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Abstract
Earth System Models (ESMs) project climate change, but they often contain
biases in their estimates of contemporary climate that propagate into simulated
futures. Landmodels translate climate projections into surface impacts, but these
will be inaccurate if ESMs have substantial errors. Bias concerns are relevant for
terrestrial physiological processes which often respond non-linearly (i.e. contain
threshold responses) and are therefore sensitive to absolute environmental con-
ditions as well as changes. We bias-correct the UK Met Office ESM, HadGEM2-
ES, against the CRU–JRA observation-based gridded estimates of recent climate.
We apply the derived bias corrections to future projections by HadGEM2-ES for
the RCP8.5 scenario of future greenhouse gas concentrations. Focusing on South
America, the bias correction includes adjusting for ESM estimates that, annu-
ally, are approximately 1 degree too cold, for comparison against 21st Century
warming of around 4 degrees. Locally, these values can be much higher. The
ESM is also too wet on average, by approximately 1 mm⋅day−1, which is sub-
stantially larger than the mean predicted change. The corrected climate fields
force the Joint UK Land Environment Simulator (JULES) dynamic global vege-
tation model to estimate land surface changes, with an emphasis on the carbon
cycle. Results show land carbon sink reductions across South America, and in
some locations, the net land–atmosphere CO2 flux becomes a source to the atmo-
sphere by the end of this century. Transitions to a CO2 source is where increases
in plant net primary productivity are offset by larger enhancements in soil res-
piration. Bias-corrected simulations estimate the rise in South American land
carbon stocks between pre-industrial times and the end of the 2080s is ∼12 GtC
lower than that without climate bias removal, demonstrating the importance of
merging historical observational meteorological forcing with ESM diagnostics.
We present evidence for a substantial climate-induced role of greater soil decom-
position in the fate of the Amazon carbon sink.
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1 INTRODUCTION

Climate change is a defining issue of our time. To under-
stand and derive robust mitigation strategies to climate
change requires accurate estimates of near-surface cli-
mate and its change under differing greenhouse gas (GHG)
emissions scenarios. The projections of Earth SystemMod-
els (ESMs) guide most of climate research. In particular,
ESMpredictions of future change, and including alteration
to near-surface meteorological conditions, underpin the
science described in the regular Intergovernmental Panel
on Climate Change reports (e.g. IPCC, 2013). ESMs strive
to emulate the characteristics of the atmosphere, oceans,
land surface and polar ice conditions, their interactions
and response to rising GHGs. Numerical sub-models of cli-
mate system components are calibrated and tested against
appropriate data sets from the recent past, and an ESM
is their combination. ESMs require a period of numeri-
cal ‘spin-up’ to an equilibrium climatic state, representa-
tive of the pre-industrial period. The final part of the spin-
ups is checked that there are no background drifts which,
if present in subsequent transient calculations, will affect
projections of change. The end of the spin-up generates the
initial conditions for the transient calculations that deter-
mine climate responses as GHG levels change from their
pre-industrial values. This numerical structure means that
ESMs estimate the period between pre-industrial times
and present, in addition to the decades ahead. Histori-
cal estimates allow comparison of ESM outputs against
gridded data sets of past meteorological conditions based
on weather station measurements or re-analysis products
that entrain such meteorological data. Although check-
ing spin-ups can help confirm no model drifts (i.e. time-
evolving biases), overall model biases may remain which
for even key quantities such as global mean temperature
levels can be substantial (Palmer and Stevens, 2019). Under
the assumption that these errors are likely to propagate
into simulations of future periods, we can remove them to
refine estimates of any climate change ahead. Such bias
correction also ensures a smooth transition between the
present-day end to historical observation-based data sets
andmodel-based projections of future change. Hence, cor-
rections allow the combined use of historical data, fol-
lowed by more accurate ESM-based assessment of future
climate, and with no jumps in time series for the present
day. These combined estimates of evolving near-surface
climate are available to drive terrestrial impactsmodels. As
many ecosystem processes depend on the absolute value of
near-surface climate conditions, bias-corrected driverswill
likely enhance how well they are modelled.
Recently available is an advanced estimate of histori-

cal meteorological conditions, called the CRU–JRA data
set (Harris, 2019a; Harris, 2019b). This data set is at six-

hourly intervals, and is a merging of the monthly Cli-
mate Research Unit (CRU) gridded climatology (Har-
ris et al., 2014) with the Japanese Re-Analysis product
(JRA) (Kobayashi et al., 2015). We have selected CRU–
JRA because of its application in the annual Global Car-
bon Budget assessments (Friedlingstein et al., 2020), and
it offers an opportunity to be used to bias-correct an ESM.
Such bias-corrected ESM output is then available to drive
Dynamic Global Vegetation Model (DGVM) simulations
into the near- (∼year 2030) and long-term future (towards
2100). This modelling combination estimates changes in
regional biogeochemistry and the provision of land ecosys-
tem services. Such projections may also include how the
global land carbon cycle will evolve, and thus is of impor-
tance to determining future global carbon stocktakes. Such
stocktakes attract much interest for the tropics. Neotropi-
cal ecosystems are potentially highly vulnerable to climate
change, with the possibility of eventual widespread forest
loss in Amazonia caused by more drought-like conditions
overtaking any CO2-fertilization effects (Malhi et al., 2009;
Huntingford et al., 2013). Ultimately, if climate-biophysical
feedbacks become positive, by returning CO2 to the atmo-
sphere, they will amplify initial forest loss by adding fur-
ther to ongoing climate change (Cox et al., 2000). It is still
an open question as to whether and how close the Amazon
forest is to a climate-induced ‘die-back’ tipping point, but
as Malhi et al. (2009) demonstrate, bias-correcting forcing
is important to inform accurately this debate.
Much recent research has focused on the direct phys-

