µm sub-
samples was determined, the total As concentration was also measured by acid sample di-
gestion and inductively-coupled plasma mass spectrometry (ICPMS). Figure 4A shows that
there was good agreement between the XRF and ICPMS data, with the XRF As vs. ICPMS As
lying close to the line of equivalence. Figure 4 also shows the observed linear relationship
between the XRF total As and the stomach phase bioaccessible As (R-square = 0.54), with a
slope suggesting that, on average, the bioaccessible As was ca. 21% of the total As.

The RF modelling accuracy and precision for the bioaccessible As, assessed from the
OOB predicted values against the measured bioaccessible values for the selected 50 soil
samples, are shown in (Figure 5). The distance of the points from the line of equivalence
and the size of the vertical error bars on the OOB predictions provide the estimates for the
accuracy and precision, respectively. The majority of the OOB-predicted values agreed
with the actual values within the errors indicated by the error bars.
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The Boruta algorithm selects significant predictors by comparing their performance to
a shadow set of predictors formed by randomly shuffling the original data. Through an
iterative process, those parameters which perform better than the shadow predictors are
selected as significant. The DALEX library in the R programming language [34] provides a
method for post-analysing the RF model to derive the relative importance of the predictor
variables by measuring how much the root mean square error increases when a given
parameter is randomly shuffled. This measure of importance provides some insight on the
geochemical factors controlling the bioaccessible As in the Stoke-on-Trent soils. Figure 6
shows that total Ca in the soil is the most important predictor, followed by the total As.
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The sample elevations and the superficial and subsurface geology were not found to be
significant predictor variables.
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Figure 6. Relative importance of predictor variables for the RF model of the bioaccessible As.

This suggests that the bioaccessible As was associated with a carbonate phase in
the soil. In addition, other significant predictors (such as Sb, Cu, Pb, Sn, Hg and Cd)
are commonly associated with anthropogenic sources. This is in contrast with a study
of Northampton [35] which is situated on underlying ironstone geology and where the
bioaccessible As, measured using UBM, was associated with naturally-occurring fine-
grained Fe oxyhydroxide in the soil. There, on average, the bioaccessible As was ca. 8% of
the total As.

3.1.2. Lead Bioaccessibility

In a similar manner to the total As and bioaccessible measurements, Figure 7 shows
that there was good agreement between the XRF and ICPMS data, with the XRF Pb vs.
ICPMS Pb lying close to the line of equivalence. Figure 7 also shows that the relationship be-
tween the XRF total Pb and the stomach phase bioaccessible Pb was linear (R-square = 0.82),
with a slope suggesting that, on average, the bioaccessible Pb was ca. 33% of the total Pb.

Figure 8 shows the accuracy and precision of the RF model for bioaccessible Pb.
Figure 9 shows the relative importance of the significant predictor variables. In a similar
manner to the As bioaccessibility, the sample elevations and the superficial and subsurface
geology were not found to be significant predictor variables. In line with previous stud-
ies [36], Figure 9 shows that total Pb was the most significant predictor for bioaccessible Pb.
However, the average bioaccessible Pb (as a fraction of total Pb) was towards the low end
(ca. 33%, Figure 7B) compared to that previously reported (38% [36]) for the UK. In a
more detailed study of Pb in the town of Northampton, it was suggested that the source of
bioaccessible Pb in both rural and urban soils was a fine-grained pyromorphite mineral. In
this instance, Figure 9 shows that the additional most important predictors (Hg, Ag, Sn)
were more likely to be associated with industrial processes (e.g., Hg was used in gilded
decoration on ceramics [37,38]) associated with the ceramics industry.
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3.2. Spatial Modelling of Total and Bioaccessible Concentrations

Spatial predictions of total As and total Pb and bioaccessible As and Pb were made
over a 400 × 400 spatial prediction grid with a 50 m resolution which encompassed the
soil sample locations. Table 3 gives the acronyms and the description of the bedrock and
superficial geology that appear in various combinations as significant predictor variables
for both As and Pb and their related bioaccessibility values.

Table 3. Significant geology predictor variables for the spatial modelling.

