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A B S T R A C T   

Conservation action is usually triggered by detecting trends in species’ population size, geographical range, or 
occupancy (proportion of sites occupied). Robust estimates of these metrics are often required by policy makers 
and practitioners, yet many species lack dedicated monitoring schemes. An alternative source of data for trend 
estimation is provided by biological records, i.e., species presence information. In the UK, there are millions of 
such records, but biological trend assessments are often hindered by biases caused by the unstructured way in 
which they are collected. Recent advances in occupancy modelling that account for changes in survey effort and 
detectability over time mean that robust occupancy trends can now be estimated from these records. By grouping 
mammal species into survey assemblages — species likely to be recorded at the same time — and applying 
occupancy models, this study provides estimates of long-term (1970 to 2016) occupancy trends for 37 terrestrial 
mammal species from the UK. The inter-annual occupancy growth rates for these species ranged from -4.26% to 
11.25%. This information was used to classify two species as strongly decreasing, five as decreasing, 12 as no 
change, 11 as increasing and seven as strongly increasing. Viewing the survey assemblages as a whole, the oc
cupancy growth rates for small mammals were, on average, decreasing (-0.8% SD 1.57), whereas bats and deer 
(0.9% SD 1.30) were increasing (3.8% SD 3.25; 0.9% SD 1.30 respectively), and mid-sized mammals were stable 
(-0.3 SD 1.72). These results contribute much-needed information on a number of data deficient species, and 
provide evidence for prioritising conservation action.   

1. Introduction 

Assessments of a species’ extinction risk, conservation status, and 
responses to interventions, rely on the detection of trends in parameters 
such as abundance and distribution (Butchart et al., 2010; Maes et al., 
2015). While long-term trends are ideally assessed through systematic 
monitoring schemes, the logistical and financial demands of such 
schemes mean that they are restricted to relatively few taxa (Schmeller 
et al., 2009). 

Most mammal species in the UK lack long-term trend data. Where 
structured surveys exist, their coverage is often limited geographically 
or temporally (e.g. Barlow et al., 2015; Judge et al., 2014) so trends are 

not available for some regions (or countries) or for sufficiently long 
time-scales. In addition, cross-species comparisons, which are needed to 
prioritise conservation action, are difficult because different metrics are 
applied to different taxa (such as distribution: e.g. Crawford, 2010); 
density and abundance (e.g. Judge et al., 2014); raw count data (e.g. 
Wright et al., 2014); population indices (e.g. relative abundance and 
activity e.g. Barlow et al., 2015), and occupancy (the proportion of an 
area occupied by a species: e.g. McGuire et al., 2014). Finally, meth
odological issues, including focal species detectability and recorder 
effort are often not accounted for within the existing surveys (e.g. 
Aebischer, 2019; Wright et al., 2014): a full assessment of the survey and 
trend data available for each species of terrestrial mammal in Britain is 
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provided in Mathews et al. (2018). 
The huge repositories of biological records (e.g. eBird, GBIF, iRecord 

and NBN: Pocock et al., 2015; Sullivan et al., 2009; Telenius, 2011) that 
have primarily been collected opportunistically by citizen scientists 
present an opportunity to derive trend metrics to complement those 
obtained from systematic surveys. These presence-only records provide 
precise information across large spatial and temporal scales on where, 
and when, a species was recorded (Powney and Isaac, 2015). However, 
the majority are collected without standardised protocols, or follow only 
a semi-structured protocol (e.g. for eBird). They can therefore suffer 
from biases in temporal and spatial variability in recorder effort (Pre
ndergast et al., 1993), imperfect detection (Chen et al., 2013), and se
lective recording of species (Szabo et al., 2010), and these factors can 
hinder trend estimations. 

Recently, advanced statistical models have been developed that are 
capable of estimating species trends from these non-systematic biolog
ical records by accounting for the biases inherent in the data collection 
process (Devarajan et al., 2020; Guillera-Arroita, 2017; Isaac et al., 
2014; MacKenzie et al., 2002; Royle and Kéry, 2007). Of the currently 
available methods, occupancy models (OMs: MacKenzie et al., 2017) 
display great potential for deducing robust trends from biological re
cords (Isaac et al., 2014). A key output of OMs fitted within a Bayesian 
framework are species-specific annual occupancy estimates — the pro
portion of sites occupied by a species — with credible intervals 
expressing uncertainty. These yearly outputs can be used to create trend 
indicators for both single, and groups of, species, allowing complex in
formation to be communicated to a wide range of audiences (Hayhow 
et al., 2019). 