iological effects of global warming, with the suggestion
that many ecosystems may be already operating above
their high temperature optimum (Duffy et al., 2021). Addi-
tional to background warming trends, Amazon forests
have also experienced especially high temperature levels
during recent specific years. Such years include during the
2015/2016 El Niño, with the warmest September over the
past decades occurring in year 2015, having temperatures
about 1◦C higher than even the last two drought years of
2005 and 2010 (Jardine et al., 2017). Unlike extratropical
ecosystemswhich experience strong seasonality in temper-
ature, tropical forests are adapted to a more stable tem-
perature regime, and thus may have a sharp temperature
optimum for key physiological processes. These ecosys-
tems, which potentially have a restricted ability to accli-
mate to warming, may thus be especially sensitive to high
temperatures (Booth et al., 2012). Furthermore, maximum
temperature is the most important determinant of tropical
biomass (Sullivan et al., 2020) andmay contribute to poten-
tial declines in the Amazon carbon sink strength as mor-
tality rates are increasing faster than productivity enhance-
ments (Brienen et al., 2015; Hubau et al., 2020). Taken
together, it is hypothesized that heat stressmay be themost
important driver of future neotropical forest change. It is
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therefore imperative to calibrate vegetationmodels against
data and drive them with bias-corrected climate fields for
such sensitive ecosystems.
Lesswell documented is the role of soil respiration in the

net land carbon sink for tropical regions. It is known that
carbon stocks in tropical forest soils (10–15 kg C⋅m−2) are
comparable to those in biomass in lowland forests (∼15.4
kg C⋅m−2) (Phillips et al., 2016; Jackson et al., 2017). A
field soil warming experiment in Panama demonstrates an
increase in heterotrophic respiration by over 50% with a
4◦C warming (Nottingham et al., 2020). At that location,
there is no evidence at the higher imposed temperatures
of acclimation or a lowering of temperature sensitivity of
enzyme activity. An extrapolation is made of this finding
across the whole pan-tropical forests, leading to an esti-
mate of potential soil C emissions of 65 PgC from a total
soil C stock of ∼500 PgC over this century (Nottingham
et al., 2020). Here, we can test this simple extrapolation by
process-based modelling.
In this paper, we first generate a new merged historical

and future climate forcing data set, and document themag-
nitude of biases removed relative to the expected future
changes to climate. We then use this forcing as input to a
process-based DGVM, to simulate the impact of future cli-
mate change on bothwater and carbon variables, given the
intrinsic relation between these two cycles. Water changes
can also be used to infer changes in the regional provision
of a wider set of key ecosystem services, for example fresh-
water provision and downstream rainfall recycling. How-
ever, our main focus is to project the future change in the
land carbon sink over South America and elaborate on the
relative contribution of plant and soil processes to these
changes.

2 METHODS

2.1 Monthly bias correction of
HadGEM2-ES data

We start by considering six regional monthly near-surface
meteorological fields of temperature, specific humidity,
windspeed, precipitation, downward shortwave and down-
ward longwave radiation. These quantities are selected as
required, although at sub-daily timescales, by the Joint UK
Land Environment Simulator (JULES) land model (Sec-
tion 2.3). We first extract the monthly mean values of each
of these fields, for the historical period, from the CRU–JRA
gridded data, againstwhichwebias-correct theHadGEM2-
ES ESM (Jones et al., 2011). The CRU–JRA data set uses
the JRA re-analysis product to provide sub-daily informa-
tion, normalized against the CRU monthly climatology.
This data set is on a 0.5◦ × 0.5◦ scale, and we use a version

aggregated to a spatial grid of 1.25◦ in latitude and 1.875◦ in
longitude, which is identical to that of the HadGEM2-ES
model. The monthly fields from CRU–JRA are saved for
each location, and we also derive a set where we under-
take spatial averaging over all neighbouring land points, in
a rectangle of ±3◦ in latitudinal direction and ±2◦ in lon-
gitudinal direction. We design this spatial averaging to bet-
ter capture the background climatic trends, by removing
potential noise at single locations. For this spatially aver-
aged data, we calculate linear trends for each month, loca-
tion and the six key variables. These linear trends are for
the 21 recent years of the CRU–JRA data, up to year 2018,
fitted by standard regression. We then take the mean of
this regression that accounts for spatial averaging, and the
mean of last 21 years of actual data at the location, and add
an offset to the regression such that the mean of the for-
mer equals that of the latter. This provides a linear esti-
mate of the background trend, where the gradient value
includes information by spatial averaging across adjacent
points, but the actual magnitude of the values matches the
specific details of the local point.
For the HadGEM2-ES data, we again calculate the spa-

tial means across adjacent gridboxes, for each month
and each variable. Temporally, we then calculate the 21-
year centred running means, and throughout the time
period thatHadGEM2-ES simulates. Using runningmeans
rather than a regression accounts for nonlinear variation
in background trends over the full range of the ESM pro-
jections. We use HadGEM2-ES diagnostics for that ESM
as extracted from the Coupled Model Intercomparison
Project v5 (CMIP5) database (Taylor et al., 2012). Our
values correspond to the RCP8.5 concentration scenario
that is sometimes called, in terms of related emissions,
‘business-as-usual’ (Meinshausen et al., 2011). Our bias
correction of HadGEM2-ES is to then offset these running
means (for each month, variable and location) such that
their value for year centred on 2018 is equal to that of year
2018 from the fitted linear gradients to the CRU–JRA data.
Our monthly mean climatological drivers, that we refer to
as bias-corrected, are therefore those of CRU–JRA directly
starting at year 1901, merging smoothly (in absolute val-
ues) at year 2018 into those of corrected HadGEM2-ES, for
projection onwards towards 2100. The actual final year is
2089, due to using 21-year running means. We present in
Figure 1 the algorithm graphically and for a sample grid-
box containing the city of Manaus.

2.2 Annual to six-hourly variation in
climate

The second part of the normalization of HadGEM2-ES
involves adjusting for the higher frequency variations. This
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F IGURE 1 Bias-correction method. Monthly mean
temperature (shown for January, April, July and October) for the
gridbox containing the city of Manaus. Curves in the period to year
2018 are based on the data-led CRU–JRA climatology, whereas after
that year, the diagram uses projections with the HadGEM2-ES ESM.
Pre-2018, the red dots are for 21 years (1998–2018) at the individual
gridbox, with a linear fit shown for information. Yellow dots are
spatial means of the monthly values, including nearby points (±3◦

latitudinally, ±2◦ longitudinally), and shown with their linear fit
(also yellow). The latter linear fit, so including the averaging of
neighbouring points, we regard as a better estimate of trends by
removing local fluctuations. This trend (yellow line) is then offset,
so that its mean value equals that of the red dots for the single
gridbox. We show this final linear fit in purple, and regard it as our
estimate of background trends for the Manaus gridbox, pre-2018. For

