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Abstract 

The distinction often made between active and passive restoration approaches is a false 

dichotomy that persists in much research, policy and financial structures today. We explore the 

contradictions imposed by this terminology, and the merits of replacing this dichotomy with a 

continuum-based intervention framework. In practice, the main distinction between “passive” 

and “active” restoration lies primarily in the timing and extent of human interventions. We apply 

the intervention continuum framework to forest, grassland, stream, and peatland ecosystems, 

emphasizing that a range of restoration approaches within the scope of ecological or ecosystem 

restoration are typically employed in most projects, and all can contribute to the recovery of 

native ecosystems and prevention of further degradation. As restoration is fundamentally about 

the recovery of ecosystems, eliminating human sources of degradation is essential to enable 

ecosystem recovery processes, regardless of subsequent interventions that may be needed to 

assist recovery. Our review of restoration practices involving different levels of intervention 

highlights the benefits of recognizing a broader suite of restoration interventions in the financial 

and policy frameworks that currently underpin restoration activity. Effective restoration 

interventions emerge from an understanding of nature’s intrinsic recovery potential and 

overcoming specific obstacles that limit this potential. 

 

Key words: active restoration, ecosystem degradation, ecosystem recovery, passive restoration, 

restoration strategy, succession 
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Conceptual Implications 

• In practice, the main distinction between “passive” and “active” restoration is in the timing 

and extent of human interventions 

• Interventions to repair ecosystems are often valued more than halting degradative processes 

or removing obstacles to natural recovery 

• A continuum-based intervention framework is more useful, practical, and representative of 

actual restoration practice 

• We apply the intervention continuum framework to restoration of forests, grasslands, rivers, 

and peatlands 
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Introduction 

The practice and definition of ecological restoration focus on deliberate and active interventions 

(SER 2004; Clewell & Aronson 2013). The unaided process of natural regeneration or ecological 

succession does not necessarily fall within the definition of restoration, as it can proceed without 

human agency. This logic casts the term “passive restoration” out of the ecological restoration 

lexicon, or at least places it on its periphery. The focus on restoration as human activity has 

spawned engineering and accounting approaches to restoring ecosystems. Restoration practice 

has become institutionalized as a time-bound project with explicit goals, approaches, and 

deliverables. 

The premise that restoration is an explicitly human activity stems from a worldview that 

humans are separate from and have dominion over nature. People are the agents of restoration, 

and ecosystems are the targets. People are responsible for fixing the damage they caused, and 

engagement in restoration “interventions” is a social and political act of defiance against the 

continued degradation and transformation of ecosystems. The emphasis on actions to restore 

ecosystems can overshadow the important work of halting degradative processes and assessing 

the capacity of ecosystems to recover after conversion or degradation. 

An alternative view holds that restoration is fundamentally about ecosystem recovery, a 

natural process that is an intrinsic property of ecosystems as they adapt to changing conditions 

(Chazdon 2014; Falk 2006). Biological systems at all levels of organization have evolved myriad 

mechanisms to recover from perturbations. Ecosystems do the work of restoration; people may 

guide or assist this process. The ability of ecosystems to recover following damage or destruction 

is a matter of human concern, but not of human agency. People can participate in this recovery 

process by halting degradation and enabling natural mechanisms of recovery, but are not the 
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source of recovery capacity. This view emphasizes the need to (1) identify processes and drivers 

of ecosystem degradation; (2) consider the inherent capacity for natural recovery inputs for 

decisions regarding potential restoration interventions (Prach et al. 2020); and (3) thoroughly 

assess options for ecosystem recovery during initial planning stages.  

These contrasting views underlie the persistent and false dichotomy between “passive” 

and “active” restoration. What is often dismissed as “passive restoration” actually draws directly 

on the processes by which natural systems recover when human-caused degradation is eliminated 

or significantly reduced. Unfortunately, despite how essential these processes are, they are not 

recognized or rewarded in the same way as active restoration interventions, presenting a 

significant hurdle for restoration practitioners (McDonald 2021). Ironically, the act of “fixing” a 

broken ecosystem is valued more than the work of halting degradative processes or removing 

obstacles to natural recovery. These misguided values can lead to inefficient distribution of 

limited resources and short-sighted restoration outcomes. 

Here, we examine how these terms are used today in the practice of ecological 

restoration. We expose the contradictions imposed by the terminology of “passive” vs. “active” 

restoration, and emphasize the merits of replacing this dichotomy with a continuum-based 

intervention framework that is more useful, practical, and representative of actual restoration 

practice (Prach et al. 2020). We apply the continuum framework to restoration of forests, 

grasslands, rivers, and peatlands as examples. These applications emphasize the central 

importance of ecosystem recovery processes in the conceptualization and practice of ecological 

restoration.  
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The passive-active dichotomy hinders ecological restoration  

The categorical distinction between active and passive restoration persists in much research and 

policy today, with detrimental effects on both practice and research. In many contexts, 

restoration has become synonymous with the interventions used (Chazdon et al. 2020). For 

example, most private-sector financing and government financing is oriented toward active 

restoration interventions. In forest restoration, tree planting may be undertaken without duly 

considering the natural regenerative capacity of the land and local biota and, in some cases, 

replacing early (and often messy) successional vegetation with neat rows of planted seedlings 

(Holl & Brancalion 2020). The focus on recovery of complex, natural ecosystems (that often 

include people) is easily overlooked. Land ownership and management rights also influence 

preferences for restoration interventions. The view of restoration as a “land use,” rather than as 

an approach to assist the recovery of an ecosystem and its biotic community, further 

marginalizes the role of natural recovery processes and associated indigenous management 

practices in favor of more highly managed or commercially-focused interventions. Restoration is 

often seen as an action taken to modify or “improve” land use.  

