
1. Introduction
Over the last century, anthropogenic use of water rose dramatically (UN-Water, 2020) enabled by the develop-
ment and usage of pumps to extract groundwater (de Graaf et al., 2019; Shah et al., 2001). In the 21st century, 
global projected population growth and climate change are together expected to intensify the demand for water 
and lead to greater pressures on available freshwater resources (UNDP, 2006). Water abstraction (also known as 
water withdrawal) is the process of removing water from a surface water source (such as a river, stream, lake, 
or reservoir) or from an underground source (aquifer) or from a tidal water source, either permanently or tem-
porarily. Typically, abstracted water is used for agricultural (irrigation, livestock, and aquaculture), industrial, or 
municipal (direct use by the population) purposes (FAO, 2016). Abstracted water can be returned to the land (e.g., 
by irrigation) and to rivers (e.g., through discharges from waste water, sewage treatment processes, and industry). 
Abstracted water returned to the land is largely lost from the catchment through evaporation and transpiration 
processes. In the 20th century, the global freshwater withdrawal for agriculture, industry, and municipal uses was 
estimated to have intensified by a factor of six (UN-Water, 2020) as a result of global population and economic 
growth, and technological advances. FAO (2011) indicates that the global renewable water resource is about 
42,000 km3 year−1, of which about 3,900 km3 year−1 is abstracted from surface water and underground sources, 
70% for use by the agricultural sector, 19% by the industrial sector, and 11% by the municipal sector.

The spatial and temporal distribution of a country or region's water resources can play an important role in 
environmental, political, and economic sustainability (OECD, 2016), particularly when water is scarce. Anthro-
pogenic water use often reduces water availability, but reliable data to monitor and quantify this water use is 
often lacking in those countries where it is most needed. For example, spatiotemporal water use data are not 
generally available for water resource-stretched regions such as South Asia and the African continent, but they are 
available for most European countries, the Americas, Australia, New Zealand, Japan, Korea, Turkey, and Israel 
(ANA, 2018; OECD, 2016; Santato et al., 2016).
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Although anthropogenic influences on natural river flows, such as water abstraction and discharge, can have a 
significant impact on river flows and freshwater ecosystems, many hydrological models do not explicitly include 
spatiotemporal actual (observed) abstraction and discharge data because such data are scarce or have restricted 
availability (Arheimer et al., 2020; Sood & Smakhtin, 2015; Veldkamp et al., 2018). The 2016 review of catch-
ment-to global-scale hydrological models, Kauffeldt et al. (2016) identified 13 out of 24 models that have process 
representation for water use (see Table A1, Kauffeldt et al., 2016). Some hydrological models rely on calibration 
of model parameters using gauged river flows (e.g., PDM [Moore, 2007], DECIPHeR [Coxon et al., 2019], GR4J 
[Perrin et al., 2003]) and can implicitly take account of the impact of abstractions and discharges through the cali-
bration process, however nonstationarity in abstraction and discharge volumes cannot easily be accommodated 
through parameter calibration. Hydrological models that explicitly account for human water use are becoming 
more common, but tend to use published statistics of water use rather than spatiotemporal data. For example, the 
water resources model GWAVA (Horan et al., 2021), typically incorporates static estimates of water use based 
on household and irrigation census and published statistics (e.g., AQUASTAT data - FAO, 2016) in the Cauvery 
and Narmada basins in India. Across Europe, the European Flood Awareness System (EFAS: https://www.efas.
eu/, Arnal et al., 2019) also incorporates data on artificial influences in its underlying hydrological model LIS-
FLOOD, but does not currently exploit spatiotemporal data for individual countries. Instead, the EFAS system 
spatially distributes country-scale estimates of domestic, agricultural, and industrial water use from regional 
statistics (FAO, 2016 and Eurostat data; Vandecasteele et al., 2014). Water resource system models also take 
some account of anthropogenic water demand. For example, the WATHNET system (Kuczera, 1992; Mortazavi 
et al., 2012) explicitly represents networks of storages, rivers, transfer links, and water demand. In a recent appli-
cation of WATHNET to the UK's Thames water supply system, Hall et al. (2020) included simplified data sets of 
abstractions, storage facilities, and discharges.

Larger-scale hydrological approaches such as global hydrological and land surface models can also take some 
account of anthropogenic influences, but these are most typically included as human impact/management pa-
rameterizations rather than via detailed spatial data sets. Models that take account of abstractions and discharges 
include WaterGAP (Döll et al., 2014), PCR-GLOBWB (Sutanudjaja et al., 2018), H08 (Hanasaki et al., 2018), 
and the regional-scale HMF-WA (Rameshwaran et al., 2021). In a similar way to many hydrological models, 
the abstraction and discharge volumes are generally estimated from global statistics (e.g., AQUASTAT data -  
FAO, 2016) and/or estimates of anthropogenic and agricultural water requirements. For example, for the glob-
al-scale H08 model, Hanasaki et  al.  (2018) estimated water abstraction amounts from sectoral water use re-
quirements, and validated against published data from AQUASTAT and other models (e.g., WaterGAP and 
PCR-GLOBWB). A similar approach is used in both GWAVA and the integrated terrestrial model MIROC-IN-
TEG1 (Yokohata et al., 2020), for which human influences are calculated from available countrywide sectoral 
data, including spatial information on population, livestock, and irrigated areas.

Across England, a license is needed to abstract more than 20 m3 of water per day from surface water, groundwater, 
or tidal water (DEFRA, 2016), and annual records of licensed and actual amounts are stored by the Environment 
Agency providing a spatiotemporal resource of abstractions across the region. For some of these licenses, ab-
straction is constrained by a Hands off Flow (HOF) condition, requiring abstraction to reduce or stop if the river 
flow drops below a specified threshold. This requirement is designed to protect river ecosystems at low flows or 
during drought conditions, and the HOF condition is most likely to apply during dry years. The Environmental 
Flow Indicator (EFI) plays a vital role in assessing abstraction pressures on river ecosystems. The EFI is used 
to support Good Ecological Status under the EU Water Framework Directive (WFD), which is expressed as an 
allowable percentage deviation from the natural river flow (Dunbar et al., 2004; Klaar et al., 2014) and determines 
additional water availability for licensing. Unless there is a locally agreed alternative procedure, the Environment 
Agency uses the EFI as the default method for impact assessments of abstraction on river flows.

During dry summer periods, anthropogenic discharge can contribute more than 60% of the flow in some riv-
ers, with significant implications for freshwater ecosystems and the potential for downstream abstractions (DE-
FRA, 2014). Despite licenses and regulations, there are indications that almost 20% of the surface water sources 
are overabstracted and at risk of not meeting good ecological status (DEFRA, 2019a). Maintenance of environ-
mental flows is essential for healthy freshwater ecosystems (Castella et  al., 1995; Dunbar et  al., 2004; Klaar 
et al., 2014; Petts, 1996) and to conserve water quality (Hutchins & Bowes, 2018; Hutchins et al., 2018).

https://www.efas.eu/
https://www.efas.eu/
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Limited but good quality data are currently available for thousands of individual locations across England con-
sisting of monthly actual (and licensed) abstraction data, HOF river conditions, and discharge data. These provide 
a baseline to understand how river flows have been affected by licensed abstraction and discharges, and enable es-
timates to be made of both observed and natural river flows across England. In order to meet the needs of a chang-
ing environment, the current system of regulation is under review (Abstraction Reform Report: DEFRA, 2019a) 
to provide efficient and secure water supply for people, businesses, and agriculture while protecting the environ-
ment. In other words, the reform is looking to facilitate sustainable use of water resources with a strong catchment 
focus that is responsive and flexible enough under future challenges. The current system of regulation has no 
dynamic link between the availability of water for abstraction upstream of a HOF condition and the availability of 
river flow in the whole catchment (EA-OFWAT, 2011). The proposed changes to managing abstraction licenses 
will impact on both the volume of water abstracted and downstream river flows within catchments. It is vital to 
incorporate anthropogenic processes such as abstraction and discharge within hydrological models to study pres-
ent day and projected future impacts of water demands and climate change on river flows (Wada et al., 2013). Liu 
et al. (2017) note that there is an urgent need for good quality data on human water use in order understand the 
impact on the hydrological cycle, and also the need for improved mathematical representation of such processes 
within models. Water managers would also benefit from improved management techniques and modeling tools to 
balance the often-competing demands of different users and the natural environment.