Occupancy models require data on whether a species was detected or 
not at a known date and location, so that detection histories can be 
computed. Where only detection data are available, non-detections are 
inferred from the patterns of recording of taxonomically similar or 
typically recorded together species. For example, if species A, B and C 
were previously detected together during a site visit, and only species B 
and C were detected during another visit to the same site within a 
specified time frame, then the non-detection of species A can be inferred 
during the second visit (Outhwaite et al., 2019). The technique has 
previously been applied to several taxa, including birds (Kéry et al., 
2010), plants (Chen et al., 2013), and a variety of invertebrates (e.g. 
moths (Dennis et al., 2019); butterflies (Dennis et al., 2017; van Strien 
et al., 2013); pollinators (Powney et al., 2019); dragonflies (van Strien 
et al., 2013), and ants (Outhwaite et al., 2018)). These taxa are typically 
monitored by separate, but taxa specific, recording schemes in the UK 
(Outhwaite et al., 2019). British mammal species on the other hand have 
species-specific survey method recommendations (Battersby and 
Greenwood, 2004; Macdonald et al., 1998; Toms and Greenwood, 
1999). It might therefore be more appropriate to infer non-detections 
from groups of mammal species likely to be surveyed together (Croft 
and Smith, 2019), rather than from simple co-occurrence across the 
entire taxonomic group. For example, small mammals are most 
frequently surveyed using humane traps, and the non-detection of a deer 
from the same site on the same day cannot be inferred from a survey that 
used small mammal trapping; likewise, the non-detection of a mouse 
cannot be inferred from a deer detection. 

To date, studies using OMs on mammalian biological records typi
cally use records from single survey methods, e.g. owl pellets (van Strien 
et al., 2015) and roadkill (Santos et al., 2018) and therefore tend to 
sample only particular groups of species. However, there is a need to 
monitor all species. For example, despite an abundance of biological 
record data in the UK, the latest review of British mammals found that 
limited data on species-habitat specific density and occupancy estimates 
resulted in high uncertainty of conservation trends for many species (for 
further details on these reliability indices see Mathews et al., 2018). This 
study developed a method to group mammal species into survey as
semblages enabling the inference of non-detections and creation of 
detection histories from biological records. The OM framework was used 

to deduce long-term occupancy trends for mammals in the UK, providing 
a new approach to identify mammal species of conservation concern. 

2. Material and methods 

2.1. Data standardisation 

Biological records of terrestrial mammals were sourced from a 
database housed by the Mammal Society (see Crawley et al., 2020). Only 
records from the UK or the Isle of Man, identified to species level, with 
date specified to day, and location at a 1 km2 spatial scale or finer were 
included. Records of feral, domestic and vagrant animals were excluded. 
The time-period under consideration was 1970-2016, except for bats 
where the start date was set as 2005 to avoid complications resulting 
from recent species taxonomic revisions (Jones and Barratt, 1999). As 
OMs require data from multiple sites (MacKenzie et al., 2017), rare 
mammals — species recorded in <100 sites — were excluded. Similarly, 
poorly sampled sites (with fewer than 2 years of data) were also 
excluded. 

Each record was assigned to one of 255,306 1 km2 referenced 
Ordinance Survey British National Grid squares (BNG) (hereafter 
referred to as a ‘site’). Where there were multiple records of a species 
from the same site and date, only one unique record was retained. Sites 
from Northern Ireland were converted from Irish grid format to BNG. 

2.2. Survey assemblages 

Mammal species were assigned to survey assemblages based on an 
adapted CLUSTASPEC analysis (Preston et al., 2011). The CLUSTASPEC 
algorithm is a two-stage clustering procedure, developed to classify 
species’ distribution patterns, that amalgamates species into clusters 
based on their co-occurrence within grid squares (Preston et al., 2011). 
The first stage of the clustering algorithm begins with single species 
clusters (i.e. the number of clusters equals the number of species) and 
then amalgamates the most similar clusters in a stepwise manner based 
on the cosine of the angle between focal and comparison cluster cen
troids (Legendre and Legendre, 2012). After all single species clusters 
have been amalgamated the algorithm subsequently removes the 
smallest cluster, redistributing the associated individual species within 
that cluster to the remaining clusters, based on the same similarity 
metric as above. This continues until the desired number of clusters, 
specified by the user, is reached. The second stage then checks each 
species against the other available clusters, reassigning, where neces
sary, species between clusters to those with which they show the highest 
similarity. This is continued until all species remain stationary. 

This method was adapted by assigning species to an assemblage 
based on their similarity of co-occurrence at the same site on the same 
day. This was achieved by creating a unique date-site identifier for all 
available mammalian records and running the CLUSTASPEC algorithm 
on this dataset in R3.5.2 (R Core Team, 2018). Assemblage assignment 
was cross-checked for consistency with the published literature on 
surveying mammals in the UK, e.g. MaMoNet guidelines for survey 
techniques for mammals in the UK (Barlow et al., 2015; Battersby and 
Greenwood, 2004; Macdonald et al., 1998; Toms and Greenwood, 
1999). 