Formation
Acronym Formation Name Formation Description Formation

Origin
Geology

Type

HA Halesowen formation Sandstone Sedimentary Bedrock
CHES Chester formation Sandstone and conglomerate, interbedded Sedimentary Bedrock
ETM Etruria formation Sandstone Sedimentary Bedrock

PUCM Pennine upper coal measures formation Mudstone, siltstone and sandstone Sedimentary Bedrock

PMCM Pennine middle coal
measures formation Mudstone, siltstone and sandstone Sedimentary Bedrock

ALV Alluvium Clay, silt, sand and gravel Sedimentary Superficial

In line with the RF bioaccessibility modelling, the performance and significant predic-
tor variables for spatial modelling of total and bioaccessible As and Pb over the Stoke-on-
Trent area were assessed by comparing the actual values with the OOB predictions and
the significant variables. Additionally, we compared their relative importance using the
Boruta algorithm [21] and DALEX post-processing of the optimized rf models [34].

In order to understand how the spatial predictions from the model were influenced
by the predictor variables, Ceteris-paribus (Latin for “other things held constant”) profiles
were constructed. These show how a model’s prediction will change if the value of a single
exploratory variable is changed while keeping all other variables constant. By taking the
averages of CP profiles for each of the training set samples for a given predictor variable,
a partial dependence predictor profile for each variable was produced. This provided some
insight into how that variable contributed to the overall model output.

Figure 10 shows the spatial extent of the each of the predictor geologies.
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3.2.1. Arsenic

The accuracy and precision of the total and bioaccessible As values are shown in
Figure 11. In both instances, apart from a few outliers, the majority of the OOB-predicted
values agreed with the actual values within the errors indicated by the error bars. There
was also some indication (Figure 11) that there was a small positive bias in both forms of
As (total As > ca. 35 mg/kg and bioaccessible As > 5.5 mg/kg).
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Figure 12 shows the relative importance of the predictor variables for the spatial
prediction of total and bioaccessible As and Figure 13 shows the partial dependence of
these predictor variables. For total As predictions, geology predictor variables were more
important than bioaccessible As (Figure 12), with higher total As in the Etruria formation
(ETM) and Pennine middle coal measures formation (PMCM) and lower As in the Chester
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formation (CHES) and Halesowen formation HA (Figure 13). For the bioaccessible As, the
IDW variables were the most important predictor variables, with three geology predictors
(ALV:Alluvium); PUCM: Pennine upper coal measures formation; PMCM: Pennine upper
coal measures formation) found to be significant but still less important (Figure 12). With
all three of these geological predictors, there was an increase in bioaccessible As in these
formations (Figure 13). There was also a contrast in the shape of the partial dependence
plots for the IDW predictors between the total and bioaccessible As (Figure 13). For the
bioaccessible As, there was a relatively linear relationship between predicted values and
the IDW prediction. Nevertheless, for total As, the relationship showed a relatively flat
response, followed by a sharp increase at a breakpoint around IDW values of 20 mg/kg.

Whilst bioaccessible As was a subset of total As, the differences in the model pre-
dictors and the sensitivity of the prediction to the predictor variables suggested that the
two forms of As derived from different sources, with total As being driven by natural
abundance and anthropogenic sources and the bioaccessible fraction probably stemming
from industrial influences (anthropogenic), as indicated by bioaccessibility modelling from
the geochemistry data (Section 3.1.1).

Finally, the predicted total and bioaccessible As spatial prediction maps are shown in
Figure 14 with the As concentrations split into deciles. The bioaccessible As ranged from ca.
1–8 mg/kg and the total As ranged from ca. 8–45 mg/kg. Figure 15 shows the bioaccessible
fraction of As, where the highest values (16–57%) were concentrated in industrialized
regions as indicated in Figures 2 and 3. This suggested once more that the bioaccessible As
was associated with industrialized processes.
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3.2.2. Lead

The accuracy and precision of the total and bioaccessible Pb are shown in Figure 16
For total Pb, apart from a few outliers, the majority of the OOB-predicted values agreed
with the actual values within the errors indicated by the error bars. For bioaccessible Pb,
the OOB-predicted values agreed with the actual values within errors, up to ca. 180 mg/kg.
At higher values, there was some evidence of a positive bias (Figure 16).
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Figure 17 shows the relative importance of the predictor variables for the spatial
prediction of total and bioaccessible Pb and Figure 18 shows the partial dependence of
these predictor variables. The IDW predictors were of the highest importance for both
forms of Pb. There is an observably similar S shape for the partial dependence plots for
the IDW predictors between the total and bioaccessible Pb (Figure 18) The similarity in
the importance of predictor variables, the lack of importance of geological predictors, and
the similarity of sensitivity to predictor variables (as shown by the partial dependence
plots) suggested that both forms of lead were derived from a similar source (likely to be of
industrial origin, as discussed in Section 3.1.2).