In this study, monthly abstraction data for England (1999–2014), along with HOF conditions, and discharge data 
for 2017, have enabled the incorporation of these anthropogenic activities into a grid-based hydrological model, 
to simulate human-modified (observed) as well as natural river flows. The Grid-to-Grid (G2G) model provides 
spatially consistent simulations of river flows at a 1 × 1 km resolution. The performance of the model has been 
assessed using gauged daily river flows for catchments across England.

2. Methodological Overview
Across the UK, abstraction data are available for thousands of individual locations, each with a license for use, 
an amount, an indication of when abstraction can take place, and the actual amount of water abstracted (generally 
less than the license amount). Discharges data are available for permitted or consented locations which include 
flow limits. Management of these licenses and permits is undertaken by the four UK regions (England, Wales, 
Scotland, and Northern Ireland), and each region is able to make a subset of these data available for research use 
under a license agreement which safeguards the confidentiality of the license holder and location. Some regions 
provide information on the licensed amounts, while others also provide a record of the actual amount of water 
abstracted each year. The work presented here will focus on England, which abstracts the greatest volume of 
water of the four regions - on average 16.8 billion cubic meters per year between 1999 and 2014 from all three 
sources (surface water, groundwater, and tidal water) - and for which records are available of the actual volumes 
abstracted.

Conversion of thousands of individual abstraction amounts and associated locations into a single spatially con-
sistent data set is a nontrivial task. One issue is that for many licensed uses (e.g., Fish Pass/Canoe Pass, River 
Recirculation, and Hydroelectric Power Generation), abstracted water is returned immediately to a river after use 
and thus has little overall impact on downstream river flows. A second data set provides estimates of individual 
discharges to rivers from sewage treatment works (STW) and other large sources. In order to estimate consistent 
data sets for the net abstraction and discharge of water in each 1 × 1 km grid cell in England from both surface 
water (rivers) and groundwater, pragmatic decisions have been made (Section 3). Figure 1 presents a schematic 
of the methodology used, highlighting the three main stages of the work: conversion of point abstraction and 
discharge data into monthly 1 × 1 km grids across England (Section 3), use of the gridded abstraction data in an 
enhanced G2G hydrological model formulation (Section 4), and finally, an analysis showing how use of the new 
data and model formulation has led to improved model simulations of gauged river flows.

3. Abstractions, Hands off Flow (HOF) Conditions, and Discharges
This section describes the steps used to provide a consistent set of surface water, groundwater, and tidal water ab-
straction data, HOF condition information and anthropogenic discharge data on a 1 × 1 km spatial grid. Figure 2 
presents maps of England showing the spatial distributions of abstraction licenses (surface water, groundwater, 
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and tidal water) active at any period of time during the years between 1999 and 2014 and discharge permits during 
2017, together with the locations of HOF conditions. The Environment Agency (EA) regions are also shown for 
reference. The maps highlight the wide spatial distribution of abstraction license and discharge permit locations 
across England (about 68,000 abstraction locations in total, of which 45.0% is surface water, 54.5% is groundwa-
ter, and 0.5% is tidal water; and there are about 7,200 discharge locations). It is worth noting that not all licenses 
permitting abstraction are used in practice. For example in 2014, water was abstracted from only about 50% of 
the 34,000 active licenses within that year. Although, the tidal water abstraction data are not currently used with 
the G2G hydrological model (Figure 1), they are included here to provide a more complete understanding of 
abstraction levels across England.

3.1. Abstractions

Every year, abstraction license holders in England are required to submit their recorded amount of water quantity 
(in most cases measured using a water meter) that has been abstracted (known as “returns”) to the EA on 28th 
April and 28th November, depending on the terms of their license. Here, a subset of these data consisting of the 
water abstraction licenses operational from 1999 to 2014 and associated monthly returns (in some cases the total 
within the abstraction period) were provided by the EA (under license for research purposes) based on informa-
tion in the National Abstraction Licensing Database (NALD).

Each abstraction license includes information on:

•  abstraction location
•  authorized period of abstraction (three categories: Summer - 1 April to 31 October, Winter - 1 November to 

31 March, and All year)
•  source type (groundwater, surface water, or tidal water)
•  licensed maximum annual and daily quantities (m3)
•  primary use description (e.g., Agriculture, Energy Production, Water Supply, and Industry)
•  point-purpose descriptor (number of points and uses per license).

Currently, there are 57 primary use descriptions with an associated use code and loss factor category (Table 1). 
The loss factor provides a high-level indication of the percentage of the abstracted water that is “lost” to water re-
sources, that is how much is not returned to the river/landscape by the license-holder or subsequent use. Any one 
abstraction license does not necessarily correspond to one location or one use, so the “point-purpose descriptor” 
indicates the number of abstraction point locations and purposes per license. Options are (a) single point – single 

Figure 1. Schematic showing how abstraction and discharge data are used within the G2G hydrological model.
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purpose, (b) single point – multi-purpose, (c) multi-point – single purpose, and (d) multi-point – multi-purpose, 
which makes the production of simple summary gridded data sets more challenging.

The returns data set provides very similar information without abstraction locations to the abstraction license, but 
importantly, it includes a record of actual abstraction values for each month or for some cases the total within the 
abstraction period. Yearly variations in actual abstractions are due to a variety of reasons including the weather, 
the issue of new licenses or changes to existing licenses, changes in the abstraction amount for different sectors, 
and improvements to the efficient use of water. Note that NALD does not hold returns for abstractions less than 
20 m3 day−1, and from 2008, abstractors with a license amount less than 100 m3 day−1 were no longer required to 
submit records of abstraction.

The location-based abstraction returns data were converted to gridded data sets of monthly abstraction totals for 
each of the 57 primary uses (Table 1) as follows:

•  Most abstraction returns values were provided monthly, however for licenses where only total annual volumes 
were available, these were divided equally over the abstraction period (start to end months).

•  Any apparent inconsistencies in license returns were resolved using simple assumptions. For example, license 
returns submitted for multiple locations but for the same purpose were summed. Multiple repeated license 
returns (identical total submitted for multiple locations and/or uses) were ignored (only one value was kept). 