The number of clusters considered for the CLUSTASPEC algorithm 
was three to ten, but assignment into seven clusters was chosen based on 
the highest similarity of the species within clusters to the survey 
groupings documented in the published literature (Table A.1; A.2). 
Animals usually recorded on their own are unlikely to provide useful 
inferences of non-detections to other species within an assemblage. 
Therefore, species within an assigned cluster that were recorded on their 
own at a given site and date in more than 95% of cases were removed 
(Fig. 1 and Figs. A.1 to A.5). In addition, species that are typically 
recorded using a specific survey method, different to that applied to the 
other species within a cluster, were also removed. Finally, the three bat 
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clusters were combined into one assemblage as individual bat species 
can be monitored using multiple survey techniques (Barlow et al., 
2015). The aquatic mammals cluster was not considered for further 

analysis because of a low number of species remaining after the inclu
sion criteria were applied. 

In total, 37 mammal species passed these inclusion criteria and were 
assigned to one of four survey assemblages referred to subsequently as 
‘small mammals’, ‘deer’, ‘bats’ and ‘mid-sized mammals’, broadly 
reflecting different survey techniques and animal sizes (Fig. 1 and 
Table 1). All subsequent modelling procedures were conducted sepa
rately on the individual assemblages, using only records of species from 
that assemblage. These detection records were then arranged into 
detection histories by reorganising records into visits — a unique com
bination of day and site in the records data — within a closure period 
(here one calendar year), inferring non-detections of a species by the 
detection of other species within the survey assemblage. 

In total, 445,654 records from 418,496 visits to 61,297 unique sites 
across the UK were available for modelling (Table 1). The number of 
records showed a significant increase over time for all survey assem
blages except bats, which had a significant decrease in the number of 
records across the last two years (Fig. A.6). The percentage of sites 
revisited and the mean number of sites revisited was relatively constant 
over time for all assemblages (Table A.3). Only the bats survey assem
blage displayed a significant change in list length — the number of 
species within an assemblage recorded at a given site and date — over 
time. This increase in list length coincides with the increased use of 
broad-spectrum acoustic recording devices and automatic species 
identification software, which permits easier detection and identifica
tion of a wide range of bat species (Adams et al., 2012; MacSwiney et al., 
2008). Although sample sites were distributed across the UK, sampling 
was not uniform or random: for small mammals and bats, most sites 
were in England and Wales; for deer, most sites were in England and 
Scotland; whereas the sites for mid-sized mammals were from across the 
UK (Fig. 2). In all assemblages, there were very few sites in Northern 
Ireland compared with the rest of the UK. 

2.3. The occupancy model (OM) 

The OM framework is a hierarchical model consisting of state and 
observation sub-models. The state sub-model describes the true occu
pancy state (Zit: Eq. (1)) at site i in year t and the observation sub-model 
describes the conditional probability that a species is observed (Pitv) 
given that it is present (Zit = 1: Eq. (2)) (MacKenzie et al., 2002; Royle 
and Kéry, 2007). The state sub-model has a binary response and ψ it is 
used to denote the probability under a Bernoulli distribution that a site is 
occupied with probabilities that can vary with year (bt) and site (ui) (Eq. 
(1)). The year effect (bt) was modelled as a random walk (Eq. (C.1)), 
imposing an a priori judgement that a site's occupancy probabilities are 
likely to be similar from one year to the next (Outhwaite et al., 2018). 
This adaption improves occupancy estimates from low recording in
tensity data by relaxing the requirement for sites to have data from 
adjacent years, information needed to calculate colonisation and 
extinction transition rates. 

Zit ∼ Bernoulli(ψit); logit(ψit) = log
(

ψit

1 − ψit

)

= bt + ui (1)   

If a site is occupied, then Yitv can be modelled under a Bernoulli 
distribution to calculate detection probabilities (Pitv) per site i, per year t, 

Fig. 1. Schematic representation of the inclusion criteria applied to mammal 
species within the assigned seven clusters and the resulting final four assem
blages considered for the modelling process. Species exclusion criteria, indi
cated using a shaded cross, are: Rare (recorded at <100 sites), 95% (majority 
list length one i.e. recorded on its own most of the time) and Survey (different 
survey methods to other species in the same cluster). 

Yitv∣ Zit ∼ Bernoulli (Pitv.Zit); logit(Pitv) = log
(

Pitv

1 − Pitv

)

= at + δ1.DT2itv + δ2.DT3itv (2)   
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and between visits v (Eq. (2)). The probability of detection has a random 
year-level effect function (at) that accounts for variability in detection 
over time. In addition, a categorical covariate — day-list length — was 
included in the observation sub-model to estimate sampling effort and 
variability in selective reporting (Szabo et al., 2010). A categorical co
variate was used owing to the higher mammal species richness in the 
south of the UK compared with the north (Crawley et al., 2020): using a 
continuous list length in this scenario would result in higher detections 
in the south (Outhwaite et al., 2019). The day-list length categories used 
in this model were: (1) Single species records; (2) Short lists, records of 
two or three species; and (3) Comprehensive lists, records of more than 
three species from a site within a day. The effect of the different day-list 
lengths is denoted as δ1 and δ2 (Eq. (2)) and indicates how detectability 
on these list lengths differ relative to a single species record list (at) for 
short and comprehensive day-lists respectively. 

