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Abstract

Surface meltwater is becoming increasingly widespread on Antarctic ice shelves. It is stored
within surface ponds and streams, or within firn pore spaces, which may saturate to form
slush. Slush can reduce firn air content, increasing an ice-shelf’s vulnerability to break-up.
To date, no study has mapped the changing extent of slush across ice shelves. Here, we use
Google Earth Engine and Landsat 8 images from six ice shelves to generate training classes
using a k-means clustering algorithm, which are used to train a random forest classifier to iden-
tify both slush and ponded water. Validation using expert elicitation gives accuracies of 84% and
82% for the ponded water and slush classes, respectively. Errors result from subjectivity in iden-
tifying the ponded water/slush boundary, and from inclusion of cloud and shadows. We apply
our classifier to the Roi Baudouin Ice Shelf for the entire 2013–20 Landsat 8 record. On average,
64% of all surface meltwater is classified as slush and 36% as ponded water. Total meltwater areal
extent is greatest between late January and mid-February. This highlights the importance of
mapping slush when studying surface meltwater on ice shelves. Future research will apply the
classifier across all Antarctic ice shelves.

1. Introduction

Surface meltwater is present on the majority of Antarctica’s ice shelves (e.g. Langley and
others, 2016; Kingslake and others, 2017; Macdonald and others, 2019; Stokes and others,
2019; Arthur and others, 2020a; Dell and others, 2020; Banwell and others, 2021). It can
act as a key control on ice-shelf stability (Lai and others, 2020) and thus the contribution
of Antarctica’s grounded ice to global sea level rise (Rignot and others, 2004; Berthier and
others, 2012; Furst and others, 2016). Surface meltwater is stored either in ponds within topo-
graphic depressions on top of impermeable ice surfaces (Bell and others, 2018; Banwell and
others, 2019) or in firn pore spaces (Dunmire and others, 2020; Montgomery and others,
2020). When firn pore spaces become saturated, slush is formed and this may be particularly
likely where firn overlies former blue ice areas or refrozen lakes, or where refreezing of infil-
trated water has formed extensive ice layers at depth within the firn. Melting and refreezing of
slush promotes firn air content depletion, thereby increasing its density and increasing an ice
shelf’s vulnerability to ponding (Kuipers Munneke and others, 2014; Hubbard and others,
2016; Alley and others, 2018). Ponded water has been shown to drive ice-shelf collapse events
through hydrofracture (Scambos and others, 2003, 2004; Banwell and others, 2013; Banwell
and MacAyeal, 2015; Robel and Banwell, 2019) and therefore several studies have mapped
the changing extent of ponded water on ice shelves (e.g. Arthur and others, 2020a, 2020b;
Dell and others, 2020; Spergel and others, 2021). Despite the potential role of water as
slush in driving hydrofracture, there has been very little research investigating the changing
extent of slush on ice shelves. This means that previous research will not only have underes-
timated total surface meltwater areas on Antarctic ice shelves, but also underestimated their
potential vulnerability to hydrofracture and collapse.

Across Antarctic ice shelves, areas of ponded water and slush are more commonly observed
near to grounding lines (Kingslake and others, 2017; Lenaerts and others, 2017). Here,
katabatic and/or föhn winds facilitate snow erosion, exposing widespread areas of blue ice
and lowering the surface albedo, which in turn amplifies surface melting (Kingslake and
others, 2017; Lenaerts and others, 2017). The extent of surface melting is expected to increase
as air temperatures rise throughout the 21st century (Trusel and others, 2015; IPCC, 2019), as
demonstrated across the northern George VI Ice Shelf during the 2019/20 melt season,
when sustained periods of warm air temperatures above 0°C led to a 32-year record-high melt-
ing (Banwell and others, 2021). It is, therefore, crucial to quantify the area and volume of sur-
face meltwater on the surface of ice shelves, and to evaluate the potential impacts of this
surface meltwater, including slush, on ice-shelf stability. Furthermore, producing time series
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of surface meltwater across ice shelves will allow current surface
mass-balance models to be validated, potentially leading to
improved projections of future meltwater evolution.

Remotely sensed data can be used to track surface water bodies
(i.e. ponds and streams) across space and over time. At present,
two key methodologies are used to map water bodies on
Antarctic ice shelves: threshold-based mapping (e.g. Banwell
and others, 2014; Dell and others, 2020; Moussavi and others,
2020) and machine learning (ML) (e.g. Dirscherl and others,
2020, 2021; Halberstadt and others, 2020). The former identifies
water bodies where pixels exceed a reflectance threshold in spe-
cific bands or band combinations. Although most threshold-
based approaches rely solely on an normalised difference water
index of ice (NDWIice) threshold (e.g. Dell and others, 2020;
Williamson and others, 2018), Moussavi and others (2020)
employ a multiple threshold approach to map surface lakes
more accurately on a pan-Antarctic scale, achieving accuracies
of >95 and >97% for Landsat 8 and Sentinel-2, respectively.