Figure 2. Maps of England showing Environment Agency (EA) regions, spatial locations of abstraction licenses (surface water, groundwater, and tidal water), Hands 
off Flow conditions and discharge permits.
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Use description Code Loss factor

Animal watering and general use in non farming situations 10 Medium

Boiler feed 20 Medium

Conveying materials 30 Medium

Drinking, cooking, sanitary, washing, (small garden) - Commercial/Industrial/Public services 40 Medium

Drinking, cooking, sanitary, washing, (small garden) - Household 50 Medium

Dust suppression 60 High

Effluent/Slurry dilution 70 Very Low

Evaporative cooling 80 High

Fish farm/Cress pond through flow 90 Very Low

Fish Pass/Canoe Pass 100 Very Low

Gas suppression/scrubbing 110 Medium

General cooling (existing licenses only) (high loss) 120 High

General cooling (existing licenses only) (low loss) 130 Low

General farming and domestic 140 Medium

General use relating to secondary category (high loss) 150 High

General use relating to secondary category (medium loss) 160 Medium

General use relating to secondary category (low loss) 170 Low

General use relating to secondary category (very low loss) 180 Very Low

General washing/process washing 190 Medium

Heat pump 200 Very Low

Horticultural watering 210 Medium

Hydraulic rams 220 Very Low

Hydraulic testing 230 Very Low

Hydroelectric power generation 240 Very Low

Lake and pond through flow 250 Very Low

Large garden watering 260 Medium

Laundry use 270 Medium

Make-up or top up water 280 High

Milling and water power other than electricity generation 290 Very Low

Mineral washing 300 Low

Non-evaporative cooling 310 Low

Pollution remediation 320 Very Low

Potable water supply - Direct 330 Medium

Potable water supply - Storage 340 Medium

Process water 350 Medium

Raw water supply 360 Medium

River recirculation 370 Very Low

Spray irrigation - Anti frost 380 Medium

Spray irrigation - Anti frost storage 390 Medium

Spray irrigation - Direct 400 High

Spray irrigation - Spray irrigation definition order 410 High

Spray irrigation - Storage 420 High

Supply to a canal for through flow 430 Very Low

Table 1 
Environment Agency's Abstraction Use Descriptions
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For a few licenses where the returns data contained uses not listed in the license information file, additional 
uses were retained.

•  For more complex licenses, which return one abstraction total for multiple points and/or uses, pragmatic as-
sumptions have been made to ensure every abstraction point is associated with an abstraction value and one 
or more uses. For example, for those licenses where a single abstraction return value (and use) is associated 
with multiple points, the return value is divided equally between the points. Similarly, for licenses which only 
provide a single total return value for multiple points and multiple purposes, the return values are equally 
divided between the points and uses.

•  The licensed abstraction return values within each 1 × 1 km grid cell are added together to derive 1 × 1 km 
resolution monthly grids of total actual abstracted water (m3 month−1) for each of the 57 different uses for both 
surface water and groundwater abstraction.

•  These derived monthly grids represent total water abstracted for the 57 different uses from surface water, 
groundwater, and tidal water sources and do not take account of water immediately returned to source by the 
license holder. A further step (Section 3.4) applies to certain types of abstractions to convert the total volume 
of water abstracted for each use into a net volume abstracted.

Despite the (above) pragmatic assumptions, this new data set provides a valuable spatially consistent record of 
monthly water abstractions for 57 primary uses across England between 1999 and 2014. The data set could be 
extended to include more recent data and/or other UK regions (Wales, Scotland, and Northern Ireland) as data 
become available.

3.2. Hands off Flow (HOF) Conditions

Surface water abstraction is constrained by a HOF value (m3 day−1), requiring abstraction to cease (or reduce) if 
the river flow falls below this threshold. This requirement is designed to prevent detrimental impact of excessive 
abstraction on the environment, and protect river ecosystems during periods of low flows particularly during drier 
years. This means that during drought periods when the river flow is below the local HOF threshold, the license 
holder will be temporarily unable to abstract their full licensed amount. For this study, HOF conditions for surface 
water abstractions were obtained from the EA Water Resources Geographic Information System (WRGIS; pro-
vided under license in 2017). The license number and point location in the HOF data set enabled the HOF values 
to be linked with the surface water license returns data obtained from the NALD. Each HOF value is associated 
with a location and use. For 1 × 1 km grid cells containing multiple abstraction points, uses, and HOF values, 
the highest HOF value within each 1 × 1 km grid cell was used. The final output data set consists of a 1 × 1 km 
resolution grid of HOF values (m3 day−1).

Table 1 
Continued

Use description Code Loss factor

Supply to a leat for through flow 440 Very Low

Transfer between sources (Pre Water Act 2003) 450 Very Low

Vegetable washing 460 Low

Water bottling 470 Medium

Water wheels not used for power 480 Very Low

Impounding (for any purpose excluding impounding for HEP) 490 Non-Chargeable

Trickle irrigation - Direct 600 High

Trickle irrigation - Under cover/containers 610 High

Trickle irrigation - Storage 620 High

Flood irrigation, including water meadows, warping, and pest control 630 Very Low

Wet fencing and nature conservation 640 Very Low

Transfer between sources (Post Water Act 2003) 650 Very Low

Dewatering 660 Very Low

Hydraulic fracturing 670 High
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3.3. Discharges

The anthropogenic discharge data used alongside the abstraction data consist of discharge consent information 
for England obtained from the WRGIS July 2017 version (provided under license in 2017). This data set repre-
sents effluents from sewage treatment works (STW) and other large (>20 m3 a day) direct discharges to the river 
system. It excludes natural river flows arising from rainfall-runoff processes across the upstream catchment. The 
data provide: discharge consent number, site name, location, purpose, consented maximum flow rate, consented 
dry weather flow, and recent actual discharge rate. The recent actual discharge daily rate is based on observed 
summer or consented dry weather flow discharge. Where recent time series anthropogenic discharge data are 
available (e.g., from STW), the data provided by EA consist of the Q95 of the time series which is typical of a dry 
summer outflow to the water source. If time series is not available, the consented dry weather flow or derived 
values from EA internal models are used instead in the WRGIS. The final output consists of a single annual 
1 × 1 km resolution discharge data set (m3 day−1) for England, derived by summing all recent actual discharge 
values within each 1 × 1 km grid cell.

3.4. Summary Grids and Statistics: Abstractions and Discharges

The previous three subsections provide 1 × 1 km gridded estimates of abstraction totals for surface water, ground-
water, and tidal water sources, surface water abstraction constraints (HOF), and anthropogenic discharges. In 
practice, a proportion of the total water abstracted is returned directly to the source by the license holder (see 
loss-factor column in Table 1 and Section 3.1) and another proportion is included in the anthropogenic discharge 
data (Section 3.3). However, although the abstractions and discharges data sets are related, it has not been pos-
sible to link individual abstraction licenses and discharge permits. In other words, there is no linkage between 
abstraction license numbers/use descriptions and discharge consent numbers/purposes. Often, the discharge as-
sociated with an abstraction occurs at a different location or river.

The loss factor for each of the 57 primary uses is listed in Table 1 and indicates the percentage of the abstracted 
water that is not returned or net loss to water resources. The four loss factor categories (EA, 2020) are High 
(100%), Medium (60%), Low (3%), and Very Low (0.3%). For three of these categories (high, medium, and low 
abstraction losses) an assumption is made here that any water returned to the river is accounted for in the dis-
charge data set. The advantage of using separate abstraction and discharge data is that discharges can take place 
at a different location or river to the original abstraction. This spatial discrepancy can be accounted for in the spa-
tially distributed discharge data set used here. However, for the abstractions associated with “Very Low” losses 
(termed “Through Flows,” e.g., Fish Pass/Canoe Pass, River Recirculation, and Hydroelectric Power Generation) 
the returns are so high and localized that an assumption that returns are included in discharges cannot be made. 
For these “Very Low” loss abstractions this uncertainty has led to the creation of two sets of gridded monthly 
abstraction data to represent the envelope of uncertainty. One data set assumes all abstracted water is removed 
from source (“100% Abstraction”). The second “Weighted Abstraction” also assumes 100% abstraction except 
for the “Very Low” loss category where only the 0.3% of the water volume is removed mainly due to conveyance 
losses. When each abstraction data set is used in hydrological modeling (Section 4) returns are provided by the 
discharge data set (Section 3.3). The “100% net abstraction” data set represents a scenario of higher volumes of 
water abstracted and assumes that the statutory discharges and through flow returns are exactly as provided in 
the discharge data set. Whereas, the second (weighted) abstraction data set reflects a lower net volume of water 
abstracted and would be expected to have a more modest reduction to downstream flows.