In practice, the main distinction between “passive” and “active” restoration is in the 

timing, objectives, and extent of human interventions. The actions required to eliminate human 

sources of degradation are essential for enabling ecosystem recovery processes, regardless of the 

kind of restoration interventions applied. In the case of natural recovery, the removal of human 

disturbances is the only intervention applied (Holl & Aide 2011). The “passive” phase therefore 

refers only to the post-disturbance recovery process. For example, fencing out livestock, 

fallowing cropland, removing over-abundant lianas or thinning and controlled burns in fire-

suppressed forests can be effective actions to remove effects of human disturbance in an effort to 
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re-establish natural disturbance regimes. In some circumstances, controlled livestock grazing can 

suppress invasive grasses and promote seed dispersal (Miceli-Mendez et al. 2008), stimulating 

recovery of wooded ecosystems. 

Ecosystem recovery proceeds most quickly in areas with a history of less severe or 

intensive degradation, in close proximity to propagule sources without dispersal barriers (Holl & 

Aide 2011), and in sites with moderate productivity and low levels of abiotic stress (Prach et al. 

2020). The literature on passive recovery tends to compare outcomes of active interventions with 

natural regeneration, rather than emphasize how the two approaches can be complementary (e.g., 

Crouzeilles et al. 2017; Reid et al. 2018; Holl & Brancalion 2020). The persistent dichotomy also 

fails to recognize and account for the increasing and widespread adoption of assisted natural 

regeneration as part of the spectrum of restoration interventions practiced in different contexts 

(Shono et al. 2020, Standards Reference Group 2021).  

Ecosystem recovery takes time, even under optimal conditions. As a consequence, 

relying on unassisted recovery is often viewed as too slow and uncertain to accommodate the 

timetables and performance expectations of practitioners, managers, or funding agencies (Zahawi 

et al. 2014). Active restoration approaches are often motivated by the desire or mandate to 

transform a degraded ecosystem to a restored ecosystem quickly. Such efforts can be less 

effective for achieving ecosystem recovery than allowing a more gradual progression of states. 

Intensive restoration interventions can lead to extensive mortality of naturally regenerating 

seedlings planted in the wrong place or time. By-passing early successional stages to 

“accelerate” ecosystem recovery can also negatively affect populations of early successional 

specialists. In Europe, river restoration measures are implemented and monitored within 6-year 

cycles (European Community 2000). This time period may not be sufficient to assess the 
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ecological response to restoration interventions, especially if other factors (e.g. water quality) are 

affecting the ecological community (Palmer et al. 2010). 

Rejecting this dichotomy, we posit that ecological restoration practices can be unified 

along an intervention continuum (Figure 1, Table 1). The intervention continuum concept 

recognizes that restoration interventions should be case-specific and tailored to specific 

processes that drive the degradation and recovery of focal ecosystems. We present a decision tree 

involving four steps to assist decision-making by implementers and practitioners following the 

intervention continuum framework (Box 1). We recognize that many experienced practitioners 

are already employing actions along a continuum; the concept is relevant to (1) emerging 

organizations newly engaging in restoration; (2) scientists assessing and synthesizing the 

efficacy of restoration approaches; (3) funders who are seeking to provide resources to support 

restoration activities; and (4) policy-makers and decision-makers who are delivering restoration 

strategy.    

 

Figure 1 here 

Box 1 here 

 

Ecosystem-specific frameworks based on the intervention continuum 

Forest ecosystems  

Restoration of forest ecosystems follows a wide range of approaches (Figure 1, Table 1) that 

draw from well-established practices in forest management, grounded in an understanding of 

forests as dynamic ecosystems (Binkley 2020). On publicly-owned lands, land management 

philosophy often emphasizes the retention of natural ecosystem dynamics to the greatest possible 
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extent (Christensen et al. 1996; Keeley 2009). Forest restoration practices are also driven by the 

practicalities of managing landscapes of hundreds to millions of hectares, scales at which 

micromanagement of ecosystem processes is neither feasible nor desirable (Doyle & Drew 2012; 

Latawiec et al. 2015). 

 

Table 1 here 

 

Natural recovery of forest ecosystems following large-scale disturbances is influenced by 

local site conditions and prior land uses, as well as landscape-scale factors that influence 

colonization and establishment of native species (César et al. 2021). Recovery can generally 

occur where soils have not been heavily disturbed, and patches of native forest vegetation are 

adjacent or nearby (Crouzeilles et al. 2020). In former agricultural fields, recovery typically 

begins with colonization of ruderal herbs, graminoids, and shrubs, followed by light-demanding 

tree species whose shade promotes the establishment of shade-tolerant mid- and late-

successional species (Swanson et al. 2011). These early stages of forest succession provide 

important habitats for native species of invertebrates and vertebrates that thrive in more open 

conditions. Establishment of late-successional tree species can take decades or centuries. Some 

active forest restoration interventions focus on planting seedlings of late successional tree 

species, bypassing the early successional phases. This approach overlooks the gradual 

development of ecological legacies such as soil biogeochemical processes and complex trophic 

pathways over time (Johnstone et al. 2016). 