Despite the significance of slush for firn-air depletion and as a
possible precursor to the formation of surface water bodies, little
is known about its spatial–temporal trends across Antarctic ice
shelves on intra-seasonal and inter-annual timescales. Previous
research on the Nansen Ice Shelf utilised a threshold-based
approach on cloud-free imagery to identify areas of slush as
those with an NDWIice between 0.12 and 0.14 (Bell and others,
2017). This approach is built upon the study of Yang and
Smith (2013), who used NDWIice thresholds to map surface
streams on the southwestern Greenland ice sheet. Yang and
Smith (2013) commented on the difficulties of using remote sens-
ing to distinguish between water and slush on the ice-sheet sur-
face, as the high liquid water content of slush results in similar
spectral reflectance values to water. However, Yang and Smith
(2013) found that a low NDWIice threshold of 0.12 identified
all water pixels, and a moderate NDWIice threshold of 0.14 helped
to eliminate slush. Although this approach may perform well in
particular locations, it cannot necessarily be applied across all
Antarctic ice shelves given the spectral similarities of slush to sur-
face water, blue ice and shaded snow (Moussavi and others, 2020).
As such, thresholds that are suitable in one scene may not be suit-
able in other scenes, and variable thresholds would be needed if
this approach were to be applied across many scenes.

ML offers an alternative to the threshold-based approach, and
typically utilises more spectral information than single or multi-
band methodologies as ML methods can automatically determine
which spectral information is valuable for making classification
decisions. Although ML is more computationally expensive,
cloud-based geoprocessing platforms such as Google Earth
Engine (GEE) have made possible its application on a
pan-Antarctic scale, without the need for local, high-performance
computing clusters. Overall, ML has been shown to produce simi-
lar results to the threshold method when mapping surface water
bodies on Antarctic ice shelves (Halberstadt and others, 2020).
However, it has not been applied to the mapping of slush, and
therefore the total area of all surface meltwater across Antarctic
ice shelves remains underestimated.

This study, therefore, aims to use an ML methodology to
develop a supervised classifier within GEE capable of detecting,
and differentiating between slush and ponded surface water
across all Antarctic ice shelves. To do this, we: (1) train a super-
vised classifier capable of lake and slush identification on six dif-
ferent Antarctic ice shelves; (2) validate the classifier by
investigating the agreement with manual classification by a set
of experts; and (3) apply the final classifier to the Roi
Baudouin Ice Shelf (RBIS) for the period 2013–20 to identify
spatial patterns and temporal variability in slush and ponded
surface water.

2. Materials and methods

Here, we introduce the study areas used to train and validate
the classifier. We also describe the steps taken to select and
pre-process Landsat 8 Level 1 images used by the classifier.
We then describe the methods used to build the classifier, before
explaining how we validate it. Finally, we discuss how we apply
the validated classifier to the RBIS.

2.1 Study areas

We trained and validated our methods on six individual ice
shelves (Fig. 1); (i) Nivlisen, (ii) Roi Baudouin, (iii) Amery, (iv)
Shackleton, (v) Nansen and (vi) George VI (Fig. 1; Table S.1).
These ice shelves are characterised by a range of surface melt
conditions and features, resulting in a wide variety of surface
spectral characteristics. Additionally, all six ice shelves experience
snow erosion driven by katabatic winds, which leads to the
formation of extensive areas of blue ice at their grounding lines.
The key information for each of these ice shelves is presented
in Table 1.

2.2 Scene selection and pre-processing

Identical criteria and methods were used to select and pre-process
suitable Landsat 8 scenes across both the training and validation
steps of this methodology (Fig. 2). We first identified suitable
image scenes for each study site by searching the Landsat 8
Level 1 image collection from 2013 to 2020, filtering for images
with <40% cloud cover and >20° solar elevation (Halberstadt
and others, 2020). Solar elevations >20° only were used to reduce
the impact of shadowing (Halberstadt and others, 2020). Fourteen
training images (two for each ice shelf, and an extra two for
Nansen; see Section 2.3 for further explanation), and six separate
validation images (one for each ice shelf) were then selected for
the purpose of training and validating the classifier respectively
(Table S.1). When choosing suitable training and validation
images, we aimed to select a range of images that spanned the
full austral melt season (1 November to 31 March) and
that were acquired at a range of solar elevations (20.9° to 36.6°)
(Table S.1). This approach ensured that we were training and val-
idating the classifier using images with a wide range of spectral
characteristics.

Scenes were pre-processed by converting to per-pixel
top-of-atmosphere values (Dell and others, 2020), and by clipping
to the ice-shelf boundaries (from the SCAR Antarctic Digital
Database). A rock mask was then applied to each scene, following
the method of Moussavi and others (2020). This mask was then
buffered by 1 km to ensure full removal of rock and rock shadow
from each scene (Halberstadt and others, 2020). Clouds (includ-
ing cirrus) and cloud shadows were identified and masked using
the Landsat 8 Quality Assessment Bands, with a 4 km buffer
applied to ensure full removal.