allows the removal of errors in ESM projections of climate
variability and higher-frequencyweather fluctuations. The
process also contributes further to a smooth transition
betweenmeasurements from the contemporary period and
model-based future projections. To achieve this, we calcu-
late the anomalies between the 6-hourly CRU–JRA grid-
ded data and the fitted linear regression for monthly val-
ues, as based on years 1998–2018 inclusive. We save these
differences, and then add them to future bias-corrected
running means from HadGEM2-ES, and for a repeating
cycle of period 21 years. This procedure assumes that vari-
ability, from sub-daily up to decadal, is broadly invariant
under climate change. However, this assumption may still
aid more accurate future projections than using directly
high-frequency variations from our ESM. Hence, what
we now refer to our bias-corrected forcing data spans
from 1901 to 2089. These forcing values are the direct
measurement-based CRU–JRA data to year 2018, followed
by our HadGEM2-ES normalized 21-year running means
with the addition of CRU–JRA-based high-frequency vari-
ability.

2.3 JULES land surface DGVM

JULES (Best et al., 2011; Clark et al., 2011) is the land com-
ponent of the Hadley Centre climate model (Sellar et al.,
2019). The model version we use is v5.4, setup as ‘JULES-
ES’, and so has an identical framework to that used directly
in an Earth System Model (Sellar et al., 2019). JULES-ES
is also the configuration used in the recent Global Carbon
Budget assessments (Friedlingstein et al., 2019, 2020;
Table S1). JULES operates at an hourly time step, provid-
ing its own temporal dis-aggregation from our 6-hourly
forcing data (Section 3.2). Also required is near-surface
atmospheric pressure, although for these we simply use
the historical means from CRU–JRA throughout. The
model has a dynamic interactive vegetation part and
includes vegetation competition, and so we henceforth

the period after 2018, red dots are HadGEM2-ES-based estimates for
the individual gridbox, and yellow are averaged over neighbouring
points (same spatial range as for CRU–JRA). The yellow curve is the
21-year running mean of spatially averaged HadGEM2-ES outputs,
and for similar reasons to those of the data pre-2018, we regard this
as representative of background trends. Finally, the yellow curve of
running means for HadGEM2-ES is re-coloured as purple and offset
to have an identical value in 2018 (black square) as the
CRU–JRA-based purple trend for the same year. It is these
calculated offsets, for each month, that are the basis of our bias
correction fields. Hence, the purple curve from 2018 onwards is our
estimate of future bias-corrected HadGEM2-ES projections, ready
for adding high-frequency forcing to drive the JULES DGVM
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refer to it as a DGVM. The competition part translates
climate-driven changes in carbon fluxes, and in particular
accumulated Net Primary Productivity (NPP), to altered
fractional covers of Plant Functional Types (PFTs) and
their carbon stores (Cox, 2001; Clark et al., 2011; Harper
et al., 2018). Our version of JULES DGVM represents
vegetation at each numerical gridbox with up to nine
varying PFTs of broadleaf tropical and temperate ever-
green trees, broadleaf deciduous, needleleaf evergreen and
deciduous trees, C3 (temperate) and C4 (tropical) grasses,
and evergreen and deciduous shrubs. Additional to these
PFTs are fractions of C3 crop and pasture, and C4 crop and
pasture, although with our focus on natural vegetation,
these are fixed at year 1900 coverage. Hence, with land
use held at near pre-industrial levels, we constrain our
analysis to explore the impact of climate change on natural
carbon cycling. Plant physiology in JULES is described
by a coupled scheme of leaf photosynthesis and stomatal
conductance, and temperature-dependent autotropic
respiration. Our version of JULES includes a multi-layer
canopy scheme for light interception, accounting for
sunfleck penetration (Mercado et al., 2009), although we
assume that the related prescription of the fraction of
downward shortwave radiation that is diffuse radiation is
invariant with a value of 0.4. This fractional value is the
optimum to maximize Gross Primary Productivity (GPP)
(e.g. figure S1 of Mercado et al., 2009 and figure 6 of Knohl
and Baldocchi, 2008). We note, though, that multi-year
gridded data sets of diffuse radiation are becoming avail-
able from either satellite (e.g. MODIS; Ryu et al., 2018) or
other recently released re-analysis products (e.g. ERA5;
Hersbach et al., 2020). JULES simulates surface CO2 fluxes
associated with photosynthesis and autotropic respiration
using PFT-specific parameters aligned to observations
(Harper et al., 2016, 2018). Based on tissue turnover rates,
JULES simulates litterfall which enters the soil.
A soil carbon scheme determines the climate-modified

rate ofmicrobial soil respiration and the related flux of CO2
back to the atmosphere. Specifically, heterotrophic respi-
ration varies with soil temperature, following a Q10 for-
mulation, and soil moisture. Soil moisture modulates res-
piration by a multiplicative scaling factor that is fixed and
low for very dry soils, then increases linearly to unity for
rising soil moisture. Then beyond when this value of unity
is achieved, and so for very wet soils, the factor starts to
decline again (Clark et al., 2011). We use a four-pool (layer)
soil moisture model, based on the RothC model (Jenkin-
son, 1990; Jones et al., 2005; Clark et al., 2011). Respiration
is calculated for a bulk soil carbon pool but using tempera-
ture and moisture values taken from the second soil layer.
Additional to the inputs to the JULES model of sub-

daily meteorological driving data are prescribed changes
in atmospheric CO2 and ancillary information on soil

texture. The rising CO2 concentrations are consistent
with the RCP8.5 scenario to which the plant physiology
additionally responds to. A summary of all the component
configurations of JULES is provided in Table S1.