To ensure that surface water abstraction and discharges are applied to rivers, values for surface water abstraction 
and discharge that are located on land are moved downstream until they are located on a river grid cell (defined in 
Section 4.2). This ensures that surface water abstractions are removed from water channels with water capacity to 
enable abstraction to take place. In practice, most surface water abstraction and discharges were already located 
on river grid cells and only a minority of abstraction locations were moved downstream, generally no more than 
5 km.

Figure 3 summarizes abstractions from all three sources (surface water, groundwater, and tidal water) with asso-
ciated processes including discharges for primary use sectors. The average (1999–2014) abstraction amount and 
amount for each source and sector is also provided. On average, tidal waters are the dominant source (47.9%) 
of total abstracted water followed by surface waters (39.5%) and groundwater (12.6%), though the total water 
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abstracted will vary from year to year. The dominant use sectors for each source (with abstractions greater than a 
billion cubic meters per year) are Water Supply, Energy Production, and Agriculture for surface water abstraction, 
Water Supply for groundwater abstraction, and Industry for tidal water abstraction.

The discharge total (for 2017) showed that about 40% of the total mean abstraction (1999–2014) from all three 
sources (surface water, groundwater, and tidal water) is returned back to surface water or tidal water. The rest is 
either lost in the system (consumption, evaporation, transpiration, and conveyance loss) or reaches the system by 
other means (through flows and infiltration).

Figure 3. Summary of Surface water (SW), Groundwater (GW), and Tidal water (TW) abstractions between 1999 and 2014 
and discharges in 2017 across England (×109 m3 year−1). The simplified flow chart (top plot) shows annual mean abstractions, 
through flows and discharges (values > 1.0 × 109 m3 are provided).
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4. Hydrological Modeling Methodology
4.1. Background: The Grid-To-Grid (G2G) Hydrological Model

The Grid-to-Grid (G2G) is a national-scale hydrological model that provides estimates of river flows, runoff, and 
soil moisture on a 1 × 1 km grid across Great Britain (Bell et al., 2009; Moore et al., 2006). The G2G model for-
mulation represents the processes of runoff-production and flow routing over a wide area, and across Great Brit-
ain it is typically run with a time-step of 15 min. The G2G is used operationally for countrywide forecasting over 
England and Wales by the Flood Forecasting Centre (Price et al., 2012), and over Scotland by the Scottish Flood 
Forecasting Service (Cranston et al., 2012; Maxey et al., 2012). Limited information on abstractions/discharges 
was used in the configuration of G2G across England and Wales, but no use was made in its configuration for the 
Scottish Flood Forecasting Service. The G2G is also used to assess the impact of climate change on floods (Bell 
et al., 2012, 2016), low flow frequency (Kay et al., 2018), and droughts (Rudd et al., 2017, 2019).

A particular advantage of G2G is that it has one spatially consistent configuration for the whole model domain 
and is able to represent a wide range of hydrological regimes due to the use of spatial data sets of terrain, soil/
geology, and land cover in its construction. G2G estimates a value of river flow for every 1 × 1 km grid cell across 
Great Britain and does not require at-site calibration using flow observations. Until now, the river flow estimates 
produced by G2G have more readily represented natural (rather than observed) flows since they do not take a 
detailed account of abstractions and discharges. The following section describes the set of model enhancements 
now implemented to accommodate the use of spatially distributed abstraction and discharge data.

4.2. Modifications to the Hydrological Model

The G2G model is modular in form and distinguishes between runoff-production and lateral routing of runoff to 
form river flow. The runoff-production scheme divides the landscape into square grid cells of vertical soil col-
umns that are subject to precipitation and evaporation gains and losses. Some of the rainwater entering the soil 
column drains laterally to adjacent grid cells, while saturation-excess flow contributes to surface runoff. Water 
also moves downwards via percolation and drainage, thereby contributing to groundwater (sub-surface) flow. The 
G2G is often run using an optional snowmelt component (Bell et al., 2016), but that option has not been used 
here.

In G2G, the lateral flow routing along surface and sub-surface pathways employs kinematic wave equations, 
applied in one-dimension over a two-dimensional river network. Two formulations are used and both belong to 
the class of models based on the Horton-Izzard equation or nonlinear storage model. This family of equations 
assumes that outflow, q is related in a nonlinear way to the volume of water in store, S, such that q = kSm with 
parameters k > 0 and m > 0. The routing schemes used in the G2G take the following general form

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑎𝑎(𝑢𝑢 − 𝑑𝑑)𝑑𝑑𝑏𝑏 (1)

where u is the lateral input of water to the store, and a = mk1/m and b = 1−1/m are model parameters (Dooge, 1973; 
Moore, 1999; Moore & Bell, 2002).

In the G2G model, flow routing of surface and sub-surface runoff takes place in surface and sub-surface path-
ways, over land and river cells, linked by a return flow term representing water transfer between sub-surface and 
surface pathways (Bell et al., 2007, 2009; Moore et al., 2006). River cells are identified in terms of a critical 
drainage area or river network density beyond which flow in a 1 km grid cell is assumed to be via a river. The flow 
routing scheme can take a range of options. Here, for surface river channels a quadratic storage model (m = 2) is 
employed, which is applied to a varying width channel network (Ciarapica & Todini, 2002; Moore, 2007), and 
elsewhere (subsurface land and river cells, and surface land cells) a linear storage model (m = 1) is used (Bell 
et al., 2007).

Data sets for gridded monthly abstraction and daily rate of discharge water volumes (Section 3) are used to in-
clude abstraction/discharge in the lateral input of water, u, which was previously confined to surface and subsur-
face runoff and the return flow. The model schematic in Figure 1 illustrates how abstraction and discharge data 
are used within the G2G hydrological model. The monthly abstraction (m3 month−1) and daily discharge rate (m3 
day−1) are divided equally between the 15 min G2G routing model time-steps.
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For the routing scheme presented in Equation 1, surface flow for river grid cells qr has lateral inputs u increased 
through the addition of anthropogenic discharge, Qs, and decreased by surface water abstraction, As, thus taking 
the form

𝑢𝑢 = 𝑢𝑢𝑟𝑟 +𝑅𝑅𝑟𝑟 − 𝐴𝐴𝑠𝑠 +𝑄𝑄𝑠𝑠 (2)

but for surface flow for land grid cells ql, the lateral inputs u remain the same

𝑢𝑢 = 𝑢𝑢𝑙𝑙 +𝑅𝑅𝑙𝑙 (3)

Here, Rl and Rr denote land and river return flow respectively, and ul and ur are inflows for land and river grid 
cells, respectively (which include the runoff generated by a runoff-production scheme). The surface water ab-
straction amount As is only subtracted if the local river flow qr is above the HOF threshold.