In forest restoration, the term “assisted natural regeneration” (ANR) is often applied to 

cases where light interventions—including site protection, maintenance, and in some cases 
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strategic tree planting to encourage recovery—are employed to reduce or eliminate sources of 

degradation that impede forest regeneration or to hasten establishment of diverse native 

vegetation (Shono et al. 2020). The Society for Ecological Restoration in Australia recently 

adopted the terms “facilitated regeneration” and “combined regeneration and reintroduction” to 

describe ANR approaches (Standards Reference Group 2021). In our framework, these 

interventions are examples of “lightly assisted recovery” and “moderately assisted recovery,” 

respectively (Figure 1). Light and moderate interventions can also be used to enhance the 

regeneration of trees used for production of fodder, firewood/charcoal, fruit or timber products 

(Shono et al. 2020) while also promoting regeneration of native tree species, enhancing 

biodiversity, and supplying a wide range of ecosystem services such as soil fertility and water 

quality. Reducing effects of weedy invasive species, creating fire breaks, and fencing are 

common ways to assist natural regeneration of forests (Figure 1, Table 1).  

Moderately-assisted recovery interventions are applied widely in the restoration of post-

agricultural lands, or to restore forests affected by logging or by fire suppression. Direct seeding 

and planting seedlings are the most widely used approaches for restoring forests on post-

agricultural lands. Many conifer forests in western North America have become overstocked due 

to fire suppression and are vulnerable to insect infestation, drought-induced mortality, and 

catastrophic fires (Abatzoglou et al. 2016; Kautz et al. 2017; Keeley et al. 2019). In these cases, 

restoration interventions often focus on stand thinning and controlled burns to reduce the 

potential for extreme fire behavior, and offset drought stress (Addington et al. 2018). When land 

uses have completely removed soil or altered hydrology or landforms (as with strip-mining or 

other forms of mining), forest restoration requires intensive and costly initiatives that may 

include a progression of interventions (Figure 1). Post-mining forest restoration is a costly staged 
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process involving reapplication of retained topsoil, followed by weeding and planting native or 

exotic “nurse” trees, followed by seeding or planting seedlings of native tree species (Festin et al. 

2019).  

Restoration following large wildfires characteristically employs the full continuum of 

interventions. Intensive interventions are employed to treat areas that have burned with high 

severity effects on vegetation and soils, because these areas are the least likely to recover without 

assistance, whereas other areas are generally allowed to recover naturally (Walker & del Moral 

2009). For example, in the US, immediate post-fire actions are typically conducted under the 

Burned Area Emergency Response (BAER), which emphasizes intensively assisted recovery 

(sensu Figure 2) with a focus on stabilizing soils to reduce hillslope soil erosion and sediment 

flux into stream channels (Robichaud et al. 2000, 2009). Once hillslopes are stabilized, the 

emphasis shifts to re-establishing vegetation. Areas near (<200 m) remnant intact forest are 

typically allowed to revegetate by natural seed dispersal processes, as conifer seedlings tend to 

establish close to parent trees (Figure 2; Stevens-Rumann and Morgan 2019). Further into a 

severely burned patch, beyond natural dispersal distance, land managers may apply lightly or 

moderately assisted recovery by dispersing seeds by hand or other means (aircraft, UAVs), or 

planting established (nursery grown or wilding) seedlings. Other areas that shift into early 

successional vegetation (e.g. dominance by aspen, Populus tremuloides) will be left to progress 

along a post-fire successional sequence (Figure 2). 

 

Figure 2 here 

 

Grassland ecosystems  
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Temporal continuity of most grassland depends on repeated disturbances that suppress 

tree establishment. In natural grasslands, disturbance usually consists of fire and/or grazing by 

native megafauna (Dewar et al. 2021). In semi-natural grassland, it consists of cutting and/or 

livestock grazing (Prach et al. 2017). In addition, a modulating influence on grassland 

composition can be exerted by flooding disturbances (Toogood & Joyce 2009). Loss of regular 

disturbance and subsequent woody plant encroachment is considered a source of degradation for 

grassland ecosystems worldwide (Ratajczak et al. 2011). Grassland restoration usually requires 

reintroduction of a suitable disturbance regime, but if woody plant encroachment has occurred, 

woody vegetation must first be removed (Alford et al. 2012). If conditions exist for 

reestablishment of target species from the soil seed bank or via dispersal from nearby source 

grassland, one-off scrub removal, followed by reinstated regular disturbance may be sufficient 

(Waldén & Lindborg 2018). For natural grassland, this might mean managed disturbances such 

as controlled burning or livestock grazing (Brudvig et al. 2007; Price et al. 2020). 

Where natural recovery of grassland vegetation is not possible, this is usually due to 

dispersal or establishment limitation (Öster et al. 2009; Grman et al. 2015). Establishment of 

target species can be limited by lack of suitable mycorrhiza (Koziol & Bever 2017), competition 

by generalist species that can better exploit high soil fertility (Öster et al. 2009; Wagner et al. 