3 RESULTS

3.1 Climate changes across South
America

We present the effect of mean bias correction for tempera-
ture, for four representative months, and at a single loca-
tion of the gridbox containing the city ofManaus (Figure 1).
The main curve of interest is the purple one, which is a
background trend for each month, fitted to the historical
data until year 2018, followed by bias-corrected running
mean future projections from the HadGEM2-ES ESM. For
all 4 months shown, the ESM projects temperatures that
are too cool, and this is especially for the month of July,
that is during the dry season in parts of Amazonia (com-
pare purple curves to yellow curves, post 2018). All the
other curves and data points in Figure 1 illustrate the algo-
rithm leading to the purple curve, as explained in the text
above (Section 2.1) and the figure caption. The high tem-
poral resolution data required to drive the JULES DGVM
beyond year 2018 are built by adding variability to the pur-
ple curve for future times (not shown). We base this addi-
tion on past variations described by the CRU–JRA data,
covering timescales from interannual variation down to 6
hourly (Section 2.2).
Across South America, we compare the magnitude of

HadGEM2-ES biases in annualmean temperature and pre-
cipitation to their projected changes under RCP85 over the
period between years 1999–2019 and years 2069–2089 (Fig-
ure 2). The first column of Figure 2 is the annual mean
of the monthly offsets (i.e. bias corrections), presented as
original HadGEM2-ES diagnostics minus CRU–JRA cli-
matology. Our ESM is too cold across most of South Amer-
ica, matching the single gridbox assessment in Figure 1.
The ESM is also slightly too dry in the central Amazon and
too wet in eastern Brazil and over the Andes. The mid-
dle column of Figure 2 is the standard deviation of the
monthly offsets at each location. HadGEM2-ES projects
climate change to include a large increase in tempera-
ture, but relatively small changes in precipitation (third
column). Spatially, one observes decreases in precipitation
in Amazonia and increases in precipitation over the SE
Brazil, associated with shifts in the South Atlantic Con-
vergence Zone (SACZ). For some locations, biases in tem-
perature are approaching the same order-of-magnitude as
their projected changes as GHGs rise, whereas erroneous
offsets in precipitation are substantially larger than their
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F IGURE 2 HadGEM2-ES biases and projections. Comparison of the magnitudes of bias correction versus climate change for
near-surface temperature, T (first row), and for precipitation, P (second row). First column is annual mean offsets, as the average of the
monthly bias corrections, shown as direct HadGEM2-ES diagnostics (i.e. without bias corrections) minus climatology based on CRU–JRA
re-analysis values. The second column also relates to bias magnitude, and shows the standard deviations of the 12 bias correction values for
each month and for each location. The third column presents the amount of annual mean climate change (future minus recent) between the
recent past (mean of years 1999–2019) and towards the end of the 21st Century (2069–2089). We keep the colour bar ranges identical between
the first and third columns for ease of comparison. Panels c and f are repeated in Figure S2 with colour bars more tightly aligned to the range
of projected climate change

expected changes in the decades ahead (left and middle
columns vs. right column of Figure 2). We also present
annual biases, standard deviation of monthly corrections
and the estimated changes in the other variables required
to drive the JULES DGVM (Figure S1, same format as
Figure 2). These extra quantities are humidity, downward
shortwave and longwave radiation and windspeed, with
the latter shown as mean zonal and meridional compo-
nents. Biases are such that downward shortwave is too high
acrossmuch of theAmazon suggesting the ESMprojection
of cloud cover is too low, whereas downward longwave is
too low across the Amazon and thewindspeeds are slightly
too high. Under climate change, expected are increases in
both downward shortwave radiation (implying a reduction
in cloud cover) and humidity.
Returning to temperature and precipitation, in Figure

S2 we compare the annual mean changes estimated by
HadGEM2-ES, and under the RCP8.5 scenario, to those

of the mean of the models in the CMIP5 ensemble (Tay-
lor et al., 2012). The HadGEM2-ES ESM warms by slightly
more than the CMIP5 ensemble mean, and both estimate
the highest warming levels are away from coastlines. The
tendency of HadGEM2-ES to estimate lower future pre-
cipitation in Amazonia but increases in SE Brazil is also
present in themean of the CMIP5 simulations. Overall, the
HadGEM2-ES ESM and CMIP5 ensemble mean estimates
of temperature and precipitation changes are similar (Fig-
ure S2). To further illustrate the magnitude of our calcu-
lated offsets, we add themean biases removed across South
America (Section 2.1) back on to our future projections of
temperature and precipitation (orange curves; Figure S3).
The time series of annual mean values (Figure S3) is from
averaging across the land points of Figure 2. Mean warm-
ing by the 2080s will be approximately 4◦C above present
day, whereas HadGEM2-ES is approximately 1◦C too
cold on average (Figure S3), although local and seasonal
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F IGURE 3 Hydrological variables. Spatial hydrological variables, and their changes, of soil moisture (top row) and surface runoff
(bottom row). The left column is annual mean values, averaged for period 1999–2019, and the middle column is values for future period
2069–2089. The right column is the changes (future climate minus recent past, i.e. middle minus left columns)

differences may be larger (Figures 2a and 2b). For precipi-
tation, Figure S3 reconfirms that across SouthAmerica, the
biases in precipitation are much larger than the expected
changes during the 21st Century.
If land impacts respond linearly to climate change,

biases propagate through transient climate–land simula-
tions and so projected terrestrial changes remain trustwor-
thy (even if the actual values have offsets). However, many
land ecological responses have nonlinear responses to
imposed near-surface meteorology. Hence, such responses
depend on the absolute values of features of surface cli-
mate, such as temperature levels (e.g. Lloyd and Taylor,
1994; Kattge and Knorr, 2007; Mercado et al., 2018), sug-
gesting the importance for ESM bias removal. Using lin-
ear ‘pattern-scaling’ (Huntingford and Cox, 2000) of pro-
jected climate changes by the HadCM3LC ESM, Hunting-
ford et al. (2004) show that when combined with a DGVM,
the prediction of Amazon ‘dieback’ depends on whether
the estimated meteorological changes are added to the cli-
mate model pre-industrial state or the known climatology.
In that analysis, removal of an initial dry bias lowered the
projected risk of major land carbon store decreases. We
now project future land surface responses to our new bias-

corrected data climate data, using the much more recent
HadGEM2-ES ESM, and with a current version 5.4 of the
JULES DGVM.