Finally, all pixels with an NDWIice > 0.1 were selected for fur-
ther analysis. We note that in previous studies, to identify slush in
addition to shallow and deep water, a threshold of 0.12 has been
used (Yang and Smith, 2013; Bell and others, 2017). However, in
our study, we lowered the NDWIice threshold to 0.1 to include
more potentially wet pixels, which were then categorised as
‘slush’, ‘ponded water’ or ‘other’ by the classifier at a later stage.
NDWIice was calculated using Landsat 8 bands 2 (blue) and 4
(red):

NDWIice = (Blue Band–Red Band)/ (Blue Band+Red Band) (1)
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2.3 Training data generation and supervised classification

To generate training data and to train a supervised classifier, we
followed the general methodology of Halberstadt and others
(2020), which we briefly summarise here. Training data were
generated by applying an unsupervised k-means clustering algo-
rithm (Arthur and Vassilvitskii, 2007) in GEE, which identifies
clusters of spectrally distinct pixels across a set of 14 scenes
from bands 1–7 (Fig. 3c). The k-means clustering algorithm,
which is the only supervised classification algorithm available in
GEE, is widely used by the community and is robust, and for
these reasons chosen for this study. Initial training data were
generated using two image scenes per ice shelf. Our initial trained
classifier produced significant misclassification errors over ‘dirty
ice’ (i.e. ice that contains debris and/or sediment) regions; the
inclusion of two additional Nansen Ice Shelf training scenes
added ‘dirty ice’ training data and improved classifier
performance.

The k-means clustering algorithm was executed by sampling
100 000 pixels from each image at the Landsat 8 native grid size
of 30 m. We specified a minimum of 5 and a maximum of 70
clusters when running the k-means clustering algorithm. This
maximum value was manually determined, and increasing the
value further did not have an impact on the output of the clus-
terer, as the cluster typically returned no more than ∼20 clusters.
We then manually interpreted the resulting clusters and grouped
them into interpreted classes: ponded water, slush and
several others (including, but not limited to, blue ice, snow and
dirty ice). The boundary between slush and ponded water was
determined by the developer of the classifier, however the transi-
tional and subjective nature of this distinction should be noted,

and this boundary is therefore imperfect. In some cases, clusters
identified using the k-means algorithm overlapped two inter-
preted classes. These clusters were therefore further subdivided
using k-means (sampling 10 000 pixels at a grid size of 30 m,
and specifying a minimum of 8 and maximum of 12 clusters)
and the sub-clusters were assigned to an interpreted class. Once
the final interpreted classes were formed, areas of mis-
classification error were manually masked from the training
data. We then randomly sampled 1000 pixels from each inter-
preted class, to form the final training dataset for all ice shelves
combined. These data were then used to train a random forest
classifier, implemented in GEE. Random forest classifiers use
numerous tree predictors to generate a most-likely outcome
(Breiman, 2001). The number of trees for this classifier was set
to 150. The relative importance of each band within the random
forest classifier was also determined within GEE.

2.4 Validation

The performance of the supervised classifier was validated using
the validation dataset, which included one image scene for each
of the six study areas. For each of the six validation scenes, the
random forest classifier was applied (Fig. 4), and 250 classified
pixels were randomly sampled from each scene. We then used
expert elicitation (Bamber and Aspinall, 2013), where four glaciol-
ogists, who we call ‘experts’, were each asked to manually interpret
a total of 100 pixels for each image scene, classifying them as
either ‘ponded water’, ‘slush’ or ‘other’. Experts viewed each
pixel within its surrounding spatial context, and were permitted
to zoom in and out of the image. Furthermore, the experts were

Fig. 1. Study area figure showing the six ice shelves selected for use in the unsupervised k-means clustering algorithm. Dashed coloured boxes indicate the location
of the Landsat-8 training images for (a) Nivlisen, (b) Roi Baudouin, (c) Amery, (d) Shackleton, (e) Nansen and (f) George VI, with different coloured boxes indicating
different paths/rows. Whilst images used in this Figure show training image locations, they are not necessarily the training images themselves, a record of images
used is provided in Tabel S.1. Ice-shelf boundaries (from the SCAR Antarctic Digital Database) are marked by a solid black line on both the main and subset images.
The central map of Antarctica is the Centre-Filled LIMA Mosaic (Bindschadler and others, 2008).
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Table 1. Study area details for the six ice shelves used in the unsupervised k-means clustering algorithm

Ice shelf
Latitude
Longitude Ice-sheet region

Area
(km2) General surface water characteristics Key citations

Nivlisen 70.7° S
11.7° E

Dronning Maud
Land, East Antarctica

7 380 Elongate surface lakes expand towards ice shelf’s
calving front as melt season progresses

Dell and others (2020)

Roi
Baudouin 69.9° S

32.6° E
Dronning Maud
Land, East Antarctica

33 200 Extensive melt near the grounding line in addition
to buried lakes

Dunmire and others (2020);
Lenaerts and others (2017)

Amery 73.1° S 67.3° E East Antarctica,
Pyrdz Bay, East
Antarctica

61 800 Surface drainage system
comprised of surface channels and lakes

Fricker and others (2021);
Spergel and others (2021)

Shackleton 66.4° S 100° E Queen Mary Land,
East Antarctica

28 600 Surface lakes near the grounding line Arthur and others (2020b)

Nansen 74.9° S 162.8° E Victoria Land, East
Antarctica

2 270 Large surface river exports surface meltwater into
ocean via a 130 m wide waterfall

Bell and others (2017);
Frezzotti (1993)

George VI 70.7° S 68.2° W South-west
Antarctic Peninsula

30 300 Extensive ponding in northern
region since early 1940s

Banwell and others (2021);
Reynolds (1981); Wagner (1972)

Fig. 2. Workflow detailing the pre-processing, training, and validation steps for creating a supervised classifier to map slush and ponded water across Antarctic ice
shelves using GEE.