2016), and exotic species invasion (Buisson et al. 2019; Kaul & Wilsey 2021). When these 

limitations are weak, unassisted restoration can produce reasonable results within 10-20 years, as 

confirmed for some semi-natural European grassland (Ruprecht 2006; Královec et al. 2009), 

although full restoration can take substantially longer (Redhead et al. 2014). Moreover, 

unassisted restoration frequently fails to restore natural grassland if many target species establish 

poorly from seed (Buisson et al. 2019), or if exotic invasive species keep the system in an 
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alternative stable state (Damasceno et al. 2018; Kaul & Wilsey 2021). To overcome these 

limitations, restoration interventions for grasslands are available that can be graded based on 

intensity (Table 1; Figure 3). The best choice depends on the nature and strength of constraints, 

availability of financial, labor and target species propagule resources, stakeholder requirements, 

and the time considered acceptable for recovery.  

Low-intensity measures to overcome dispersal limitation include seed bank activation via 

ground disturbance, and grazing management facilitating plant colonization from nearby 

reference grassland. Another low-cost option is the sowing of low-diversity grass mixtures 

(Manchester et al. 1999), which is sufficient for restoring agricultural productivity. However, this 

practice can be counterproductive for full ecological restoration of species-rich grassland, as 

priority effects from sown grasses may prevent further target species colonization (Fagan et al. 

2008). Other approaches, such as transfer of ‘green hay’ or of brush-harvested seed, are used to 

introduce many target species at once (Kiehl et al. 2010). Sowing high-diversity native seed 

mixtures can help suppress exotic weed colonization, e.g. in prairie restoration (Kaul and Wilsey 

2021), but can be expensive, particularly when applied at larger scales (Walker et al. 2004). 

 

Figure 3 here 

 

Most restored grasslands rely on natural colonization to complement active species 

introduction, as these methods do not usually establish entire reference communities at once. 

Although green hay transfer often produces good results, species transfer rates rarely approach 

100% (Kiehl et al. 2010). With respect to seed mixtures, even in regions with a well-developed 

native seed industry, significant gaps remain regarding species availability (Ladouceur et al. 
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2018; White et al. 2018). Moreover, specialist species often fail to establish when sown during 

early restoration (Pywell et al. 2003), but may colonize later (e.g. Wagner et al. 2019).  

Plug planting, an example of moderate intervention, is usually limited to introducing only 

a few species (Table 1, Walker et al. 2004). The most intensive interventions to establish target 

vegetation are turf and topsoil transfer (Manchester et al. 1999). These interventions work well, 

at least initially (Mudrák et al. 2017; Pilon et al. 2019), but require high-quality donor sites to be 

destructively ‘harvested’ (Manchester et al. 1999). 

When restoring species-rich grassland from cropland or agriculturally improved 

grassland, both target species introduction and addressing establishment limitation resulting from 

excess soil fertility may often be required. In some instances, a gradual decline of soil fertility 

through regular management may be sufficient, but can take many years (Oomes 1990). One 

relatively low-effort approach to alleviate moderate excess soil fertility during restoration is to 

introduce hemiparasitic annual plants. For example, Rhinanthus species used in some restored 

semi-natural European grassland reduce grass dominance and site productivity, and boost target 

forb establishment (Westbury et al. 2006; Tĕšitel et al. 2017). Soil nitrogen can be immobilized 

by incorporating carbon-containing organic materials (Eschen et al. 2006), but this usually 

requires repeated application (Halassy et al. 2020). Longer-term fertility reduction is achieved by 

soil inversion by deep ploughing (Glen et al. 2017), or by topsoil removal (Manchester et al. 

1999). When dominance of invasive exotic species prevents target species establishment, weed 

control is key, usually requiring fairly intensive interventions via chemical control or targeted 

disturbance such as mowing, grazing, or controlled burning (Weidlich et al. 2020; Damasceno & 

Fidelis 2020). In some instances, restoration of a previous hydrological regime and potentially 

flooding regime may be required during grassland restoration. Suitable measures can vary in 
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intensity, ranging from limited local measures to much more costly measures to restore large 

hydrological systems (Jansen et al. 2000). 

 

River and stream ecosystems  

Naturally functioning rivers and floodplains are dynamic systems that create spatial mosaics of 

temporally varying habitats, supporting diverse ecological communities (Ward et al. 2002). 

Rivers have a great potential for recovery; the level of intervention required depends on the 

degree to which form, communities and processes have been altered (Palmer & Ruhi 2019; Wohl 

et al. 2015a). 

Unassisted recovery of ecological structure and function (i.e. ecosystem restoration) is 

possible in most rivers (Wohl et al. 2005). Flowing water drives sediment erosion and deposition 

within the channel and floodplain, producing variations in topography, soil and sediment 

characteristics, and hydrology, which are the foundation of physical habitat complexity in river 

systems (Palmer et al. 2010; Wohl et al. 2015a). The speed of change or recovery are governed 

by multiple physical factors of the river and catchment, including channel gradient, discharge, 

sediment loads, sediment grain size, and channel modifications. Upland rivers respond more 

quickly than lowland ones, because the steeper channel gradients, higher loads of coarse 

sediment, and high discharges mean that the river has a greater power to reshape the channel, 

erode banks and alter floodplain topography (Jaehnig et al. 2010). The slower geomorphic 

process rates in lowland rivers are often used as a justification for assisted recovery; however 

natural ecosystem engineers (beavers, Brazier et al. 2021; aquatic vegetation and riparian trees, 

Gurnell 2014) can speed up recovery (Figure 4). Natural recovery can restore function and 

services, but recovery of the native ecological community depends upon the local and regional 
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species pool, presence of invasive species, and pressures operating at wider scales (e.g. water 

quality) (Palmer et al. 2010; Wohl et al. 2015a). 