3.2 Climate change impacts on future
land biogeochemistry

Our focus is on climate change-induced variations to South
America terrestrial carbon fluxes and their implications for
carbon stores. These calculations are as estimated with the
JULES DGVM (version 5.4) forced with projections from
our bias-corrected ESM. However, carbon cycle changes
link strongly to changes in the hydrological cycle, and
so we first present projections of changes to soil mois-
ture (Figure 3). With the strong societal implications of
changing water-based attributes of the land surface, we
also present estimates of runoff change (Figure 3). The
most notable changes are the estimates of a general dry-
ing across much of North East Brazil, forcing the JULES
model to project lower levels of soil moisture and runoff.
JULES broadly simulates an increase in NPP through-

out this century (Figure 4a) in response to elevated
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F IGURE 4 Attributes of the South American terrestrial carbon cycle fluxes. Panel (a) is the change in NPP (period 2069–2089 minus
1999–2019) and (b) is the change in soil carbon residence time over the same timeframe. Panel (c) is NBP for period 1999–2019 and (d) is NBP
for future period 2069–2089. Panel (e) is the projected NBP changes (middle minus left, lower plots). Negative values of NBP correspond to
carbon released from the vegetation to the atmosphere. Values are gridbox means and are therefore calculated from the areal weighting based
on PFT fractions

atmospheric CO2 concentrations, outweighing any poten-
tial detrimental climate effects. The largest increase inNPP
is simulated across the wet neotropical regions, that is the
Atlantic forest region and western Amazonia. However,
the increases are small or negligible in eastern Amazonia.
Soil carbon stores may alter under climate change. Cox

et al. (2000) first identified the risk of diminishing soil
stocks, although for that analysis the predicted losses
occurred mainly in the mid-latitudes. Changes in soil car-
bon are a composite response of changing input, via litter-
fall (in turn, linked toNPP) and altered respiration outputs.
Adjustments in microbial respiration rates are a response
to climate, and to characterize this we calculate the resi-
dence time defined as soil carbon content divided by soil
respiration rate (Figure 4b). For almost all of South Amer-
ica, there is a considerable reduction in soil residence time.
Substantially lower residence times (i.e. raised turnovers)
might counteract any higher incoming litterfall caused by
more productive vegetation through fertilization, and so
soil carbon stocks. Hence, in the lower panels of Figure 4,
we first plot Net Biome Productivity (NBP), which is the
overall net land atmosphere CO2 flux of the combined

vegetation–soil system and is positive when the land sur-
face is accumulating carbon (Figure 4, lower panels). As
our model framework has invariant land use and no mod-
elled fire, thenNBP is identical toNet EcosystemExchange
(NEE). For the mean period years 1999–2019, the majority
of locations are sequestering carbon (Figure 4c). However,
by 2069–2089 and for the RCP8.5 scenario, a substantial
part of eastern Amazonia has become a net source, return-
ing carbon to the atmosphere (Figure 4d). Across almost all
the Amazonian region, there is a decrease in NBP towards
the end of the 21st Century, compared to the recent past
(Figure 4e). We present spatial maps of modelled changes
in annual GPP in Figure S4, and this also shows much
lower increases, or even decreases, for eastern Amazonia
and over the samemodelled period. There is also some sup-
pression of autotrophic respiration in the same locations
(Figure S4).
We investigate the substantial decreases in NBP com-

pared to the contemporary period (and that sometimes
become negative) by studying the estimated changes to
vegetation and soil carbon stocks. Tree cover is projected
to expand at most locations (Figure 5a), and related to this
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(Figure 5b). For soil carbon, the changes are more hetero-
geneous, and noting in particular that there are parts of
Amazonia where soil carbon stores will be less than the
recent past.We interpret aspects of Figures 4 and 5 together
as follows. As NPP generally increases (Figure 4a) yet NBP
decreases in many regions (Figure 4e), this implies that
soil respiration increases more than NPP by the end of
the 21st Century and compared to the present day. High
contemporary values of NPP could mean that despite the
large soil respiration changes, this can still result in NPP
being higher than soil respiration by the end of the 21st
Century and so NBP remains positive. However, in most
of Amazonia, NBP changes from being positive to neg-
ative, and so increases in soil respiration are even more
substantial and overtake the absolute value of NPP (thus
including its rises) by the end of our simulations. Nega-
tive NBP by the end of this century (Figure 4d) is in keep-
ing with the decreasing soil carbon residence times (Fig-
ure 4b), causing the land to switch to losing carbon to the
atmosphere.
Despite our finding ofwidespread decreasing soil carbon

stocks towards the end of this century, at many locations,
soil carbon content still increases between now and that
future time (Figure 5c). This implies that soil carbon stocks
formuch of SouthAmericawill initially increase, peak and
then start to decrease as temperature-induced respiration
rises outpace incoming litterfall. A summary, therefore, is
that the Amazon will have a more productive and resilient
forest (Figure 5a,b) but because of enhanced soil micro-
bial activity, it will transition in some locations to a carbon
source to the atmosphere (Figure 5c).
To confirm our broad interpretation of the maps of

terrestrial carbon fluxes and stores, and their changes
(Figures 4 and 5), we present the projected time series of
area-averaged land changes for the same region driven
by our bias-corrected ESM. These are the black curves for
recent past, followed by blue curves for future projections
in Figure 6. The orange curves of Figure 6 are with the
removed monthly biases re-added to the bias-corrected
simulations, and so approximate using HadGEM2-ES
ESM forcings directly. Both soil moisture and runoff are
projected to have a steady decline across South America
(Figure 6a,b). There is a broad increase in NPP as CO2 rises
(Figure 6c), and with the rise slightly more substantial for
the uncorrected ESMdata (orange curves). Soil carbon res-
idence times decrease (Figure 6d). Notably, NBP decreases
(Figure 6e) towards the end of the simulations, and there
are multiple years with negative values, illustrating some
consistency with Figure 4d. Soil respiration changes are
given in Figure 6f. For both simulations, soil respiration
rises in time, and as for NPP, the magnitudes of increase
are slightly more for the response to non-bias-corrected
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F IGURE 6 Time series of South American land changes for the RCP8.5 greenhouse gas scenario. Time-evolving annual values of
spatially averaged attributes of the land for South America (areal averages across same domain as the maps of Figures 2–5). Spatial means are
for the hydrological variables of (a) soil moisture and (b) runoff, and of carbon-related variables of (c) net primary productivity, (d) soil carbon
residence time, (e) net biophysical production, (f) soil respiration, (g) tree fraction, (h) vegetation carbon and (i) soil carbon. The black and
blue curves are simulated land changes when forced with historical measurement-based data from the CRU–JRA data set, followed by our
bias-corrected version of the HadGEM2-ES ESM. The orange curves are for forcing where the mean monthly ESM bias corrections are added
back on to the historical and corrected future data. This approach to reintroducing biases ensures that the emphasis is on the mean offset
errors, while retaining similarities for the higher frequency variations contained in the drivers needed by the JULES DGVM. All calculations
are from year 1901, but to aid focus on the decades ahead, presented are years from 1990 onwards only. Panels (h) and (i) are anomalies,
relative to period 1901–1930

climate drivers. For the carbon stores, tree fraction
increases in a near-linear fashion, and additionally so does
vegetation carbon (Figure 6g,h).
The time series showing the most substantial difference

between the response to climate drivers, with and with-
out bias correction, is for soil carbon (Figure 6i). Our bias-
corrected simulations project an initial increase, followed
by a decrease in soil carbon, and this matches our interpre-
tation above of Figures 4 and 5. That is, the blue curve of