Fig. 3. Example workflow for the k-means clustering algorithm over the Nivlisen Ice Shelf (Landsat 8, 2016-12-27). (a) Base image of the Nivlisen Ice Shelf, the solid
black line marks the ice-shelf area (from the SCAR Antarctic Digital Database), the dashed box shows the zoomed area featured in (b), (c) and (d). (b) True colour
composite. (c) K-means clusters (shown as different colours). (d) Interpreted ponded water and slush classes, identified from the k-means clusters in (c). In total,
ten k-means clusters were combined to form the ponded water class, and ten k-means clusters were combined to form the slush class.
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Fig. 4. Preliminary outputs from the supervised classifier, as applied to six Landsat 8 validation images for the (a) Nivlisen Ice Shelf, (b) RBIS, (c) Amery Ice Shelf, (d)
Shackleton Ice Shelf, (e) Nansen Ice Shelf and (f) George VI Ice Shelf. Panels in column (i) show the pre-processed Landsat 8 RGB images to be classified, with the
red boxes delineating close-up areas shown in panels in columns (ii) and (iii). Panels in column (ii) show the close up areas in RGB, and panels in column (iii) show
the results for these areas produced by the supervised classifier, with blue = ponded water and green = slush.
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all familiar with looking at ice-sheet/-shelf surface hydrology
using medium-resolution optical data, and were not directly
involved with training the classifier. Experts were not given direc-
tion for the interpretation of pixels, to ensure that their interpre-
tations were not biased by the individual who developed the
classifier. Of the 100 pixels per image interpreted by each expert,
the first 50 pixels for each of the six images were identical. These
300 pixels (the ‘intercomparison dataset’) were used to compare
expert opinions to highlight the subjectivity of manually identify-
ing slush and ponded water in satellite imagery. The second 50
pixels per image were unique to each expert, and comprised of
the ‘main validation dataset’ (i.e. 1200 pixels in total).

For each pixel, in addition to providing an interpretation, each
expert assigned a confidence score to reflect the certainty of their
manual interpretation. The confidence score values were assigned
as either: (1) low-confidence, (2) medium-confidence or (3) high-
confidence (Bamber and Aspinall, 2013). These confidence scores
provided a way to identify pixels that were likely classified with
less accuracy by the experts, due to their uncertainty.

Finally, we present true positives and negatives, as well as false
positives (errors of commission) and false negatives (errors of
omission) as a confusion matrix (Stehman, 1997) to calculate
the classifier accuracy (compared to the expert interpretations)
for all pixels, as well as just for the high-confidence pixels. The
overall classifier accuracy was calculated by summing all correctly
classified pixels (true positive and true negatives) and dividing
this sum by the total number of pixels sampled.

2.5 Application on the Roi Baudouin Ice Shelf

Once validated, the classifier was applied to the entire RBIS for
Landsat 8 images from 2013 to 2020 to test how well the method
upscaled through space and time. We filtered only for images with
a solar elevation >20°, but accepted any level of cloud cover in
order to utilise as much of the available imagery as possible,
thereby increasing data coverage through space and time. These
selected images were then pre-processed using the same steps
that were applied in the training and validation phases (see
Section 2.2). However, rather than processing individual scenes
as we did previously, we created 15-day (bi-monthly) mosaiced
products from the available scenes to maximise spatial coverage
prior to applying the NDWIice > 0.1 filter. Each 15-day mosaiced

product was produced using the ‘quality mosaic’ function in GEE,
which used the pixel with the greatest NDWIice value for locations
where pixels overlapped. For each melt season, the products start
on 1 November, and continue in blocks of exactly 15 days until 31
March (or until 1 April for leap years). The supervised classifier
was applied to each 15-day product, and the total areas of both
slush and ponded water were calculated. For 15-day periods
that did not have complete data coverage across the RBIS, we
scaled slush and ponded water areas to the full ice-shelf area by
calculating the area of slush or ponded water found within each
15-day product as a fraction of the visible ice-shelf area of each
15-day product, and then multiplying this fraction by the full ice-
shelf area (Williamson and others, 2018; Banwell and others,
2021). In addition to the 15-day products that we exported
from GEE, we compiled maximum melt extent maps for each
meltseason in MATLAB (Williamson and others, 2018) to show
each pixel that was covered by either slush, ponded meltwater
or both slush and ponded meltwater.

3. Results

3.1 Classification accuracy based on expert elicitation

Table 2 shows the results from the intercomparison dataset for
each scene in the validation dataset, which were interpreted by
all four experts. The data shown include all interpreted pixels
regardless of the associated confidence scores. Overall, the accur-
acy of the ponded water class is 78%, and the accuracy of the slush
class is 71%. For the ponded water class, the experts all produced
similar accuracy scores for the RBIS (8% spread), and more dis-
similar scores for the Nansen Ice Shelf (30% spread), with a
mean spread across all six ice shelves of just 6%. For the slush
class, the experts are in the closest agreement over the George
VI Ice Shelf (11% spread), and in least close agreement over the
Nansen Ice Shelf (79% spread). As with the ponded water class,
these discrepancies tend to cancel out between experts giving an
overall mean spread across all ice shelves of just 5%. Table 3
shows the same data as Table 2, but only for the pixels for
which the experts had ‘high-confidence’ in their interpretation.