For the subsurface, where the subscript b denotes subsurface (baseflow) pathways, the lateral inputs u to subsur-
face river grid cells take the form

𝑢𝑢 = 𝑢𝑢𝑟𝑟𝑟𝑟 −𝑅𝑅𝑟𝑟 − 𝐴𝐴𝑔𝑔 (4)

Here, flow inputs are reduced by the groundwater abstraction Ag if there is sufficient flow available; otherwise the 
excess abstraction volume is subtracted from the baseflow stores of neighboring grid cells. Similarly, groundwa-
ter abstraction Ag is subtracted from the lateral inputs to subsurface land grid cells, u, using

𝑢𝑢 = 𝑢𝑢𝑙𝑙𝑙𝑙 −𝑅𝑅𝑙𝑙 − 𝐴𝐴𝑔𝑔 (5)

if there is sufficient water available; otherwise the excess abstraction volume is subtracted from the baseflow 
stores of neighboring grid cells.

4.3. Meteorological Data, Driving Data, and Hydrological Model Simulations

The G2G hydrological model (Bell et al., 2009) requires driving data consisting of spatially distributed (gridded) 
time series of precipitation and potential evaporation (PE). The driving data used here consist of 1 × 1 km daily 
precipitation from CEH-GEAR (Gridded Estimates of Areal Rainfall; Keller et al., 2015; Tanguy et al., 2016) 
and 40  ×  40  km monthly short grass PE from the Met Office Rainfall and Evaporation Calculation System 
(MORECS; Hough & Jones, 1997). For use in G2G, the 40 × 40 km PE data were copied to each of the corre-
sponding 1600 1 × 1 km grid cells of the hydrological model grid and then divided equally over each time step. 
The 1 × 1 km resolution daily precipitation was divided equally over each 15-min model time step.

To evaluate the impact of including abstractions and discharges in G2G model simulations of river flows, a 
number of model simulations were undertaken for the period 1 January 1999 to 31st December 2014. A model 
initialization or “spin-up” period of 2 years from 1 January 1997 to 31st December 1998 was used. The three G2G 
model simulations were evaluated:

•  Natural: the standard G2G formulation (with no abstractions or discharges).
•  100% Abstraction: the enhanced G2G formulation, with time series of 100% abstractions, plus discharges.
•  Weighted Abstraction: the enhanced G2G formulation, using time series of 100% abstractions except for 

“Very Low” loss category where only the 0.3% percentage of the abstraction is accounted (as described in 
Section 3.4), plus discharges.

4.4. Hydrological Model Performance Assessment

Four performance scores were used to quantify different aspects of the agreement between modeled and gauged 
flows; two based on the daily time series, one based on the magnitude of flow errors, and one based on the flow 
duration curve (FDC).

Two of the time series performance scores are based on the model efficiency criterion of Nash and Sutcliffe (1970), 
defined as:
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�� = 1 −
∑�

�=1 (��,� −��,�)2

∑�
�=1 (��,� −��)

2 (6)

where Qo,i is the gauged flow for time step i, Qm,i is the modeled flow for time step i, �� is the mean of observed 
data, and n is the number of time steps. The NS can range between −∞ and 1 where NS = 1 means a perfect 
match between modeled and observed data, NS = 0 indicates that the modeled data are as accurate as the mean 
of the observed data and NS < 0 indicates that the mean of the observed data is a better predictor of the flow than 
the model. The NS is more suitable for assessing model performance at high flows, so it is adapted for assessing 
low flows by taking the natural logarithm of the flow data, to increase sensitivity to low and mid-range flows;

����� = 1 −
∑�

�=1 (ln(��,� + �) − ln(��,� + �))2

∑�
�=1 (ln(��,� + �) − ln(�� + �))

2 (7)

where ε is a small number usually defined as � = ��∕100 . The NSlog can range between −∞ and 1 which is in-
terpreted the same as for NS.

The BIAS indicates the magnitude of errors in modeled daily flows relative to gauged daily flows:

BIAS = 100 ×
∑𝑛𝑛

𝑖𝑖=1(𝑄𝑄𝑚𝑚𝑚𝑖𝑖 −𝑄𝑄𝑜𝑜𝑚𝑖𝑖)
∑𝑛𝑛

𝑖𝑖=1 𝑄𝑄𝑜𝑜𝑚𝑖𝑖
. (8)

The BIAS can range from −∞ to +∞ with a value of 0 indicating no model bias, BIAS > 0 indicating model 
overestimation and BIAS < 0 indicating model underestimation.

The FDC performance score, the percentage bias in low flow volume lfv, compares the statistical characteristics 
of the flows rather than the time-step equivalence. It is calculated from the low flow end of the FDC, which is 
obtained by ranking the flows from a (daily) time series and selecting the flow corresponding to the percentile 
point p (between 1 and 100); Qm,p and Qo,p are thus the flow equaled or exceeded p% of the time. Following Kay 
et al. (2015):

𝑙𝑙𝑙𝑙𝑙𝑙 = 100 ×
∑95

𝑝𝑝=70(𝑙𝑙 (𝑄𝑄𝑚𝑚𝑚𝑝𝑝) − 𝑙𝑙 (𝑄𝑄𝑜𝑜𝑚𝑝𝑝))
∑95

𝑝𝑝=70 𝑙𝑙 (𝑄𝑄𝑜𝑜𝑚𝑝𝑝)
 (9)

where the function f is taken as the square root. lfv only compares up to the 95th percentile flow (from the 70th) 
so as not to include extreme low flow values, which can be more severely affected by errors in flow measure-
ments due to instrument inaccuracies in shallow flows or low velocities, changes in channel shape and/or weed 
growth and sedimentation (Petersen-Øverleir et al., 2009). A positive lfv value indicates that the modeled flow is 
generally greater than gauged flow.

The performance of the G2G simulations of daily mean river flow is assessed by comparing with gauged daily 
river flow data for 605 catchments (Figure 4a) using data from the National River Flow Archive (NRFA: nrfa.ceh.
ac.uk). Flow data for as many catchments as possible were used in the performance assessment and catchments 
in England were only excluded from the analysis if no observations were available for the assessment period 
(1999–2014). The large number of catchments provides good spatial coverage across England, but many smaller 
catchments are nested within larger catchments so there is some overlap.

The performance assessment of the new G2G flow simulations against observations is presented for three sets 
of catchments: all catchments, abstraction-dominated (red catchments in Figure 4b), and discharge-dominated 
(blue catchments in Figure 4c). The abstraction- or discharge-dominated catchments are identified by comparing 
the annual mean surface water abstraction and discharge for each. Discharge-dominated catchments are those 
for which this difference is negative. Of the 605 study catchments, 348 were discharge-dominated and 253 were 
abstraction-dominated (the latter includes 18 with abstraction from groundwater but not surface water without 
any discharges). A further 4 catchments had no groundwater or surface water abstractions or discharges and were 
excluded from the analysis (yellow catchments in Figure 4d).

http://nrfa.ceh.ac.uk
http://nrfa.ceh.ac.uk
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5. Results
5.1. How do Abstraction and Discharge Impact on River Flows?

Across the 605 study catchments, the balance between the volumes of water abstracted and discharged varies de-
pending on the catchment as shown in Figure 4b, which highlights catchments (in red) for which mean abstraction 
volumes (1999–2014) are typically larger than discharges. However, even for catchments where mean annual ab-
stractions and discharges balance, there will be some months, particularly during dry summers, when the volume 
of water abstracted exceeds the discharge, resulting in river flows below the natural value.