The predicted total and bioaccessible Pb spatial prediction maps are shown in Figure 19
with the Pb concentrations split into deciles. The bioaccessible Pb and total Pb both ranged
from ca. 16–1234 mg/kg, with the highest values for both forms of Pb showing similar
spatial distributions. Figure 20 shows the bioaccessible fraction of Pb which, in contrast to
As, showed lower % bioaccessibility over the more industrialised areas, indicating that it
was less environmentally mobile than As. The Pb bioaccessibility modelling (Section 3.1.2)
suggested that bioaccessible Pb related to the glazes used in the ceramic industry were likely
to be less mobile. The spatial distribution of the bioaccessible fraction could be explained by
higher concentrations of the this less mobile form in areas related to ceramics production.
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3.3. Relationship with Industry

The Coal Measures, which underlie the city, are naturally elevated in many PHE such
as As, V, Mo, Cu, Ni, Zn, Pb [8]. The high concentrations of Pb in particular areas are a
likely result of its use as a key constituent in pottery making. English earthenware pottery
in the 18th century typically contained PbO (50%wt) compared to 30% in the medieval
era [39]. Lead was a key constituent of pottery glazes, acting as a flux, as it was easily
and cheaply obtained, had a wide firing temperature range [40], gave good even coverage
without fingerprints, prevented crazing and produced brilliant white colour [41]. Lead is
also often used in steel production to improve machinability [42]. The steel workings across
Stoke-on-Trent and the subsequent use of waste materials for infill material are potential
contributors to the dispersal of Pb across the area (Figure 19).

Compared to the distribution pattern of Pb the maps of total and bioaccessible As
are more diffuse in nature, reflecting the natural background concentrations associated
with the underlying coal measures [43]. High concentrations of total As (>35 mg/kg) were
found in Longton near a brick and pipe works and in the surrounding area, in Tunstall
and around the Chatterley Whitfield coal workings (Figure 14). Sites with bioaccessible
As concentrations greater than 7.4 mg/kg were dotted across the area. In particular, high
concentrations were seen at locations of gas and Al works, tile works, brick works and
potteries. However, the bioaccessible concentrations were significantly lower than the
total concentrations.

The pattern of PHE distribution along the railway lines (WCML, NSR, potteries loop
line) served to highlight the association of the presence of Pb in surface soil with the
transport of materials to and from industrial activities, e.g., coal, metal production and
pottery. Figures 14 and 19 show the close proximity of a range of industrial activities across
Stoke-on-Trent. Sites of previous pottery making were often co-located with gasworks,
foundries, tileworks and brickworks sites. For example, in Etruria, the potteries were closely
associated with a foundry; in Hanley, with a colliery and a foundry and, in Middleport, a
pottery and brick/tileworks.
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The Stoke-on-Trent Brownfield register for 2021 [44] showed a large number of sites
on or close to sites with high concentrations of both total and bioaccessible Pb, primarily
near pottery locations, in the east of Etruria and north east of Longport.

4. Conclusions

A combination of laboratory-based bioaccessibility testing, understanding contami-
nants’ chemical forms and spatial geochemistry (with land use information) was used to
highlight the impact of historical land use and industrial activities on human exposure to
PHE in cities. The bioaccessibility maps represent an important resource for contaminated
land risk assessments and land use planning and could be applied as a standard approach
for urban centres. Inclusion of predictive bioaccessible fraction mapping provides an
indication of the relative mobility of PHE compared to the total PHE concentrations on a
wider spatial scale.

This study examined how the combination of RF with IDW predictors could be used
to produce spatial prediction models of the total and bioaccessible fractions of poten-
tially harmful elements in an urban environment with quantitative assessment of accu-
racy and precision. For the purposes of risk assessment, however, the outcomes of the
models—namely, the predicted bioaccessible and bioaccessible fractions of As and Pb and
their associated uncertainty—were the key measurements arising from the study. These
data can be directly used in risk assessment models.

The lack of mineral deposits of Pb and As in the area suggested that the surface
contamination was a result of industrial activity. The distribution of As and Pb was most
likely driven by industrial activity across Stoke-on-Trent, which is interlinked through
transport routes, some of which were specific to particular industries and the linkages
between them (e.g., the potteries loop lines, minerals railways and canals). Widespread
distribution can be attributed to the plethora of mining activities across the region.
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