Figure 6i first rises, but then falls such that by towards the
end of the 21st Century, South American soils are return-
ing CO2 to the atmosphere. This response contrasts to soil
stocks modelled for the ESM-based forcing without bias
removal, where there is an increase up to a higher peak
around year 2075 (orange curve, Figure 6i). By the end of
simulations at modelled year 2089, the projections with
bias removal estimate approximately 5 GtC less vegetation
carbon change and 7 GtC less soil carbon change across
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HUNTINGFORD et al. 11 of 17

F IGURE 7 ILAMB statistics. (a) Comparison of the relative performance of JULES-ES forced by bias-corrected climate data from
HadGEM2-ES (marked here as ‘BiasCorrected’) and with mean biases re-added to the climate forcing data (‘Original’). Calculations are for
South America, obtained by placing JULES-ES projections in the International Land Model Benchmarking system (ILAMB) framework and
selecting the comparison against the GBAF/FLUXCOM gridded data. As the DGVM data examined are for the recent historical period, the
climate forcing data used in our simulations that we describe as bias-corrected are that of the CRU–JRA data set. (b) Statistics for the
performance of both sets of simulations at projecting ecosystem respiration (Collier et al., 2018 for details). It is the overall bias score in panel
(a) that determines the colour coding for ecosystem respiration in panel (a)

South America compared to no bias correction (Figures 6h
and 6i, respectively).
In a final comparison of the effects of bias correction,

we test our two configurations of HadGEM2-ES forcing
JULES (i.e. with and without bias-correcting) in the Inter-
national Land Model Benchmarking (ILAMB) framework
(Collier et al., 2018). We derive relative values of perfor-
mance for South America, and for key carbon-related land
surface attributes (Figure 7). JULES-ES forced with bias-
corrected data performs better than using HadGEM2-ES
outputs without bias removal for all quantities, although
for overall ecosystem respiration (plant plus soil), the
difference is marginal (Figure 7a; ‘overall score’ statistic,
Figure 7b). As our analysis is for all of South America,
we select the ILAMB version where estimates of ecosys-
tem respiration are based solely on GBAF/FLUXCOM
gridded data (Jung et al., 2020), and therefore does not
contain additional direct comparison to eddy covariance
measurements. GBAF/FLUXCOM are, though, informed
by FLUXNET (e.g. Baldocchi, 2008) eddy covariance sites,
of which there are six in South America (Jung et al., 2010;
Figure S1). When looking at individual statistics (Collier
et al., 2018) for ecosystem respiration (Figure 7b), our
calculations without bias correction perform better in
simulating the seasonal cycle and spatial distribution of
respiration across South America. The full suite of ILAMB
diagnostics, for both simulations and all five ecosystem
and carbon cycle variables listed in Figure 7b, is available
in a directory in the Supporting Information. We note
again that for our simulations named as bias-corrected
(Section 2.2), for the recent past and hence the period of

ILAMB comparison, these calculations use the CRU–JRA
gridded climate forcing directly.

4 DISCUSSION

A drying is projected for eastern Amazonia, based on the
HadGEM2-ES ESM (Figure 3c,f). This lower water avail-
ability aligns with evidence in the measurement record
of recent drying in eastern Amazonia (Esquivel-Muelbert
et al., 2019). Such drying, although in tandem with land
use change, is believed to have already started turning
eastern Amazonia into a source of CO2 to the atmosphere
(Gatti et al., 2021). Elsewhere in mid- and southern South
America, model estimates are of small increases in soil
moisture and runoff. Rising atmospheric CO2 leads to a
fertilization that increases plant productivity by enhancing
photosynthesis and also increases water-use efficiency.
Hence in many circumstances, changing CO2-driven
effects can offset any detrimental impacts of warming or
declines in precipitation. Warming does, though, act to
directly affect physiological rates of photosynthesis, with
the potential to exceed optimum rates.Warming also raises
atmospheric demand through potential evapotranspira-
tion, which in tandemwith any reductions in precipitation
leads towards drought that can then suppress NPP. Hence,
in eastern Amazonia, there is little simulated change in
NPP over this century (Figure 4a), in keeping with the
hydrological findings of Figure 3. Hence, for that location,
reductions in precipitation and substantial warming
(Figure 2c) strongly offset the CO2 fertilization effect.
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12 of 17 HUNTINGFORD et al.

There is potential for soil carbon stocks to decrease
under global warming. Such decreases act as a positive
feedback on climate (Cox et al., 2000), although for that
analysis soil carbon stock changes are projected mainly in
the mid-latitudes. Changes in soil carbon are a composite
response of changing input, via vegetation litterfall that in
turn links to any CO2-induced rises in NPP, and output via
increasing soil respiration losses under global warming.
To characterize alterations in microbial respiration rates,
we analyse the modelled evolution to the residence time
of soil carbon (Figure 4b), estimated as instantaneous soil
carbon content divided by soil respiration rate. For almost
all South America, there is a considerable reduction in
soil residence time through temperature-induced raised
microbial activity. Notable is a recent warming experiment
of tropical soils (in Panama) revealing they are likely to be
highly sensitive to rises in temperature (Nottingham et al.,
2020). Any projected transition of soils to a source of CO2
under global warming will be sensitive to the modelled
temperature response. Here, the simulated soil respiration
follows a Q10 profile, which with a value of 2 and with
all other factors equal, would be a doubling for a rise in
temperature of 10◦C. An alternative description is that of
Lloyd and Taylor (1994) or the RothC soil model (Jenkin-
son, 1990), which have a more amplified respiration rate
at low temperatures, and more damping at high temper-
atures compared to the Q10 description (for a comparison
of thermal response functions, see Jones et al., 2005).
Models representing carbon–nitrogen dynamics typically
simulate an increase in N mineralization with warming,
potentially affecting respiration in high latitudes. This
is less relevant in tropical ecosystems, which have old,
highly weathered tropical soils, and where the controlling
nutrient is phosphorus. Understanding and modelling
the tropical phosphorus cycle, for eventual placement in
global models, is an active area of current research (Yang
et al., 2016; Fleischer et al., 2019; Sun et al., 2021).
As raised soil respiration might counteract any higher