 

Figure 4 here 

 

Lightly assisted recovery considers factors and interventions implemented outside of the 

channel or upstream of the restoration site to influence river processes or ecology (Table 2). The 

flow regime is central to river ecosystems (Palmer and Ruhi 2019). Land cover and land use 

greatly influence the water flow and sediment regimes of a river and, in turn, its form (Vietz et 

al. 2016; Grabowski and Gurnell 2016; Palmer and Ruhi 2019). A range of sustainable drainage, 

natural flood management and soil conservation measures can be implemented to naturalize peak 

and baseflow discharges, reduce diffuse pollution and facilitate geomorphic and ecological 

recovery (e.g. Grabowski et al. 2019). Upstream dam and reservoir operations can be modified to 

naturalize the water flow and sediment regimes (Palmer and Ruhi 2019; Wohl et al. 2015b). 

Aquatic and riparian vegetation can be allowed to develop through fencing or selective thinning 

and weeding (Table 1; Figure 4). Vegetation and large wood provide important micro- and 

mesohabitats (Hasselquist et al. 2015; Muller et al. 2016), which can trigger more widespread 

changes in channel form and habitat complexity through geomorphic processes (Gurnell & 

Grabowski 2016; Gurnell 2014).  

Moderately and heavily assisted recovery are required in situations where historical 

alterations prevent or limit natural geomorphic and ecological processes from functioning. 

Moderately assisted recovery includes interventions to remove hard engineering (e.g. revetment), 

add soft engineering (i.e. wood) to initiate geomorphic processes, or targeted planting of 
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vegetation (Table 1, Figure 4). Heavily assisted recovery is the direct alteration of the form of 

channel, riparian zone and floodplain, and includes the interventions that are often associated 

with the practice of river restoration (e.g. channel re-meandering and re-profiling; Table 1). 

While these measures can be used in any river, they are truly essential only in situations where 

key elements driving geomorphic change are missing and unable to be restored, or where 

irreparable change has occurred that limits ecological recovery. A good example is a high- 

energy river that has incised down to bedrock. If the factors that caused the bed degradation 

cannot be rectified (e.g. naturalization flow and reconnection of sediment supply), there is 

limited potential for unassisted recovery. 

 

Peatland ecosystems 

Peatlands occur in perpetually wet, anoxic conditions that reduce rates of decomposition, leading 

to the accumulation of organic matter and the creation of large reservoirs of below-ground 

carbon (Parish et al. 2008; Joosten et al. 2012). Human activities have greatly reduced the areal 

extent of peatlands (Andersen et al. 2017; Harrison et al. 2020). As such, these ecosystems have 

become a key focus for nature-based solutions for climate change mitigation and ecological 

restoration (Tanneberger et al. 2021).  

The processes of peatland degradation vary geographically due to differences in initial 

vegetation, hydrology and trajectories of land-use change. In tropical peat swamp forest systems, 

logging for valuable timber species and removal of forest cover leads to reductions in organic 

inputs, increased water loss via run-off and evaporation, and consequent drying, subsidence and 

erosion of the peat (Graham et al. 2017). These actions increase vulnerability to fires, which are 

long-lasting and hard to extinguish. Tropical peatland systems are drained by networks of canals 
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and may subsequently be planted with monocultures, generating ongoing carbon losses and peat 

deterioration. High-latitude peatlands, particularly those typified by bryophyte and sedge plant 

communities, have been subject to peat-cutting for fuel and horticulture, which directly removes 

the vegetation and peat layer, and have been drained for agriculture, pasture and tree plantations 

(Andersen et al. 2017). 

Natural regeneration in degraded peatland ecosystems is considered rare. Such recovery 

may be possible in selectively logged tropical sites in close proximity to natural forest with little 

fire disturbance (Blackham et al. 2014) albeit initially with an impoverished floral composition 

(Graham et al. 2017). More commonly, alteration to a site’s hydrology is implicated in processes 

of both degradation and recovery in tropical, temperate and boreal biomes. “Rewetting” is often 

a first crucial step to initiate restoration (Table 1; Figure 5). In certain circumstances reducing 

grazing pressure and removing scrub vegetation to reduce evaporation rates can assist, but more 

often resource-intensive interventions are required: canals or ditches (originally installed to drain 

the peat) are dammed or infilled, to re-establish the environmental conditions suitable for 

endemic plant species (Joosten et al. 2012; Artz et al. 2019). Without rewetting, peatland is 

likely to undergo a transition to an alternative stable state. In the case of afforested peatlands, 

removal of non-native forest is a necessary early intervention, and continued removal of 

regrowth may be required. More involved surface reprofiling or contour bunding may be 

required to distribute and retain water in certain topographic settings and highly degraded sites to 

improve rewetting prospects (Payne et al. 2018).  