Table 4 shows the accuracy results for the classifier over the
main validation dataset (where each expert interpreted 50 differ-
ent pixels per ice-shelf). The accuracy for the ponded water class
is 78% and for the slush class is 70%; these values are very similar

Table 2. Accuracy scores for the intercomparison dataset (the 50 pixels shared by all experts for each ice-shelf validation image), listed by expert

Ponded water (%) Slush (%)

Roi B Nansen Nivlisen Shackleton GVI Amery Mean Roi B Nansen Nivlisen Shackleton GVI Amery Mean

Expert 1 88 91 71 84 65 64 77 70 85 71 65 67 63 70
Expert 2 90 80 88 88 80 69 82 76 52 92 73 76 69 73
Expert 3 96 94 80 78 65 50 77 88 94 83 60 65 37 71
Expert 4 92 64 85 88 68 58 76 68 15 82 79 70 93 68
Mean 91 82 81 84 70 60 78 76 61 82 69 69 65 71

Table 3. High-confidence accuracy scores for the intercomparison dataset , listed by expert

Ponded water (%) Slush (%)

Roi B Nansen Nivlisen Shackleton GVI Amery Mean Roi B Nansen Nivlisen Shackleton GVI Amery Mean

Expert 1 83 80 83 88 89 67 82 59 86 83 64 89 67 75
Expert 2 94 50 94 89 88 75 82 76 33 100 89 88 67 76
Expert 3 100 92 83 88 91 40 82 87 92 89 70 100 40 80
Expert 4 100 100 100 100 77 62 90 50 25 100 100 91 57 71
Mean 94 81 90 91 86 61 84 68 59 93 81 92 58 75
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to those produced by the intercomparison dataset. The classifier is
most accurate at identifying ponded water for the Shackleton
Ice Shelf (91%) and least accurate for the Amery Ice Shelf
(61%). In contrast, the classifier is most accurate at identifying
slush for the Nivlisen Ice Shelf (80%) and least accurate for the
Nansen Ice Shelf (60%). The percentage of low confidence pixels
ranges from 13% (Nivlisen and George VI ice shelves) to 28%
(the Shackleton Ice Shelf).

Table 5 shows the accuracy results for the main validation
dataset using high-confidence pixels only. The mean accuracy
for the ponded water class is 84% and for the slush class is
82%. Agreement between the experts and the classifier is greatest
for ponded water over the Shackleton Ice Shelf (96%) and for
slush over the Nivlisen Ice Shelf (92%). This agreement is lowest
for ponded water over the Amery Ice Shelf (65%) and for slush
over the RBIS (72%).

For the ponded water class, Expert 2 had the lowest agreement
with the classifier. This was due to the classifier designating cer-
tain pixels as ‘other’ (e.g. non-wet surface facies), whereas the
expert interpreted the pixels to be ponded water. For the slush
class, Expert 4 had the lowest agreement with the classifier,
which classified certain pixels as ‘other’ that were interpreted to
be slush by the expert.

3.2 Relative importance of input bands

The relative importance of each band within our supervised clas-
sifier was determined within GEE using the ‘.explain()’ function,
and the results show that all bands contribute towards the classi-
fication of slush and ponded water (Table 6). However, band 5
(near-infrared) is of greatest importance for the supervised classi-
fier, with an importance score of 20% (Table 6). Bands 1–4 (vis-
ible) and 6–7 (shortwave infrared 1 and 2) all have similar
weightings, with importance scores ranging between 12 and 15%.

3.3 Application to the Roi Baudouin Ice Shelf

After applying the supervised classifier to the RBIS, two key data-
sets are produced: a raw (unscaled) dataset and a scaled dataset.
The scaled dataset is produced to provide a better estimate of
the total ice-shelf surface water area, as for many dates in this
study, there is incomplete area-of-interest (AOI) coverage
(Fig. 5). Of the 48 15-day periods presented in Fig. 5, 14 have a
percentage AOI coverage below 50%. For the remainder of this
paper, the scaled values only will be presented, however readers
should remain aware of the potential for error when scaling up
values across a full ice-shelf, because, for example, unscaled data
with incomplete AOI coverage could already represent 100% of

the total surface meltwater on the ice-shelf surface. Unscaled
data are presented in Fig. S.1.

The maximum areas of slush and ponded water are reached
between 15 January–29 January 2016 (3.5 × 109 m2) and 30
January–13 February 2017 (1.9 × 109 m2), respectively (Fig. 5).
In contrast, the lowest summer maximum areas of slush and
ponded water occur between 15 January–29 January 2019
(slush) and 14 February–28 February 2019 (ponded water), reach-
ing values of 5.7 × 108 and 2.9 × 108 m2, respectively. For all seven
melt seasons, the total area of slush and ponded water is greatest
in either January or February. Furthermore, for all melt seasons
except for 2018/19, the greatest areas of slush and ponded water
are observed in the same 15-day periods within each melt season.
However, for the austral summer of 2018/19, the greatest total
area of slush is recorded approximately a month prior to the
greatest total area of ponded water (Fig. 5).