NPP and thus incoming litterfall, we also place an empha-
sis on NBP and its changes (Figure 4c–e). NBP is especially
important as this quantity defines the overall net land–
atmosphere CO2 flux of the combined vegetation–soil sys-
tem. For the recent past, themajority of SouthAmerica has
sequestered carbon (i.e. positive NBP values), contributing
to the natural partial offset of anthropogenic CO2 emis-
sions. However, by period 2069–2089 and for the RCP8.5
forcing scenario, a substantial part of the modelled Ama-
zon basin has become a net source (Figure 4d), return-
ing carbon to the atmosphere. This change to a source
is especially in eastern Amazonia, where there are large
decreases in soil moisture (Figure 3c) and the suppression
of NPP rise. Over almost all the Amazonian region, there
is a decrease in NBP towards the end of the 21st Century,

compared to the recent past (Figure 4e). Our interpreta-
tion of these projections is that NPP rises, and so increases
litterfall, but these are overtaken by soil respiration losses.
The size of this balance for soils is such that by the end
of the 21st Century, in some locations the magnitude of
time-evolving rate of vegetation carbon stock increases is
smaller than that of soil carbon stock decreases, causing
the negative NBP values. Soil carbon losses are sufficiently
large that in some locations, for example eastern Amazo-
nia, soil carbon stocks are smaller by the period 2069–2089
compared to 1999–2019 (Figure 5c). These effects are sup-
ported by Figure 6i (black and blue curve), which shows
that when averaged across South America, soil carbon
stocks increase to the middle of the 21st Century, followed
by decreases back to present-day levels. As noted in Sec-
tion 3.2, for driving data that is not bias-corrected (orange
curve), soil carbon stocks instead increase much more in
the next few decades ahead (Figure 6i). The non-bias-
corrected calculation has a slightly later peak, and higher
soil carbon values for the end of simulations at year 2089
(Figure 6i).
Changes to forests impact vegetation carbon stocks as

well as soil carbon stocks via litterfall. Determining the
risk of Amazon rainforest ‘die-back’ remains a key scien-
tific challenge. A temperature rise of∼4◦C and above, as in
our RCP8.5 simulation, may represent a breakpoint in bio-
geochemical response to climate warming (Johnston et al.,
2021). Given the hypothesis that tropical forests have nar-
row temperature ranges due to long-term adaptation to
a stable thermal environment (Mercado et al., 2018), this
emphasizes the need for bias-corrected forcing. Overall,
our model structure suggests enhancements in vegetation
productivity in South America this century, despite warm-
ings reaching order∼4◦C.Hence, CO2 fertilizationwill off-
set possible deleterious effects of warming (see figure 6.22
of Ciais et al., 2013, p. 522).Where productivity declines are
simulated towards the end of the 21st Century, this is in
eastern Amazonia, and are due to the combined effects of
warming and drought. These findings, for tropical forests,
match evidence frommultiple sources (Lewis et al., 2009),
and from other DGVMs for South America (Sitch et al.,
2015). There are similarities between the JULES model
(and in particular the TRIFFID component; Cox, 2001) and
other DGVMs. Such similarities include their responses to
CO2 rise and the individual components of meteorologi-
cal change for Amazonia (Galbraith et al., 2010). An over-
all comparison of DGVM responses with early generation
models, but including TRIFFID, is by Sitch et al. (2008).
Theoretically, one expects the warm tropical regions to

benefit most from elevated CO2, although this remains
untested empirically (Hickler et al., 2008). Productivity
enhancements may, though, become increasingly limited
by nutrient constraints, and in particular phosphorus in
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old, weathered tropical soils (Vitousek, 1984; Quesada
et al., 2012). A multi-model study projects a 50% reduc-
tion in biomass carbon growth under elevated CO2 with
including phosphorus constraints (Fleischer et al., 2019),
although these results also require empirical confirmation.
Wang and Goll (2021) argue that where there are major
gaps in the understanding of terrestrial nutrient cycle,
some may be closed under the application of appropriate
optimality assumptions. Wang and Goll (2021) also advise
the use of machine learning methods to relate spatially
diverse measurements of nutrient interactions in ecosys-
tems to DGVMs, as similarly suggested by Huntingford
et al. (2019). A caveat of our analysis, therefore, is as these
nutrient processes are presently missing in the JULES
DGVM, their incorporation may cause revisions of lower
projected NPP and therefore litterfall.
There are other caveats associated with missing pro-

cesses in the JULES DGVM. Studies on intact forests indi-
cate a diminishing Amazon carbon sink as mortality rates
are increasing faster under warming than (and therefore
catching up with) productivity increases (Brienen et al.,
2015;Hubau et al., 2020). AlthoughDGVMshave a detailed
representation of short-term fluxes and coupled photosyn-
thesis and water cycles, they often omit detailed repre-
sentations of plant hydraulics and mortality processes in
a single common framework. These omissions are now
areas of active development. The recent availability of data
on plant traits and hydraulics, combined with advance-
ment in hydraulic theory, has enabled new parsimonious
approaches to model such processes at the global scale
(e.g. Anderegg and Venturas, 2020; Eller et al., 2020; Wang
et al., 2020). These developments will align with a parallel
growing understanding of the role of non-structural car-
bohydrates (e.g. Jones et al., 2020). Such knowledge will
allow the exploration of alternative hypotheses to current
modelling based on describing carbon sources via NPP
and instead towards a direct growth-based approach. Such
advances may include amove from only simulating source
activity (i.e. photosynthesis) to a modelling paradigm of
the formal representation of growth activity (i.e. via tissue
growth) (Korner, 2015).
Next-generation DGVMs strive to include an explicit