Peat rewetting is not always straightforward. Drained peat is subject to compaction and 

subsidence (Joosten et al. 2012). Changes to structure, relief and porosity cause water to behave 

differently in a degraded system, resulting in greater seasonal fluctuations that affect recovering 
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vegetation (Wösten et al. 2006). For example, in tropical peat forests, tree seedlings are unable to 

establish from seed and survive through the wet season when the peat may become submerged. 

Rewetting may be additionally challenging if deep fissures or pipes have developed, or where 

inflowing ground or surface water in fen ecosystems needs to be reconnected with their 

watershed (Chimner et al. 2017).  

Revegetation of these systems is critical for stabilizing the peat surface, recovering plant 

matter for re-establishment of peat stocks, retaining moisture, and realizing the climate change 

mitigation potential of restored peatlands. Rewetting can lead to methane emissions which 

influence the greenhouse gas balance of peatlands in restoration (Levy et al. 2012). Generally, 

little natural regeneration occurs following peat-cutting (Chimner et al. 2017). Revegetation 

strategies in high latitude peatlands include seeding, plug-planting, brash spreading and 

propagation of mosses, along with removal of newly dominant vascular species (Artz et al. 

2019). In degraded tropical peat forests, removal of ferns and ground vegetation alongside 

planting and maintaining tree seedlings of tolerant species is undertaken, but there is relatively 

little published evidence of degree of long-term efficacy in these schemes (van Eijk et al. 2009; 

Graham et al. 2017).  

Although fires are rare in natural peatland ecosystems because of their hydrological 

conditions, degraded peatlands are susceptible to fire, with dead wood and dry peat acting as 

tinder fuel. Fire adversely affects naturally regenerating vegetation and plantings; in drought 

conditions (e.g. during strong ENSO events) these fires can be particularly devastating (Gaveau 

et al. 2014). Fires can smolder undetected under the surface and later reignite making them yet 

harder to control (Joosten et al. 2012). As such, fire prevention and control are critical 
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interventions in peatland systems, particularly until the water table has been restored (Harrison et 

al. 2020).  

The perception of peatlands as “wastelands” may reduce local support for rewetting; 

drained land and the drainage canals themselves provide access and it’s not uncommon for drain 

blocks to be removed (Joosten et al. 2012). Fires may arise accidentally, or may be initiated by 

people for further land clearance. As is often the case, local social consensus is critical in 

restoration outcomes. Full involvement of local communities in restoration planning are 

required, particularly when interventions are costly and stakes are high. 

 

Conclusion: Assisting the recovery of ecosystems  

Restoration practices across different types of ecosystems lie along a continuum rather than 

within discrete categories of passive vs. active forms. Further, most restoration projects employ a 

blend of different approaches, as emphasized in the recent modifications of the National 

Restoration Standards for the Practice of Ecological Restoration in Australia (Standards 

Reference Group, 2021). We advocate that policy and financial frameworks underpinning 

restoration recognize and place value on the breadth of approaches so that practitioners are able 

to apply common-sense approaches, rather than fit the mold of specific targets. Approaches 

strategically combining diverse degrees of intervention need to count as valid, and even 

preferred, restoration approaches (McDonald 2021). We focus attention on the need to mitigate 

or eliminate sources of human-caused degradation as the first step toward restoring ecosystems 

(Box 1). In some cases, doing so (which may require non-trivial efforts of persistence) may be 

the only intervention needed, apart from protecting the site from further damage or conversion. 
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There is nothing “passive” about promoting the self-recovery and self-organization of 

ecosystems. 

Effective restoration interventions emerge from an understanding of nature’s intrinsic 

recovery potential, and overcoming obstacles that limit this potential (Box 1). Incentives for 

landowners are often needed to let natural ecosystems recover on their own, or with light or 

moderate assistance (Chazdon et al. 2020). Additional benefits from encouraging natural 

recovery of ecosystems include a significant reduction in implementation costs, the potential to 

reach larger spatial scales, favoring colonization of native locally-adapted genotypes, allowing 

natural processes to operate without human manipulation, and enhancing biodiversity through 

multi-species interactions and mutualisms during the self-recovery process.  

In an era of global change, ecological restoration interventions must consider the need to 

build resilient ecosystems (Falk 2017). Restoration is not merely a “healing” process, but also 

requires preventive measures that strengthen resilience. Such measures can include: (1) allowing 

social–environmental systems to self-organize and adapt to novel biological, environmental, and 

social conditions (Messier et al. 2015); (2) where planting is needed, increasing the levels of 

diversity of species, functional types and genotypes planted, and increase functional redundancy 

to allow for adaptation and species turnover in response to climate extremes (Tuck et al. 2016); 

(3) assessing carefully the role of translocation and assisted migration in revegetation practices 

through improved understanding of risks and benefits in given ecosystem and geographical 

contexts; (4) supporting effective adaptive management by enhancing active involvement of 

local people in monitoring ecosystem restoration to promote more linkages between human and 

natural systems and to provide timely feedbacks (Messier et al. 2015); and (5) emphasizing 

connectivity at landscape and regional scales when planning locations for restoration, to permit 
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movement and provide refuges for species. Using a stepwise, decision-tree approach to evaluate 

the potential for unassisted or lightly assisted recovery (Box 1) will enable scarce funds to be 

used most effectively, with positive outcomes for biodiversity and functions of naturally 

recovering ecosystems.  
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Table 1. Continuum of interventions as applied to practices of ecological or ecosystem restoration in four 

ecosystem types. These are not discrete categories but reflect a continuous spectrum of restoration 

practices from unassisted (Natural or self-recovery) to intensively-assisted recovery. Within each 

assistance category, interventions are listed from less to more intensive. 