Figure 4. Maps showing (a) gauging station locations within England (abstraction-dominated in red, discharge-dominated 
in blue and neither dominated in yellow) and the main river network, (b) catchment boundaries for the 253 abstraction-
dominated catchments, (c) catchment boundaries for the 348 discharge-dominated catchments, and (d) catchment boundaries 
for the 4 neither abstraction- or discharge-dominated catchments used in the model performance analysis. Catchment 
boundaries are shaded with alpha transparency to indicate nested catchments.
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On average, three times as much water is abstracted from surface waters than from groundwater sources as indi-
cated in Figure 3. Model-simulated hydrographs reflect this, and for most catchments, groundwater abstraction 
has a lesser impact on downstream river flows than surface water abstraction or catchment discharges.

By way of example, Figure 5 shows the influence of introducing each anthropogenic intervention (abstraction or 
discharge) in turn on the G2G model simulated daily river flows for one of the largest catchments, the Thames 
at Kingston (catchment area ∼9,948 km2). Observed (gauged) river flows are shown with a gray line and the 
standard G2G-estimated natural flows are shown in green. The other hydrographs show the impact of introduc-
ing groundwater abstraction only (brown dashed line), surface water and groundwater abstractions only (yellow 
dashed line), and all abstractions and discharges (pink line). Note that in this example, the abstraction totals as-
sume 100% abstraction. The simulated hydrograph that includes all abstractions and discharges in the G2G (pink 
line) is closest to the observed (gauged) flow. In this catchment, the discharges are ∼30% of the total abstraction 
volume.

Figures 6a–6c compares gauged and G2G-simulated daily river flows for three catchments from 1st January 2014 
to 31st December 2014. For each catchment, the hydrographs show G2G natural flows (green), the impact of 
“Weighted Abstraction” (blue dashed line), and the greater impact of “100% Abstraction” (pink).

For the heavily abstracted Thames at Kingston catchment, the G2G model reproduces daily gauged river flows 
reasonably well, particularly in the case of the “100% Abstraction” run, which is lower than the “Natural” run as 
expected (Figure 6a). The simulation with “Weighted Abstraction” slightly overestimates the river flow. On other 
hand, in the discharge-dominated Trent at Drakelow Park, where there are no “Very Low” loss abstractions, the 
influence of discharges is clear. In this catchment, the flows from the “Natural” G2G simulation are too low but 
both the “100% Abstraction” and “Weighted Abstraction” simulations reproduce the gauged daily river flows 
fairly well (Figure 6b). In the Darwen at Blue Bridge, the “Weighted Abstraction” flow simulation is closest to 
the gauged river flows because this catchment is mainly dominated by the “Very Low” loss abstractions and the 
“Weighted Abstraction” volume is only 30% of the total (“100% Abstraction”) abstraction (Figure 6c). In some 
catchments, the “100% Abstraction” G2G model simulations are closest to gauged river flows, but in other catch-
ments, the “Weighted Abstraction” simulations perform better.

As stated before, it is not possible to link the abstraction licenses with discharge permits, but these comparisons 
suggest that some “Very Low” loss abstraction licenses might not have associated discharge permits due to the 
nature of the abstraction. Hence, some of these abstractions should be excluded from the total abstraction volumes 
used for model simulations. It is also worth noting that in the heavily abstracted Thames catchment, an estimated 
20% of the water in the abstraction data sets is not removed from the G2G model stores (and water balance) be-
cause in dry summer months, simulated river flows fall below the HOF condition and prevent abstraction from 
taking place. In reality, this water may well be abstracted by the license holder if they do not have an accurate 
estimate of gauged river flows at the point of abstraction. This issue does not occur in the Trent and Darwen 
catchments, where the abstractions are almost fully accounted for.

Figure 5. Flow hydrographs showing the influence of including abstractions and discharges on G2G-simulated river flows, 
and comparison to gauged flows: the Thames to Kingston (Station No. 39001), 1 May to 30 June 2014.
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5.2. Quantitative Model Performance Assessment

Figure 7 presents boxplots of the G2G model performance when compared to gauged daily flows for three sets 
of catchments: all 605 catchments, 253 abstraction-dominated, and 348 discharge-dominated. The boxplots com-
pare the skill scores (NS, NSlog, BIAS, and lfv) from standard G2G model for “Natural” flows (green), G2G with 
“Weighted Abstraction” and discharges (blue), and G2G with “100% Abstraction” and discharges (pink). The 
boxplots of NS values show slight improvement across all the model simulations and all three sets of catchments 
(1.5% improvement). The boxplots of NSlog values indicate an overall improvement in model performance for 
low flows for all catchments when abstraction and discharge data are included, but particularly for the “Weighted 

Figure 6. Comparison of daily gauged flow with G2G simulations—“Natural,” “100% Abstraction,” and “Weighted 
Abstraction” for Thames at Kingston (Station No. 39001), Trent at Drakelow Park (Station No. 28019), and Darwen at Blue 
Bridge (Station No. 71014).
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Abstraction” (actual) model; the median value of NSlog increases from 0.56 for the “Natural” G2G simulation 
to 0.62 for the “Weighted Abstraction” (10.7% improvement) and 0.6 for the “100% Abstraction” run (7.1% 
improvement). Across all the catchments, the median BIAS improves from −1.1% (model underestimation) for 
the “Natural” simulation to 0.9% for the “Weighted Abstraction” (overestimation) and −0.4% for the “100% Ab-
straction” run. Similarly, the median lfv is improved from −8.3% for the “Natural” run to −2.2% and −3.6% for 
the “Weighted Abstraction” and “100% Abstraction” runs, respectively.

Based on the four assessment criteria, the median performance across all 605 study catchments is improved 
through the use of abstraction and discharge data in the G2G hydrological model. The improvements in model 
performance are most apparent in discharge dominated catchments for which NSlog is improved by 22.6% and 
BIAS is improved by 2% or above (2.0% for “Weighted Abstraction” and 2.6% for “100% Abstraction”); howev-
er, lfv estimates are 2% to 3% worse (by 2.7% for Weighted Abstraction’ and by 2.2% for “100% Abstraction”). 
For discharge-dominated catchments where the Natural G2G simulations tend to underestimate flows (negative 
BIAS and lfv), use of abstractions and discharges in the model results in more positive BIAS and lfv performance 
measures indicating a greater tendency to overestimation of river flows.

In abstraction-dominated catchments, the median improvements in model performance are more modest and the 
simulations using “Weighted Abstraction” were improved by 1.4% and 1.7% in NS and NSlog, respectively, and by 
0.2% in BIAS. Use of “100% Abstraction” led to no improvement in any of the median performance criteria. Both 
the “Weighted Abstraction” and “100% Abstraction” simulations that use abstractions/discharges have negative 
or lower negative median values of BIAS and lfv compared with the “Natural” G2G simulations. This shift in lfv 
towards negative underestimates of river flows indicates that in some catchments more water has been abstracted 
than in reality and this particularly affects the 100% abstraction simulation.

Figure 7. Boxplots of performance scores (NS, NSlog, BIAS and lfv) for all 605, 253 abstraction-dominated and 348 
discharge-dominated catchments with three different G2G model simulations: “Natural,” “100% Abstraction,” and “Weighted 
Abstraction.”
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The geographical locations of gauging stations for which the upstream catchments are most heavily impacted 
by artificial influences are shown in Figure 8a. Dark brown-shaded catchments are more significantly discharge 
dominated and dark blue/green catchments are more abstraction dominated. The occurrence of relatively high 
levels of abstraction in the chalk aquifers of South East England are as expected, but the map also highlights that 
many of the most heavily influenced catchments lie in the North and Central (historically industrial) regions of 
England.