Prior distribution specifications for the unknown parameters to be 
estimated in the models were assigned to represent a complete lack of a 
priori knowledge. Most priors were assigned to widely dispersed normal 
distributions but half-Cauchy hyper-priors, equivalent of a Student's t- 
distribution with 1 degree of freedom, were assigned to the standard 
deviation parameters (see Eqs. (C.1) to (C.6) for full prior formulations 
and Outhwaite et al. (2020) for further information). 

The occupancy models were fitted in a Bayesian mode of inference 
using JAGS (Plummer, 2017) with the package ‘R2jags’ (Su and Yajima, 
2015) and the ‘Sparta’ package (August et al., 2020a) in R3.5.2 (R Core 
Team, 2018). Models were fitted for all focal species using 30,000 Monte 
Carlo Markov Chain (MCMC) iterations with three chains, a thinning 

rate of three and a burn in rate of 15,000. This was deemed sufficient to 
achieve convergence for the estimated parameters across most species 
and years. Convergence, statistically stable parameter estimation, was 
measured using R̂,a value that compares the Markov chain within and 
between variance, quantifying whether the chains are drawing from the 
same distribution of parameter values (Gelman and Rubin, 1992). An R̂ 
value less than 1.1 indicates that a model has converged and conversely, 
values greater than 1.1 have failed to converge (Gelman and Hill, 2006). 
Convergence was also assessed through visual inspection of the MCMC 
chain trace plots (species-specific examples are presented in Fig. C.1). 

The number of occupied sites for a focal species — those with pre
dicted presences (Zit = 1) — were summed to calculate the proportion of 
the total number of sampled sites within an assemblage to give an oc
cupancy value between 0 and 1 in any given year. A value of 1 indicates 
that every sampled site was occupied by the focal species and a value 
between 0 and 1 indicates the proportion of the sampled sites that had 
predicted presences. 

To assess whether the model parameterisation is satisfactory to 
capture the structure of the observed data realistically and to provide 
support on model fit and the resulting species’ trends, diagnostic pos
terior predictive checks were conducted. These diagnostic checks 
effectively compare the observed data used to fit the model against a 
generated dataset of observations, created using samples drawn from the 
posterior distribution of the model's estimated parameters. Summary 
statistics were then calculated for both of these datasets using the pro
tocol outlined in Outhwaite et al. (2020). For each species, the propor
tion of sites with detections, averaged across all years, and the variance 

Table 1 
The survey assemblage classifications and included species lists with information on the data available for each.  

Survey Assemblage Small mammals (1) Deer (2) Bats (3) Mid-sized mammals (4)  

Bank vole (Myodes glareolus) Fallow deer (Dama dama) Barbastelle bat (Barbastella barbastellus) Brown hare (Lepus europaeus)  
Common shrew (Sorex araneus) Red deer (Cervus elaphus) Bechstein’s bat (Myotis bechsteinii) Brown rat (Rattus norvegicus)  
Field vole (Microtus agrestis) Reeves’ muntjac deer (Muntiacus 

reevesi) 
Brandt’s bat (Myotis brandtii) European badger (Meles meles)  

Harvest mouse (Micromys minutus) Roe deer (Capreolus capreolus) Brown long-eared bat (Plecotus auritus) European mole (Talpa europaea)  
Water shrew (Neomys fodiens) Sika deer (Cervus nippon) Common pipistrelle bat (Pipistrellus 

pipistrellus) 
European rabbit (Oryctolagus 
cuniculus)  

Wood mouse (Apodemus sylvaticus)  Daubenton’s bat (Myotis daubentonii) Grey squirrel (Sciurus 
carolinensis)  

Yellow-necked mouse (Apodemus 
flavicollis)  

Greater horseshoe bat (Rhinolophus 
ferrumequinum) 

Red fox (Vulpes vulpes)    

Grey long-eared bat (Plecotus austriacus) Stoat (Mustela erminea)    
Leisler’s bat (Nyctalus leisleri) Weasel (Mustela nivalis)    
Lesser horseshoe bat (Rhinolophus 
hipposideros)     
Nathusius’ pipistrelle bat (Pipistrellus 
nathusii)     
Natterer’s bat (Myotis nattereri)     
Noctule bat (Nyctalus noctula)     
Serotine bat (Eptesicus serotinus)     
Soprano pipistrelle bat (Pipistrellus 
pygmaeus)     
Whiskered bat (Myotis mystacinus)  

No. of Species 7 5 16 9 
Total number of 

records 
32,593 126,854 32,548 253,668 

Min. records per 
species 

1242 2833 222 10,252 

Mean records per 
species 

5116 13,253 759 30,750 

Max. records per 
species 

12,010 58,962 14,036 60,144 

Total no. of sites 4171 14,432 7704 39,582 
Total no. visits 27,193 107,533 40,447 243,323 

1. Small shrew and rodent species (weight 3 to 45 g), typically surveyed with live-trapping techniques, 
2. Deer species (weight 10 to 180 kg), typically surveyed with camera traps and visually by observers e.g. along transects, 
3. Bat species (weight 4 to 30 g), typically surveyed by live-trapping, roost inspections, and acoustics surveys, 
4. Mid-sized mammal species (weight 55 g to 12 kg) typically surveyed with camera traps and visually by observers e.g. along transects. 
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in the annual mean proportion of detections was calculated and 
compared. 