Type of 

ecosystem 

Unassisted 

(natural) 

recovery 

Lightly-assisted 

recovery 

Moderately- 

assisted 

recovery 

Intensively-assisted 

recovery 

Forests No interventions 

other than 

monitoring 

trajectory of 

recovery and 

prevent further 

site degradation 

Exclusion of exotic 

grazers; protection 

from 

uncharacteristic fire 

or other disturbances 

and prescribed 

reintroduction of 

suitable fire regime 

weed control; 

protection from 

harvesting/hunting; 

enhancement of seed 

dispersal; 

pruning resprouted 

trees; enrichment 

planting; moderate 

Stand thinning 

and controlled 

burning; local 

site preparation 

and direct 

seeding; local 

site preparation 

and partial or full 

tree planting; 

topsoil 

amendment and 

full tree planting 

  

Terracing or other 

major landform 

modification; topsoil 

replacement; major 

hydrological 

modification; 

assisted migration 
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post-fire erosion 

control 

Grasslands 

(dispersal 

limitation) 

Monitoring 

unassisted 

colonization 

Seed bank 

activation; assisted 

colonization; low 

diversity seed mixes; 

re-establish natural 

disturbance regime 

(e.g. prescribed fire) 

Transfer of brush 

harvested seed or 

green hay; high-

diversity seed 

mixes; plug 

planting 

Turf or soil 

translocation 

Grasslands 

(establishment 

limitation) 

Re-establish 

natural or semi-

natural 

disturbance 

regime (e.g. 

prescribed fire, 

grazing or hay 

making) 

Pre-sowing ground 

disturbance; 

Hemiparasitic 

plants; mycorrhizal 

inoculation; nutrient 

cropping 

Scrub removal; 

nutrient 

immobilization; 

invasive species 

control; 

restoration of 

suitable site 

hydrology 

Soil inversion; 

topsoil removal 
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Rivers Eliminate source 

of degradation, 

and monitor 

trajectory of 

recovery and 

prevent further 

site degradation 

Weed control; 

selective thinning of 

riparian trees; 

fencing to prevent 

livestock access to 

channel; creating 

riparian buffer strips; 

soil conservation 

measures; 

sustainable drainage 

and natural flood 

risk management; 

renaturalization of 

flow regime 

Local site 

preparation and 

tree planting; soft 

engineering to 

kickstart 

geomorphic 

processes; 

Removal or 

modification of 

hard engineering 

Gravel addition; 

sculpting 

topographical 

features in 

floodplain; channel 

remeandering or 

reprofiling; new 

channel created 

  

Peatlands Natural recovery 

in lightly 

degraded 

(undrained) 

systems with 

proximal seed 

sources. Accept 

an alternative 

stable state of 

vegetation cover 

Seedling release 

(e.g. fern removal); 

fire prevention and 

control; reducing 

evaporative water 

loss through scrub 

removal and reduced 

grazing pressure  

Re-wetting 

through drain 

blocking to allow 

natural recovery; 

removal of non-

native trees; 

revegetation (e.g. 

through plug 

planting, 

seeding, brash 

Intensive site 

preparation 

including surface re-

profiling or contour 

bunding 
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without 

rewetting; 

monitor 

conditions and 

prevent further 

degradation and 

carbon losses, 

particularly run-

off and peat layer 

erosion 

spreading or 

planting native 

tree species) 
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Box 1. Four steps to apply the intervention continuum to restoration decision-making 
The first step in applying the 
continuum of interventions 
framework is to decide where 
restoration is relevant and 
possible, based on a wide range of 
social and ecological factors. This 
decision should be made by a team 
of stakeholders, practitioners, and 
scientific and technical advisors 
who understand the local context 
and who are accountable for their 
decisions and actions. The second 
step is to evaluate whether natural 
recovery can proceed, and whether 
it will fulfill the expected 
progression of outcomes over 
time. This step requires identifying 
and removing sources of 
degradation and then observing 
how the ecosystem responds. 
Often the observational step is 
skipped, as active interventions are 
assumed to be the default 
approach. If natural recovery 
occurs, the area under restoration 
should be considered as any other 
area undergoing restoration with 

respect to monitoring baseline conditions, evaluating outcomes, and adaptive management. This 
process requires an assessment of the factors that impede recovery, which can be based on local 
experience, traditional knowledge, or scientific research. Ecosystem-specific indicators of natural 
recovery potential can be developed and applied to inform this step. If natural recovery is not 
possible or will not deliver expected outcomes or rates of change, the third step is to determine 
which obstacles to natural recovery need to be overcome and in what temporal progression. In 
some cases, obstacles may be overcome with a “light,” one-time intervention, whereas other 
cases may require intensive, repeated, or progressive interventions. In any case, all interventions 
will require monitoring to assess recovery responses and to determine if follow-up actions are 
needed. The fourth step in decision-making involves a determination of the condition or stage 
when ecosystem recovery can proceed without further interventions. This decision is based on 
monitoring data and requires a set of indicators distinct from those used to signal the potential for 
initiation of self-recovery. Depending on the circumstances, this stage can be at a relatively early 
or a late phase of ecosystem recovery.  
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Figure Legends 

Figure 1. Continuum of interventions as applied to forest restoration.  See Table 1 for application 

of the framework to additional ecosystems. Restoration may require one-time or repeated 

interventions as illustrated in the decision tree in Figure 2. Most restoration projects will employ 

a combination of approaches across this spectrum. 