The accompanying maps of the G2G model performance score (NSlog and BIAS) shown in Figures 8b and 8c 
highlight the differences in performance between “Natural” G2G simulations and those that take account of 
abstractions and discharges. These maps confirm that the most significant improvements in model performance 
(green dots in Figures 8b and 8c) tend to occur in catchments that are most heavily impacted by artificial dis-
charges (brown dots in Figure 8a), though decreases in model performance can also occur in some catchments. 
Differences in model performance between the “Weighted Abstraction” and “100% Abstraction” simulations are 
mainly apparent in the South West, particularly Wessex, and Devon, and Cornwall.

5.3. Is Temporal Variation in Abstraction Data a Requirement for Good Hydrological Model 
Performance?

The work presented here shows how records of monthly abstraction and discharge data can be included in pro-
cess-based hydrological models, leading to improvements in model performance in anthropogenically influenced 

Figure 8. Maps of the ratios of “net abstraction/mean flow” for 605 catchments (net abstraction is the difference between 
annual mean surface water abstraction and the annual mean discharge, mean flow data is obtained from the National River 
Flow Archive (NRFA), negative ratio indicates discharge-dominated, and positive ratio indicates abstraction-dominated) and 
performance score (NSlog and BIAS) differences between two cases (“Weighted Abstraction” – “Natural”; top) and (“100% 
Abstraction” – “Natural”; bottom).
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catchments. However, regular monthly or annual data on human water use are often not available for historical 
model simulations and are definitely not available for projected future scenarios of water availability. Long-term 
mean values of the monthly actual abstractions (and daily rate of discharges) could instead be used to support 
these analyses. To understand the feasibility of such an approach and the likely errors in flows incurred through 
the use of long-term mean monthly abstraction values in place of temporally varying “actual” data, the G2G flow 
simulations for 605 catchments (Sections 5.1 and 5.2) were repeated using mean monthly abstraction data values 
for the period 1999 to 2014.

Figure 9 presents scatterplots showing how the use of mean monthly abstraction volumes in place of actual values 
affects G2G model performance. In general, model performance is very similar and there are only a handful of 
catchments where the NS, NSlog, BIAS, and lfv values are substantially different between the runs with actual or 
mean monthly abstractions. For example in the “mean” runs, the NSlog differences are within 5% of those from 
the actual runs in 572 catchments (95%) for the “Weighted Abstraction” case and 523 catchments (87%) for the 
“100% Abstraction” case.

The differences are most apparent for the “100% Abstraction” runs and are mainly due to large changes in abstrac-
tion volumes occurring between 1999 and 2014, for which associated annual discharge data are not available (the 
discharge data used here are for a single year, 2017). For example, in the three catchments circled in green in Fig-
ure 9, abstractions were considerably reduced after 2002 in Pickering Beck at Ings Bridge (Station No. 27056), 
substantially increased between 2004 and 2007 in the River Avon at Knapp Mill (Station No. 43021), and began 
in 2011 for the River Darwen at Blue Bridge (Station No. 71014). Large temporal variations in abstraction only 
affect a few catchments and for most other catchments, use of mean abstraction data were found to be adequate 
for simulating flows.

6. Discussion
In this study, a grid-based hydrological model (G2G) has been modified to realistically account for surface 
water and groundwater abstractions and discharges as a result of human activities. This paves the way for sim-
ulating projected future changes in river flow incorporating changes in water use as well as climate change. 
Although substantial progress has been made in this study, the challenges of incorporating future infrastructure 

Figure 9. Scatter plots of the NS, NSlog, BIAS and lfv for the actual and mean abstraction runs.
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improvements such as a national water transfer network, alongside abstraction reform and other water resource 
management efficiencies are extensive.

The relative success with which actual abstraction values can be replaced by long-term mean values indicates 
that mean monthly abstraction values could potentially be used as the basis for a “business as usual” scenario of 
near-future water use and could also be perturbed to reflect the impact of future drought-occurrence and projected 
population change on water use.

There are inherent uncertainties in hydrological modeling and the process of gauging flows (Beven, 1993; Butts 
et al., 2004; Coxon et al., 2015), and it is important to recognize the degree of uncertainty associated with the re-
search presented here. This analysis into the value of using abstraction and discharge data to improve a distributed 
hydrological model has focused on just one hydrological model, the Grid-to-Grid (G2G), and the impact on the 
performance of other models, including calibrated conceptual catchment models, has not been evaluated. Previ-
ous assessments showed that G2G performed well in simulating both high (Formetta et al., 2017) and low flows 
(Rudd et al., 2017), but can perform less well in catchments impacted by human influences, such as abstractions, 
discharges, and managed reservoirs (Bell et al., 2009, 2012). This study has shown how spatiotemporal data on 
abstractions and discharges can be used to improve the model across England, but other human influences such 
as reservoirs, channel management, and canal infrastructure have not been considered.

In order to provide G2G (and other distributed models) with the spatiotemporal abstraction/discharge data re-
quired, license data for individual sites have been discretized spatially (to a 1 × 1 km resolution square grid) and 
temporally (monthly). Uncertainties will arise from discretizing these data to a 1 × 1 km representation of the 
drainage network, and potentially, some abstractions and discharges for upstream sites could be erroneously in-
cluded in the wrong catchment. Similarly, the locations of discharges, HOF conditions, and surface water abstrac-
tions were assumed to be rivers, so any such licenses located in non-river G2G cells were moved to the nearest 
river cell downstream. Another potential source of uncertainty is the HOF condition, which was implemented in 
terms of the model-simulated flow at each time-step, rather than daily mean. This approach may have limited sur-
face water abstraction more or less strictly than in reality, and further information about how the HOF condition 
is applied in practice would be beneficial.

The abstraction and discharge values themselves are assumed to have a high degree of uncertainty, as they are 
provided through license-holder reporting rather than measurements. At present, there is no way to quantify this 
uncertainty, but a future introduction of hydrological telemetry system will be beneficial. License-holder reports 
are not required to include abstractions and discharges of less than 20 m3 day−1, and after 2008, reports of ab-
stractions less than 100 m3 day−1 were not required either. Although abstraction data for 15 years (1999–2014) 
were available for this research, daily discharge data were only provided for a later year, 2017. By necessity, the 
2017 discharge values have been applied to the earlier study period (1999–2014). However, daily anthropogenic 
discharge rates may well be temporally variable, and annual or monthly data for the study period would have been 
informative.

One of the greatest potential sources of uncertainty in including both abstraction and discharge data in a hy-
drological model, is that some abstraction use-types return a high proportion of the water back to the river. At 
present, there is no direct link between individual abstraction licenses and discharge permits, and thus there is 
some uncertainty about how many of those returns are already included in the discharge data. To address this 
uncertainty, two sets of potential abstraction returns have been evaluated (Section 3.4) to provide an envelope 
of uncertainty. The difference in G2G performance using the two abstraction estimates (“Weighted Abstraction” 
and “100% Abstraction”) indicate that the uncertainty associated with how discharges and abstraction returns are 
linked has only a modest impact on river flows (less than 3.6% difference in impact on NS and NSlog and less than 
1.4% on lfv and BIAS). It is hoped that further work will reduce many of the uncertainties identified in combining 
spatiotemporal data of abstractions and discharges in hydrological models.