2.4. Trend indicators 

The OM's posterior distribution of annual occupancy estimates, with 
95% credible intervals to express uncertainty, are presented graphically 
for each species. A loess trend line (with 50% smoothing span), showing 
the smoothed inter-annual occupancy trend is also displayed. The per
centage change in occupancy from the first year to the last, with 95% 
credible intervals, was calculated to present the overall change in oc
cupancy for each species across the time-period. Trend estimates derived 
from first and last year values may not reflect long-term patterns of 
change because of fluctuating inter-annual occupancy estimates. 
Therefore, we also present species-specific average occupancy growth 
rates, computed across the entire time-period as the arithmetic mean of 

the percentage inter-annual change in occupancy (with 95% credible 
intervals calculated from the posterior distribution). The advantage of 
using growth rates is that species-specific and assemblage-composite 
trend indices can be constructed from the same data. The calculations 
for species-specific and assemblage trends, based on the outputs from 
the OM, were conducted in the ‘BRCindicators’ package (August et al., 
2020b). 

The species-specific growth rates are used to classify species into 
Alert Categories chosen to align with the UK wild bird population 
indices and widely used for other taxa (DEFRA, 2018; Marchant et al., 
1997):  

1. Strong increase – an average annual occupancy growth rate greater 
than or equal to +2.81%, equivalent to a doubling of occupancy over 
a 25-year period, 

small mammals

mid-sized mammalsbats

deer

Fig. 2. The distribution of sites used in the occupancy models for the four different survey assemblages of small mammals, deer, bats, and mid-sized mammals. 
Contains OS data © Crown copyright and database rights (2020). 
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Table 2 
Summary of the species-specific occupancy average annual growth rates with their associated Alert 
Categories and confidence of trend direction as the percentage of iterations. The occupancy change 
is the percentage change from the start to end year with their significance. The lower and upper 
credible intervals are presented in brackets. 

‡ Baseline year is 1970 for non-bat species; and 2005 for bats. 
*Alert category based on BTO (DEFRA, 2018; Marchant et al., 1997). 
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2. Increase – an average annual occupancy growth rate greater than or 
equal to +1.16% and less than +2.81%,  

3. No change – an average annual occupancy growth rate greater than 
or equal to -1.14% and less than +1.16%,  

4. Decrease – an average annual occupancy growth rate greater thank 
or equal to -2.73% and less than -1.14%,  

5. Strong decrease – an average annual occupancy growth change less 
than -2.73%, equivalent to occupancy halving over a 25-year period. 

Finally, composite indicators, based on the survey assemblage 
combined species-specific average growth rates, and their uncertainty, 
were computed. A baseline index value of 100 was set for the first year 
(1970 or, for bats, 2005). This composite indicator was considered sig
nificant if the baseline value (100) did not fall between its credible 

intervals. The growth rate and occupancy change trends can be 
considered significant if the value ‘0’, i.e. no change in occupancy, did 
not fall between their lower and upper credible intervals. The use of the 
word significant is not based on the typical frequentist definition. 
Instead, significance is used to highlight notable changes, for example 
we are 95% confident an assemblage has declined if the baseline value is 
above the upper 95% credible interval. 

3. Results 

3.1. Summary statistics 

Occupancy models were produced for the four survey assemblages: 
small mammals, bats, deer and mid-sized mammals (Table 1). Each 

Fig. 3. Species-specific occupancy trend examples for the five different Alert Categories. Top row – strong increase, second row – increase, third row – no change, 
fourth row – decrease, and bottom row – strong decrease. The solid line represents the mean occupancy for that year and the shaded area indicates the 95% credible 
intervals for each occupancy estimate. The overall trend is represented by the smoothed trend loess line (dashed line). 
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model successfully converged, with R̂ values less than 1.1 and standard 
deviations less than 0.2, for all species in all years with only one 
exception, the weasel (Mustela nivalis), where there was not full 
convergence for several earlier year estimates (1972-1982, 1987-1989, 
and 1991-1993). The estimated detection probabilities for each spe
cies and their associated day-list lengths were also sufficiently high, with 
narrow credible intervals (Fig. B.1). Each species-specific trend can 
therefore be interpreted as displaying informative occupancy estimates 
across all years, with the possible exception of early-year estimates for 
the weasel. Furthermore, the posterior predictive check diagnostic for 
mean proportion of sites with detections and variance across years 
indicated that the model parameterisation predicted the observed data 
very closely, with nearly all observed values from both summary sta
tistics falling within the credible intervals of the posterior predictive 
interval (Fig. C.2). However, it should be noted that some species do 
display large credible intervals. 