representation of ecosystem demography and disturbance
(e.g. Moore et al., 2018; Burton et al., 2019; Argles et al.,
2020; Moore et al., 2020). Estimates by the JULESmodel of
vegetation and soil carbon are routinely validated against
satellite measurements (e.g. figure 18 of Sellar et al., 2019).
Future comparisons against such data will provide verifi-
cation of the aggregated performance of any inclusion of
ecosystem demography components. As satellite records
extend in time, this opens the possibility to constrain
trends projected by demography components, in addition
to background mean values. The use of satellite data has

also identified the vegetation state of previous seasons
as influencing natural fire risk (Forkel et al., 2019), sug-
gesting that adding fire modules to DGVMs requires the
simultaneous introduction of more advanced representa-
tion of vegetation structure. In the coming years, the mod-
elling community will be well-placed to combine these
separate development strands, in parallel with simulat-
ing the extensive disturbance by deliberate deforestation
across the Amazon that our study omits. Better data-led
estimates of diffuse radiation levels may account for its
modulation by deliberate land disturbance by fires and
the smoke they place in the atmosphere. This alteration
of diffuse radiation, due to fires, feeds back on vegeta-
tion productivity, as modelled with an ESM (Malavelle
et al., 2019), or studied with machine learning methods
to capture the specific complexities of Amazonian forest
canopies (Braghiere et al., 2020a). Refined estimates of
light interception may include any specific effects of veg-
etation clumping within canopies and the resultant influ-
ence on GPP (e.g. Braghiere et al., 2019). Modelled light
interception, with a diffusive component, at two Amazon
sites illustrates a strong dependence of GPP on metrics of
clumping (Braghiere et al., 2020b; Figure 4). We note the
review of the effectiveness of two-stream canopy radiative
transfer models, and its potential for enhancement (Yuan
et al., 2017). Determining the precise impact of elevated
CO2 on tropical forests needs empirical evidence from
experimental programmes such as AmazonFACE, allow-
ing the testing and calibration of DGVMs inways similar to
current assessments in non-tropical regions (e.g. Liu et al.,
2019). Such understanding must also capture nutrient lim-
itation effects (e.g. Fleischer et al., 2019; Terrer et al., 2019),
and a recently developed version of JULES with a nitrogen
cycle (‘JULES-CN’) is currently being tested for its perfor-
mance (Wiltshire et al., 2021).
Our paper primarily identifies the risk of South America

soils changing from a carbon sink to a source due to higher
soil respiration under global warming. However, required
is the constraining of understanding of above-ground pro-
ductivity, because this impacts the level of litterfall into the
soil carbon stores. Recent tests (Friedlingstein et al., 2019;
Appendix B, Figure B2) include passing our JULESDGVM
(version JULES-ES) through the International LandModel
Benchmarking system (ILAMB; Collier et al., 2018). Glob-
ally, JULES-ES performs well compared to other DGVMs
for contemporary projections of soil carbon, overall respi-
ration andNEE. However, we urge retesting in ILAMB any
new model versions that incorporate the proposed miss-
ing processes described above, to check if performance
improves further. We particularly note the inconclusive
assessment of whether estimated overall ecosystem respi-
ration with JULES-ES is better simulated with or without
our bias-corrected climate driving data, depending on the

 26924587, 2022, 1, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/cli2.24 by U
kri C

/O
 U

k Shared B
usiness N

A
T

U
R

A
L

 E
N

V
IR

O
N

M
E

N
T

 R
SC

H
 C

O
U

N
C

IL
, W

iley O
nline L

ibrary on [03/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



14 of 17 HUNTINGFORD et al.

statistic considered. The relatively small number of eddy
covariance measurements available to inform ILAMB for
South America is also noted. Many researchers (e.g. Hill
et al., 2016) highlight the need for more eddy covariance
sampling, and including potential replication at similar
locations, to lower uncertainty. The debate continues on
how representative the footprint of a single eddy covari-
ance site might be (Chu et al., 2021), which is important
when using such data to calibrate or test large-scale land
models. There is also a challenge with the use of flux data
in separating the net flux into the gross component fluxes,
because the unaccounted processes of inhibition of leaf res-
piration in the light could lead to biases up to 25% (Keenan
et al., 2019).

5 CONCLUSIONS

Our focus is on bias-correcting theHadGEM2-ES ESM and
using such data to force the JULES DGVM to estimate ter-
restrial carbon flux and store changes across South Amer-
ica and over the 21st Century. The motivation for ESM bias
removal is noting that many researchers identify the Ama-
zon forest as having a potential tipping point in response to
climate change (e.g. Drijfhout et al., 2015). Tipping points
are nonlinear by definition and so depend on the absolute
value of any forcing components. Our ESM bias correction
is by normalization to the CRU–JRA gridded estimates of
climate during recent decades.We apply the derived offsets
to a future HadGEM2-ES projection that corresponds to
the RCP8.5 scenario. We find that climate-enhanced faster
turnover of soil carbon translates into an ∼30% increase in
microbial respiration rates for a continental-scale warm-
ing of 4◦C, which is similar to the data-led extrapolation
by Nottingham et al. (2020) for tropical forests. NPP also
increases, and this will raise litterfall as atmospheric CO2
rises, but in many locations this enhancement is insuf-
ficient to prevent soil carbon stores from decreasing by
the end of the 21st Century through respiration losses.
Further, in some locations, these decreasing soil carbon
stores are large enough to cause NBP to become nega-
tive, despite a modelled resilient forest and correspond-
ing increase in vegetation carbon stores. Negative NBP
acts as a positive feedback to the effects of a changing cli-
mate, by the land returning CO2 to the atmosphere. Some
authors find evidence of a decreasing South American car-
bon sink in recent measurements (e.g. Gloor et al., 2012).
Of note is that when using the non-bias-corrected driving
data, this also projects soil carbon to peak before becom-
ing a source under RCP8.5. However, this peak occurs later
under RCP8.5, and the soil store size does not fall back
to contemporary levels by the 2080s, compared to calcu-
lations with the bias-corrected climate forcings.

In summary, for the RCP8.5 GHG scenario and bias-
corrected drivers based on the HadGEM2-ES ESM driv-
ing the JULES DGVM, much of the modelled Amazon
transitions from a land carbon sink towards a source over
this century due to climate change. This finding is from
a warming-induced stimulation of soil microbial activ-
ity, a frequently overlooked aspect of tropical forest bio-
geochemistry. We illustrate that bias-correcting a climate
model can impact substantially future projections of the
evolution of South American terrestrial carbon stocks.
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