 

Figure 2. Examples of unassisted post-disturbance forest regeneration. (A) and (B) Ponderosa 

pine (Pinus ponderosa) recruitment three years post-thinning treatment, Monument Canyon 

Research Natural Area, Santa Fe National Forest, Jemez Mountains,  New Mexico. Seedling and 

sapling density 107 stems ha-1. (C) Wave-front tree recruitment into burned patch from the 2000 

Jasper Fire, Black Hills, South Dakota (photo courtesy Paula Fornwalt, Rocky Mountain 

Research Station, US Forest Service. (D) Aspen and conifer tree regeneration in 2017 following 

the 2000 Hi Meadow Fire, CO (photo courtesy Robin Chazdon). 

 

Figure 3. Restoration interventions in grasslands. Natural recovery: (A) Reintroduced bison 

grazing in restored tallgrass prairie (Nachusa Grasslands, Illinois, USA) (Photo – © Dee Hudson, 

TNC). Lightly assisted recovery: (B) Bare ground creation by harrowing prior to target species 

sowing (Bedfordshire, UK) (Photo – © Lucy Hulmes, UKCEH). Moderately assisted recovery: 

(C) Nutrient immobilization by sawdust application (Movelier, Switzerland) (Photo – © René 

Eschen, CABI). Moderately assisted recovery: (D) Green hay spreading using a manure spreader 

(Buckinghamshire, UK) (Photo – © John Redhead, UKCEH). Moderately assisted recovery: 

Plug planting of target species involving (E) extraction of a soil core the size of the seedling 

plug, followed by (F) planting and watering (Bedfordshire, UK) (Photos – © Lucy Hulmes, 
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UKCEH). Moderately assisted recovery: (G) Fire management of Brazilian Cerrado to control 

the invasive grass Melinis minutiflora (Itirapina, São Paulo, Brazil) (Photo - © Alessandra 

Fidelis, Universidade Estadual Paulista). (H) Intensively assisted recovery: Topsoil inversion to 

bury nutrient-rich topsoil and replace it with nutrient-poor subsoil to create suitable soil 

conditions for restoration (Norfolk, UK) (Photo – © Damian Young, Plantlife). Intensively 

assisted recovery: (I) and (J) Blocks of turf cut from chalk grassland destroyed by construction 

are relocated (East Sussex, UK) (Photo (I) - © Dawn Brickwood, WMP & S 

(www.highwealdlandscapetrust.org) , photo (J) - Ted Chapman, © RBG Kew). 

 

Figure 4. Restoration interventions in rivers. Natural recovery: (A) An over-widened low-energy 

chalk river recovers via (B) natural vegetation establishment and geomorphic processes in the 

River Frome (Dorset, UK) (Photo – R. Grabowski). Moderately assisted recovery using willow 

spilling showing how (C) heavy shading inhibits natural stabilization of marginal sediment by 

aquatic vegetation to (D) narrow the channel of the low-energy River Chess (Buckinghamshire, 

UK) (Photo – RRC). Moderately assisted recovery: (E) Upstream facing trees placed into the 

banks of the lowland River Avon to increase hydraulic variability and mobilize the gravel bed 

(Wiltshire, UK) (Photo – Natural England). Intensively assisted recovery: (F) The over-deepened 

and historically straightened Swindale Beck (England) was (G) remeandered and reconnected to 

the floodplain by bank reprofiling and reuse of coarse sediment in the channel (Photos - Lee 

Schofield RSPB). 

 

Figure 5. Restoration interventions in peatland ecosystems. (A) Bare peat pan in Nidderdale, 

Yorkshire, UK, revegetated by heather brashing, seeding with dwarf shrubs and grass mix, and 
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planting with cotton grass (photo credit Jenny Sharman, Yorkshire Peat Partnership). (B) Gully 

blocking with coir rolls to rewet and reduce peat erosion on a site in the Yorkshire Dales, 

delivered by Yorkshire Wildlife Trust through the Pennine Peat LIFE project and Yorkshire Peat 

Partnership, Yorkshire, UK (photo credit Katie Aspray, Environment Agency). (C) Canal 

blocking to rewet degraded and burnt tropical peatswamp forest, Kalimantan, Indonesian Borneo 

(photo credit Chris Evans, UK Centre for Ecology & Hydrology). (D, E) Early-stage and post 

restoration photographs at South Corries, Scotland, UK involving removal of non-native forest 

cover, trench back-filling and ground smoothing and brash mats (photo credits Ed Turner, 

Forestry and Land Scotland). 
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