3.2. Species-specific inter-annual occupancy 

Overall, 30% of the 37 mammal species analysed had a negative 
occupancy growth rate and overall occupancy change, indicating that 
between 1970 and 2016 (2005 to 2016 for bats) their occupancy 
decreased from year to year on average with lower occupancy at the end 
of the time-period. Using the occupancy growth rates and the threshold 
values of the proposed Alert Categories, seven species were classified as 
strongly increasing, 11 as increasing, 12 as no change, five as decreasing 
and two as strongly decreasing (Table 2). Note that it is possible for a 
species to have a negative growth rate but not be classified as decreasing 
if the magnitude of the change is below the Alert Category threshold. 
The 95% credible intervals of the annual average growth rates all 
spanned 0, indicating that no growth rates were significant. Two trend 
examples from each Alert Category are shown in Fig. 3; and trends, 
along with detection probability graphs, for all species are presented in 
Fig. B.1. The overall occupancy change for each species was highly 
correlated to the growth rate (r = 0.91), but based on this change three 
species were found to have significantly decreased and 11 significantly 
increased in occupancy (Table 2). 

3.3. Survey assemblage composite trends 

The survey assemblage composite indicator, calculated using the 
combined inter-annual growth rates from the species within each 
assemblage, and the species’ trends within each assemblage display 
distinctive assemblage-specific patterns (Fig. 4). The small mammals 
assemblage shows a consistently declining index from 1975 to 2016 
(Fig. 4). Five species within this assemblage were classified as 
decreasing, or strongly decreasing for the harvest mouse (Micromys 
minutus), with a mean growth rate across all species within this assem
blage having the largest percentage decrease of any assemblage (-0.8%, 
SD 1.57: Table 2). The deer assemblage index began with little change 
between 1970 and 1987, but began increasing after this point, except for 
2011 to 2013 (Fig. 4). Although most species within the deer assemblage 
were classified as no change, the mean growth rate across all species was 
positive (0.9%, SD 1.30: Table 2). The bats assemblage index increased 
consistently between 2005 and 2016 (Fig. 4), with 15 of the 16 species 
having positive growth rates, and all except two species being cat
egorised as increasing or strongly increasing. On average, the species 
within the bats assemblage had the highest assemblage mean growth 
rate (3.8%, SD 3.25: Table 2). The mid-sized mammals index remained 
relatively constant from 1970 to 1977 but decreased to a relatively 
consistent index after this time (Fig. 4). The species growth rates in this 
assemblage are more varied, with five species displaying increasing and 
four species decreasing growth rates (Fig. 4). However, despite the mean 
growth rate across all species in this assemblage being slightly negative 
-0.3% (SD 1.72: Table 2), most species (67%) are classified as no change. 
The stoat (Mustela erminea) and weasel are the only species in this 
assemblage to have sufficiently large declines in average growth rates to 
be classified as decreasing, and strongly decreasing, respectively. The 
European badger (Meles meles) is classified as increasing (Table 2). 

4. Discussion 

This study estimates trends in occupancy for 37 (66%) of the 58 UK 
terrestrial mammal species, using unstructured data largely collected by 
citizen scientists. International obligations and domestic policies mean 
that monitoring trends in wildlife populations is required for a variety of 
purposes. For example, there are periodic reporting requirements for 
key species listed on the appendices of the EU Habitats Directive (92/ 

Fig. 4. The composite indicator trends (black line) and credible intervals (shaded regions) for the four survey assemblages. The reference index is set to 100 and the 
reference year is 1970 except for bats where it is 2005. Indicator trends can be considered significant if the reference index is beyond the limits of the cred
ible intervals. 

F.G. Coomber et al.                                                                                                                                                                                                                             



Biological Conservation 264 (2021) 109362

9

43/EEC), and Red Lists (which are used in a variety of ways, including 
assessment of progress against Convention on Biological Diversity Tar
gets) require the identification of species at risk from extinction. Yet the 
difficulty and expense of systematic recording schemes for mammals 
means that they are relatively uncommon. Only 12 of the 26 terrestrial 
mammal species on the British Priority Species Indicator have abun
dance indices and previously, none had occupancy or distribution 
indices (Eaton et al., 2015). Similarly, a recent review of British mam
mals found a high proportion (43%) of conservation trends to be unre
liable, with 61% of species lacking information on occupancy estimates 
(Mathews et al., 2018). The results of this study, therefore, have added 
much needed information on a number of data deficient species for 
policy, conservation and management practitioners. 