The modeling of human impacts on river flows using recorded spatiotemporal water abstractions and discharges 
presented in this paper provides a first step to advance the hydrological model capabilities and offers a valua-
ble tool for simulating human-modified and natural river flows in both spatially distributed hydrological and 
land-surface models (Boone et  al., 2009; Sood & Smakhtin, 2015). The representation of the impacts of hu-
man-induced changes on water resources in global- or national-scale hydrological models is an important but 
challenging issue (Döll et  al.,  2014; Hanasaki et  al.,  2018; Meigh et  al.,  1999; Müller Schmied et  al.,  2016; 
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Sutanudjaja et al., 2018), and in many areas of the world anthropogenic impacts can no longer be neglected (Had-
deland et al., 2014). Wada et al. (2017) discussed the need for better representation of the human-water interface 
in hydrological models and highlighted a range of current challenges in human-water interactions in hydrological 
modeling which included a lack of human water management information. Ongoing national improvements in 
monitoring and publication of anthropogenic water demand data (e.g., USGS Water-Use Data and Research 
program: www.usgs.gov/mission-areas/water-resources) now pave the way to greater use of such data in hydro-
logical and water resource models. The grid-based approach presented here shows how this can be achieved. The 
performance results from including such data in the area-wide G2G hydrological model (median performance 
10.7% improvement in low flows), demonstrate the potential gains from using records of actual water use in place 
of near-static national statistics. These model enhancements were made possible through the reconfiguration of 
thousands of individual licensed actual abstraction and discharge records into spatiotemporal grids, a process 
which not only simplifies their use in hydrological models, but in the long-term may help to overcome data secu-
rity issues associated with the potential release of raw license information for scientific research.

In England, surface water and groundwater abstractions totaled ∼10.4 billion cubic meters in 2017 and increased 
by 3.0% and 7.5%, respectively, since 2014 (DEFRA, 2019b). Across England, ongoing reform of water ab-
straction management aims to ensure resilience of future water supplies while protecting the environment (DE-
FRA, 2019a). These reforms also highlight a future requirement for “dynamic catchment management,” so it is 
vital to develop effective tools to support this goal. The new G2G model development presented here can be used 
as a potential tool for water resources management and environmental assessment under climatic and anthropo-
genic changes. There is also potential for this new modeling capability to support determination of the EFI and 
HOF conditions for catchments for present day and projected future changes in demand and climate.

A recent report by the National Infrastructure Commission (NIC, 2018) indicates that over the coming decades 
England risks water deficiency due to pressures from climate change impacts, an increasing population, and the 
need to protect the environment. In order to improve the effective management of water and secure a long-term 
water supply the report recommended some actions which included (a) improve infrastructure (through a national 
transfer network in England and new infrastructure) and (b) reduce demand (from 141 L per person per day to 
118 L). Along with the hydrological model enhancements outlined here, the new gridded spatiotemporal water 
abstractions and discharges with the sectorial information provide key data required for developing future water 
demand in order to enhance our understanding of climate impacts and human influences within catchments. On-
going work by the authors seeks to provide these (currently license-restricted) gridded abstraction and discharge 
data sets in some form to other researchers, to support water resource analyses for both present day and projected 
future periods. However, the grid-based methodology presented here could be applied to any region for which 
recorded abstractions and discharges are available, and the results presented here demonstrate that the use of such 
data can improve the performance of hydrological models.

7. Conclusions
In the future, the growing demand for water due to rising population compounded by adverse climate change 
impacts will lead to detrimental effects on socio-economic developments and environments. It is essential to 
enhance national-scale hydrological modeling by integrating human anthropogenic influences as an important 
driver of the environment. This research provides a methodology to satisfy this requirement, through the devel-
opment of high-resolution monthly gridded data sets of actual abstractions and anthropogenic discharges. There 
are ongoing uncertainties in the proportions of abstracted water that are immediately returned to the river or to 
another river in statutory discharges. These uncertainties have been accommodated through the development of 
upper (“100% Abstraction”) and lower but realistic (“Weighted Abstraction”) estimates of abstraction totals for 
England. The model simulations presented here for catchments across England demonstrate how these (or sim-
ilar) data can be included into a process-based gridded hydrological model and lead to improvements in model 
performance.

Despite the various challenges and data limitations identified, the G2G hydrological model has been enhanced 
significantly from the previous version (Bell et  al.,  2009,  2012), which typically provided simulations of ar-
ea-wide natural river flows (as opposed to gauged river flows). The new model formulation accounts for the in-
fluence of actual volumes of abstracted and discharged water on downstream river flows. Both surface water and 

http://www.usgs.gov/mission-areas/water-resources
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groundwater sources of abstraction are included, but tidal abstraction sources have not been considered because 
the G2G is not currently used to simulate flows in tidal rivers. Visual inspection of the impact of abstractions and 
discharges on G2G-simulated flow hydrographs indicates that the approach of abstracting and discharging water 
to flow routing stores in the model is effective.

The performance of the G2G model has been assessed by comparison of simulated daily river flows with gauged 
observations for 605 English catchments for 16 years (1999–2014). Results show that model performance is gen-
erally improved through the use of monthly actual abstraction and daily discharge data, particularly in catchments 
for which anthropogenic influences are discharge-dominated. Model performance has been assessed using both 
the upper (“100% Abstraction”) and lower (“Weighted Abstraction”) estimates of abstraction totals for England, 
however, it has not been possible to identify a preferred option that provides a representative estimate of net water 
abstractions across all catchments. Further investigation into the links between abstractions and discharges will 
undoubtedly shed light on this uncertainty, and where available, use of annual discharge data in place of data for 
a single year (2017) would be highly beneficial. The results of this study for England have shown that anthropo-
genic interventions (alteration from natural system) are particularly significant in North and Central (historically 
industrial) regions, and in the chalk aquifers of South East England and South West (Wessex and Devon and 
Cornwall).

An improved ability to incorporate anthropogenic water use in hydrological and land-surface models is vital for 
understanding how human behavior, water management policies, and projected climate change will impact on 
future water resources. Population growth, demands for increased food production, and economic growth until 
2050 are expected to be heterogeneous across the world resulting in competition between water demand, availa-
ble water resources, and water pollution, which could lead to water scarcity (Boretti & Rosa, 2019). In England, 
the population is projected to increase from 56 to 62 million between 2018 and 2043 (ONS, 2018), potentially 
increasing the demand for water. Concurrently, climate change is expected to modify precipitation and tempera-
ture extremes, which in turn could alter the hydrological response within catchments. Unless managed well, the 
impacts of climate change, alongside increasing demands from an increasing population, could lead to adverse ef-
fects on society and the environment. Ongoing work based on the very unique data sets and model developments 
presented here is investigating the impacts of future scenarios of anthropogenic water use and climate change, and 
should shed some light on these issues.

Despite the critical importance of human interventions on current and future water scarcity (Haddeland 
et al., 2014), to the authors' knowledge there are no previously published examples of spatially distributed hy-
drological models configured to use actual (recorded) distributed water use data. This paper presents a novel 
approach to the use of spatiotemporal records of water abstraction and discharge data in hydrological models, by 
configuring individual licensed abstraction values, hands off flow conditions, and discharges onto a 1 × 1 km na-
tional-scale grid, then adapting a grid-based hydrological model to use them. The results presented here demon-
strate the potential gains available to the international hydrological and land-surface modeling community from 
using records of actual water use (where available), in place of more widely used national statistics.
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River Flow Archive (NRFA: https://nrfa.ceh.ac.uk/). The G2G hydrological model is available under license from 
UKCEH (https://www.ceh.ac.uk/).
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