Overall, the absolute difference between the greatest areas of
slush for each melt season is larger than the absolute difference
between the greatest areas of ponded meltwater for each melt sea-
son, whereas the percentage change in ponded water is slightly
greater than the percentage change in slush. Slush ranges from
5.7 × 108 m2 between 15 January and 29 January 2019, to 3.5 ×
109 m2 between 15 January and 29 January 2016 (a 521% change
in area), whereas ponded water varies from 2.9 × 108 m2 between
14 February 2019 and 28 February 2019, to 1.9 × 109 m2 between
30 January 2017 and 13 February 2017 (a 559% change in area)
(Table S.2). Overall, slush dominates the total meltwater area
across the RBIS, making up over half of the total meltwater area
on 39 of the 48 15-day periods investigated, and on average
accounts for 64% of the total meltwater area (Table S.2). From
the 2014/15 melt season onwards, the percentage slush on the
RBIS is greatest between 16 November and 30 December, when
it accounts for between 84 and 96% of the total meltwater area.

Of the seven melt seasons investigated, the 2016/17 melt season
has the greatest recorded total meltwater area, reaching 5 × 109 m2

between 30 January and 13 February 2017. Of this total area, 62% is
slush, and 38% is ponded water (Table S.2). Conversely, the melt
season that had the lowest total meltwater area is 2019/20, with
7.5 × 108 m2 between 15 January and 29 January 2019. Of that
total area, 76% is slush and 24% is ponded water (Table S.2).

Figure 6 shows each of the 15-day data products that were pro-
duced within GEE for the 2016/17 melt season over the RBIS. In
these 15-day products, we manually inspected each image and
ignored errors of commission (false positives) across the central
and distal regions of the ice shelf. Therefore, the following results

Table 4. Accuracy scores for the main validation dataset (the 200 individual
pixels (50 per expert) for each ice-shelf validation image) for the ponded
water and slush classes separately. The percentage of pixel confidence scores
for each ice shelf are also given.

Ponded
water
accuracy
(%)

Slush
accuracy
(%)

Low
confidence
pixels
(%)

Medium
confidence
pixels
(%)

High
confidence
pixels
(%)

Nivlisen 80 80 13 48 40
Roi
Baudouin

87 65 19 32 50

Amery 61 64 15 59 27
Shackleton 91 75 28 46 26
Nansen 81 60 22 47 31
George VI 70 74 13 52 36
Mean 78 70 18 47 35

Table 5. High-confidence accuracy scores for the main validation dataset for
the ponded water and slush classes separately

Ponded water (%) Slush (%)

Nivlisen 92 92
Roi Baudouin 86 72
Amery 65 73
Shackleton 96 88
Nansen 80 74
George VI 86 91
Mean 84 82

Table 6. Relative importance of each of the Landsat 8 bands used by the
supervised classifier

B1 B2 B3 B4 B5 B6 B7

14% 13% 14% 15% 20% 12% 12%
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focus on the true positive results for the 2016/17 season,which show
meltwater in proximity to the ice shelf’s grounding line. Little melt-
water is detected between 1 November and 15 December 2016.
However, from 16 December to 30 December 2016 onwards,
areas of slush begin to develop near the grounding line in both
the southeast and central southern parts. By early January (31
December 2016–14 January 2017) ponded water also begins to
form among the areas of slush, and the areas of both classes increase
until 30 January–13 February 2017, after which the areas of both
classes begin to decrease (Figs 5 and 6). Anumberof the 15-day pro-
ducts for thismelt season have data gaps resulting from cloudmask-
ing, or a lack of image scenes covering the area of interest. The
percentage ice-shelf area coverage by imagery for the 2016/17
melt season ranges from 38% (30 January–13 February 2017) to
99% (1 December–15 December 2016) (Table S.2).

Data products from GEE were combined in MATLAB to pro-
duce maximum melt extents across the RBIS for each melt sea-
son (1 November–31 March) from 2013/14 to 2019/20 (Fig. 7).
In every melt season, both slush and ponded water are present
predominantly in the southeast of the ice shelf, towards the
grounding line. This area of slush and ponded water is the
most spatially extensive in 2016/17 and 2017/18 (Figs 7d, e),
when it extends ∼47 km from the grounding line towards the
ice-shelf front. In this region, slush is more spatially extensive
than ponded water. Ponded water is typically observed towards
the northern edge of the melt zone (i.e. closer to the ice front)
each year, and is often surrounded by slush (Fig. 7). Between
2013 and 2020, we find that 26% of all pixels that are covered
by surface water are covered by both slush and ponded water
at least once.

4. Discussion

4.1 Classifier accuracy

The mean accuracies across all ice shelves of the ponded water
and slush classes were 84% and 82%, respectively, when compar-
ing the classifier’s outputs to high-confidence expert interpreta-
tions (which comprised of 35% of all pixels within the main
validation dataset) (Table 5). Over all ice shelves, the percentage
of pixels that were classified with high confidence did not exceed
50% (Table 4), highlighting that even ‘experts’ are unable to clas-
sify all pixels with total confidence. Thus, although we use expert

opinion to assess the accuracy of our classifier, each expert may be
no more accurate than the classifier output itself. A solution to
this would be to use ground-based multi- or hyper-spectral data
from ice shelves as ground truth data. However, to the authors’
knowledge, no such data currently exist.