Using Alert Categories applied to birds in the UK (DEFRA, 2018; 
Marchant et al., 1997), 19% of the modelled species were categorised as 
decreasing, 32% as stable and 49% as increasing. While there is debate 
about whether decline alone should be sufficient to classify species as 
being at risk of extinction regardless of censured population size (under 
Criterion A of the IUCN Red List, IUCN, 2017) (e.g. Godfrey and Godley, 
2008), early intervention triggered by the detection of such trends is 
generally likely to be beneficial. For British mammals, this work in
dicates consistent patterns of decline for all small mammals excluding 
the wood mouse (Apodemus sylvaticus) suggesting that conservation 
action is required. The scale of the decline observed for the weasel is 
sufficient to change its classification from Least Concern (a judgement 
based largely on an unchanging extent of occurrence) to Vulnerable on 
the GB Regional Red List (Mathews et al., 2018). This assessment is 
unaffected by the model's lack of convergence for this species in the 
early time period because the assessment considers only 10 years or 3 
generations, whichever is the longer. 

The combination of modelling framework, survey assemblage 
grouping, and record inclusion criteria used in this study is a rigorous 
method to deduce trends from biological records. It attempts to account 
for detectability, selective recording, and changes in survey effort. The 
models had convergent R̂ values, narrow credible intervals for estimated 
annual occupancy and sufficiently high detection probabilities, sug
gesting that the outputs are internally robust (Outhwaite et al., 2018). 
However, as with any statistical modelling exercise, it is important to 
check model assumptions, fit, and predictions (Devarajan et al., 2020). 
The posterior predictive check diagnostic indicates that the proportion 
of sites and the inter-annual variability generally fits the observed data 
well. Most species’ mean predictions lie close to the observed for both 
summary statistics, and nearly all species observed values fall within the 
predicted credible intervals, although there are some species for which 
these intervals are quite large. Furthermore, comparisons between 
trends derived from systematic and non-systematic schemes represent 
an additional diagnostic to validate the estimated OM results (van Strien 
et al., 2013). It is important to acknowledge that the outcome measures 
used in different schemes vary (for example, extent of occurrence, 
abundance or, as here, occupancy), and while there is consensus that 
these indices are related (e.g. Borregaard and Rahbek, 2010), the re
lationships between them can be complex and take multiple forms (e.g. 
Dallas et al., 2017; Gaston, 1996). Nevertheless, congruence in the 
findings from different schemes lends weight to the view that they 
reflect the underlying conservation status of populations (MacKenzie 
and Reardon, 2013). 

The modelled results on occupancy trends for bat species align with 
those from the UK's Bat Conservation Trust's National Bat Monitoring 
Programme (Barlow et al., 2015; BCT, 2019). Their roost counts (which 
provide an index of abundance) and field surveys (which are most 
analogous to this study as the index is based on modelled occurrence 
(Kamp et al., 2016)) indicate that all bat species with sufficient data 
have been stable or increased since 1999. Similarly, the Deer Distribu
tion Survey found that all six deer species found in the UK had increasing 
occupancy at 10 km grid square resolution between 1972 and 2002; an 

order and direction of change that closely matched this study (Ward, 
2005). For the European badger, the estimated increase in occupancy 
(1.4%) is broadly in agreement with estimates of change in abundance 
(2.6%, 95% CI 2.2-2.9% between 1985 and 2013) (Judge et al., 2014; 
Wilson et al., 1997), with occupancy typically expected to increase more 
slowly than population size (Holt et al., 2002). It can therefore be 
concluded that the results of this study are validated for a number of 
species from other types of surveys. In addition, this provides evidence 
that the OM results for species with previously unknown occupancy 
trends, due to a lack of systematic surveys, are likely to be reliable. 

A potential limiting factor in this study is that all biological records 
were used without incorporating monitoring method (for example, bat 
detector) as a covariate in the model, a variable known to be linked to a 
species’ detectability. Failure to account for these differences in 
detectability could potentially lead to incorrect conclusions. A study that 
used an OM framework on red snapper (Lutjanus campechanus) found 
that detectability for camera trapping methods was twice that of 
chevron fish traps and was an important model predictor (Coggins et al., 
2014). Similarly, mammal detectability in Australia was also found to be 
highly dependent on the monitoring method used (Einoder et al., 2018). 
In this study, all records were used without accounting for different 
survey methods because this information was lacking for a large pro
portion of them. The division into survey assemblages may help to 
alleviate this issue, as it could be assumed that species within an 
assemblage are likely to be surveyed together. However, it must be 
understood that co-occurrence could potentially arise from different 
observers in the same site and may not represent the same survey 
methods in all cases. This information should be considered when 
interpreting these results, and efforts should be made to collect infor
mation on survey methods in the future. For example, acoustic bat de
tectors have advanced in recent years with microphone types and their 
unique frequency responses resulting in differences between detect
ability of different bat species (Adams et al., 2012), with consequent 
effects on bat trend analyses (Barlow et al., 2015). In addition, season 
(phenology), landscape variables (e.g. elevation), biological de
mographics and local abundance have all been shown to affect a species’ 
detectability (Chen et al., 2013; Einoder et al., 2018; Li, 2018; Rossman 
et al., 2016; Royle and Nichols, 2003; Zipkin et al., 2017). 

To ensure that the inferred occupancy estimates using unstructured 
biological data are accurate, these data must meet the modelling 
framework assumptions (MacKenzie et al., 2017). The use of serial 
recording loggers, such as static bat detectors or camera traps, may 
actually lead to model violations of replicate observation independence 
(Wright et al., 2016), creating temporally replicated ‘snapshot’ visits 
over successive days. Furthermore, the sampling sites used in this study 
were not randomly or systematically selected and spatial correlation, 
caused by clustering of sample sites, could potentially lead to an over
estimation of precision (McNew and Handel, 2015). Species misidenti
fication can also lead to false positives — a record of a species at a site 
where it is in fact absent — and, within an OM framework, can lead to an 
overestimation of occupancy (Guillera-Arroita, 2017). The biological 
records used in this study were subject to automatic and expert verifi
cation procedures (August et al., 2015), hence the issue of false positives 
should be minimal. However, there is still the possibility that some 
species, especially cryptic species like whiskered (Myotis mystacinus) and 
Brandt's (Myotis brandtii) bats, may have been misidentified. Moreover, 
around a third of the species considered were excluded from analysis 
because accurate detection histories could not be computed. This issue 
arose because these species were usually recorded alone, either because 
of survey technique e.g. dedicated European otter (Lutra lutra) surveys, 
or because of particular public interest in a single species, e.g. the Eu
ropean hedgehog (Erinaceus europaeus). 

Most assessments of trends in conservation status depend on com
parison of snapshot assessments taken at two time points, often sepa
rated by many years. For example, the recent British Mammal Atlas 
compares distributions in 1960-1992 with those in 2000-2016 (Crawley 
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et al., 2020); population reviews typically operate on a 20-year time 
window (Harris et al., 1995; Mathews et al., 2018); and data intensive 
systematic surveys are often performed infrequently e.g. 10 years for the 
National Otter Survey (Crawford, 2010). Clearly, such approaches 
create a decadal time lag for detection of changes, with consequences for 
the effectiveness of interventions. In contrast, continual recording and 
analysis of unstructured data and the presentation of inter-annual 
changes can highlight changes shortly after they occur. For example, 
the effects of disease outbreaks such as the 1992 (Moss et al., 2002) and 
2010 (Westcott and Choudhury, 2015) Rabbit Haemorrhagic Disease 
outbreaks are indicated by a corresponding decrease in occupancy of 
European rabbits (Oryctolagus cuniculus) shortly after these dates 
(Fig. 3). 

Presentation of continuous inter-annual changes can also help 
overcome the problem of selecting an appropriate baseline, and means 
that trends can be calculated using a range of start and end points or 
‘moving windows’ (see Goodwin et al., 2017 for example; IUCN, 2017). 
If a starting year has a relatively high abundance (or equivalently, 
selecting sites for repeated survey on the basis of having high abun
dance) erroneous inferences of declines may be estimated as repeat 
surveys will tend to produce estimates closer to the mean (e.g. Fournier 
et al., 2019). Conversely, starting monitoring when a population is 
already depressed will under-estimate extents of declines (the so-called 
‘shifting-baseline’ effect; Soga and Gaston, 2017). Readers are able to 
assess the effects of altering baseline years for the species in this project 
through the interactive resource provided online (https://mammals 
ociety.shinyapps.io/OccupanyTrends/). 

Although OMs represent a robust method for determining species 
trends from biological records (Isaac et al., 2014), and enable consistent 
analyses to be undertaken across multiple species, they still have less 
power at deducing trends compared with systematic surveys (Kamp 
et al., 2016). Therefore, the scale of changes, and the numbers of species 
affected, may be underestimated. This is important for some species, 
including the stoat, weasel, harvest mouse, bank vole (Myodes glareolus), 
common shrew (Sorex araneus), field vole (Microtus agrestis) and water 
shrew (Neomys fodiens), which were all found to be decreasing, three of 
which have displayed a significant decrease in occupancy since 1970. 
This decrease is likely to be a true biological decrease, but all of these 
species lack any systematic monitoring schemes. Using OMs and a novel 
clustering algorithm — to refine non-detection inference — on un
structured citizen science records offers an opportunity to highlight 
species, which are not subject to systematic surveys, where resources for 
conservation and monitoring actions are most urgently needed. 

5. Conclusion 

Occupancy models represent one of the most robust methods to 
deduce trends from unstructured biological records. Using OMs and a 
novel systematic method for inferring non-detections of mammal spe
cies, this study estimates the first long-term occupancy trends for a large 
proportion of terrestrial mammal species in the UK, many of which had 
no previously reported trends. These estimates are validated through 
comparisons with other survey approaches, where available. This study 
increases the information on mammal conservation status available to 
practitioners and policy makers; it provides support to previously re
ported trends and surveys, it estimates 14 new species trends previously 
unavailable, and it provides evidence to assist the prioritisation of spe
cies for conservation action. 
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