By collecting four expert interpretations, we aimed to minim-
ise the effects of bias that each expert may have, and to get a more
holistic set of expert interpretations for each ice-shelf. The need
for this approach was indicated by the spread between high-
confidence pixels classified by experts for each ice-shelf in the
intercomparison dataset (Table 3). For example, on the Nansen
Ice Shelf, agreement between the experts and the classifier ranged
from 50 to 100% for ponded water, and from 25 to 86% for slush.
Although the accuracy assessment attempts to best mimic
ground-truthing through the use of multiple experts, it should
be noted that the classifier is trained predominantly by a single
person (separate to the experts used to validate the classifier),
and so the classifier may reflect the biases of that individual.
In addition, although experts are able to interpret a pixel
within its surrounding spatial context, including both the imme-
diate surrounding pixels as well as those elsewhere on the
ice-shelf, the classifier assesses the spectral characteristics of the
pixel alone. This difference could be overcome by using
object-based image analysis, however Halberstadt and others
(2020) found such methods had a lower overall accuracy in com-
parison with pixel-based methods for the classification of ponded
water. In the future, research should look at collecting ground-
based multi- or hyper-spectral data across ice shelves, which
would facilitate a more robust assessment of this classifier’s
accuracy.

As previously mentioned, the main validation dataset for high-
confidence pixels returned accuracy scores of 84% for ponded
water and 82% for slush. Similar research for supervised classifi-
cation of surface lakes only (i.e. not including slush) on Antarctic
ice shelves achieved a mean pixel-based accuracy score of 93%
(Halberstadt and others, 2020). Our slightly lower scores likely
reflect the incorporation of slush into the classifier, in addition
to the fact that we used a wider range of training sites.
Furthermore, our validation techniques were different, as we vali-
dated the classifier against multiple expert opinions, as opposed to
just one expert in Halberstadt and others (2020).

In our study, agreement between the classifier and the expert
interpretations for high-confidence pixels was greatest for ponded

Fig. 5. Time series data for slush and ponded water across the RBIS. Grey bars show the % AOI coverage for each 15-day period plotted. Lines show scaled areas of
slush (green line) and ponded water (blue line) on the RBIS from 2013/14 to 2019/20, derived from supervised classification of 15-day Landsat 8 mosaic products
created in GEE (see Section 2.5). Data are only plotted where ⩾20% coverage of the RBIS is met. X axis date labels indicate 1 January for each year.
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water over Shackleton (96%) and for slush over Nivlisen (92%).
However, the classifier accuracy was lowest over Amery, achieving
65% accuracy for ponded water and 73% for slush. The majority
of the classification errors on the Amery Ice Shelf in particular
appear to have resulted from topographic shadows being incor-
rectly classified as either slush or ponded water (Fig. 4).
Additionally, on the validation image for the Amery Ice Shelf,
there were examples of ponded water covered by a thin ice layer
(Fig. 4). The classifier tended to classify these areas as slush, as
the thin ice layer adjusted the spectral properties of each pixel,
whereas the experts differed in their interpretations and often
interpreted them as ponded water or other.

Another source of classifier error was subjectivity when de-
fining the slush/ponded-water boundary. Although the classifier

utilised training data to determine the slush/ponded-water
boundary, comparing classifier results with expert interpreta-
tions revealed some disagreement. However, we note that this
disagreement is likely no greater than disagreement between
the experts themselves, resulting from individual subjectivity,
as neither the experts nor the classifier were consistently
more or less conservative when marking the slush/ponded-
water boundary. Again, considering future research, without
ground-based multi- or hyper-spectral data it would be difficult
to further improve such estimations of the slush/ponded-water
boundary.

A final source of classifier-error was errors of commission
resulting from cloud and cloud shadows and this is discussed
separately in Section 4.4.

Fig. 6. 15-day melt products for the 2016/17 melt season across the RBIS. White areas are areas that have either been masked out or were not covered by imagery
in the first instance. The red box in the 30 January 2017–13 February 2017 panel roughly denotes the area where errors of commission due to cloud and cloud
shadows are generally found.
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4.2 Comparison to NDWIice

Although threshold-based methods have been used for the iden-
tification of deep surface meltwater bodies (e.g. surface lakes and
streams) on Antarctic ice shelves (e.g. Banwell and others, 2014;
Bell and others, 2017; Kingslake and others, 2017; Stokes and
others, 2019; Dell and others, 2020; Moussavi and others,
2020), no prior studies have also attempted to map slush across
an entire ice-shelf for multiple melt seasons. Upscaling slush
identification through space and time using simple threshold-
based mapping approaches would lead to significant errors of
omission and commission, owing to the spectral similarities
between slush and other surface facies (e.g. lakes, blue ice and
dirty ice) (Fig. 8). For example, we found that applying
NDWIice thresholds of >0.12 and ⩽0.14 for slush and >0.14 for
ponded water (following Yang and Smith, 2013 and Bell and
others, 2017) over the Shackleton Ice Shelf led to large errors of
omission for slush when compared to the classifier output, due
to confusion between ponded water and slush (Fig. 8). In contrast,

applying these NDWIice thresholds over the Nansen Ice Shelf led
to errors of commission for slush, due to confusion between blue
ice and slush (Fig. 8). On the George VI Ice Shelf, however, the
differences between the threshold method and the classifier out-
put were small, although even here the threshold method tended
to underestimate slush area compared to the classifier (Fig. 8).

The limitations of the NDWIice method that we have described
above were overcome through our supervised classifier, as it was
trained using seven Landsat 8 bands (bands 1–7) as opposed to
just two (bands 2 and 4) for NDWIice, and it was therefore better
able to distinguish between surface classes using a broader range
of spectral information. For our classifier, the near infrared band
(band 5) was found to be the most important when distinguishing
between classes (Table 6). This is likely related to the low reflectivity
of water in near-infrared wavelengths (Work and Gilmer, 1976;
Yang and others, 2011). Overall, although simple threshold-based
methods seem capable of accurately classifying ponded meltwater
on ice shelves, classifying surface facies such as slush, which have

Fig. 7. Maximum melt extent plots for each melt season, calculated by mosaicking all 15-day melt products for each melt season in MATLAB. Maximum areas of
slush, ponded water and both (where both slush and ponded water are identified within the melt season) are mapped. Red boxes roughly delineate areas affected
by data gaps in the 2014/15 and 2018/19 melt seasons.
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similar spectral properties to much of their surroundings, requires
more spectral information. Although threshold-based approaches
do not exclude the use of more spectral information, the manual
selection of each threshold is arduous. ML overcomes this as it is
able to determine which spectral information is of value for each
classification based upon the training data.

4.3 Evolution of slush and ponded water over the Roi
Baudouin Ice Shelf

To demonstrate the potential of our supervised classifier for
pan-Antarctic identification of slush and ponded water over
time, we applied it across the RBIS for the Landsat 8 images
between 2013 and 2020. Of the seven melt seasons investigated
(2013/14 to 2019/20), the greatest total meltwater extent (5.0 ×
109 m2) was recorded between 30 January and 13 February
2017. This observation is broadly corroborated by Halberstadt
and others (2020) who classified surface lakes on the RBIS over
a number of image scenes between 2013 and 2018, and found
peak melt area on the 25th February 2017. Furthermore, our find-
ings align with studies on the Amery Ice Shelf, where threshold-
based methods (Moussavi and others, 2020) and ML methods

(Halberstadt and others, 2020) were used to calculate the area
of surface lakes over a single path/row. Similarly to Moussavi
and others (2020), although we identified marked inter-annual
variability in both slush and ponded water areas, we found the
intra-seasonal trends for inferred meltwater storage to be fairly
consistent.

As slush (which may be saturated firn or saturated snow over-
lying blue ice, refrozen lakes, or extensive ice layers of refrozen
previously infiltrated water) accounted for an average of 64% of
the total meltwater area on the RBIS over the full study period,
our findings highlight the importance of accurately mapping
slush extent in addition to ponded water extent when investigat-
ing surface meltwater on Antarctic ice shelves. Most research until
this point has focused on meltwater stored in surface lakes, owing
to their significance for potential hydrofracture-induced ice-shelf
collapse. For example, a study by Stokes and others (2019) iden-
tified >1300 km2 of surface meltwater held in surface lakes across
East Antarctica in January 2017. Based on our findings, in
January 2017, the mean proportion of slush on the RBIS was
59%. Although the proportion of slush on other East Antarctic
ice shelves has not yet been quantified, our observations of the
proportion of slush across the RBIS highlight the need to account

Fig. 8. Outputs from the supervised classifier and from NDWIice thresholding applied to sections of the validation images (as shown in Fig. 4) for Shackleton,
Nansen and George VI ice shelves. Panels show the base RGB images, the area classified using the supervised classifier developed in this study and the area clas-
sified using NDWIice thresholds, where slush is >0.12 and ⩽ 0.14 and ponded water is > 0.14.
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for slush when calculating total surface meltwater areas, and it is
likely that the total area of meltwater across East Antarctica far
exceeds the 1300 km2 of ponded meltwater that has been reported
by Stokes and others (2019).

We found that the proportion of slush relative to ponded melt-
water across the RBIS was greatest between 16 November and 30
December each melt season (excluding 2013/14, when it was
greatest between 15 January and 29 January 2014). Although no
previous literature has mapped the extent of slush on an interann-
ual timescale, Bell and others (2017) used a simple NDWIice
threshold to identify slush on a small area of the Nansen Ice
Shelf in the 2013/14 melt season. They found the area of slush
was greatest on 26th December 2013 and then gradually declined
throughout early January 2014 (Bell and others, 2017). Although
this trend contradicts our findings for the 2013/14 season on the
RBIS, it corroborates the trends we identify through the remaining
six melt seasons (2014/15 to 2019/20). Bell and others (2017) sug-
gested that the expansive slush identified on the Nansen Ice Shelf
in December coalesced to form ponded meltwater by early
January. We propose that a similar transition occurred across
the RBIS, as the percentage of the total meltwater on the ice–
shelf held in slush generally fell from the end of December and
into early January, and an increasing amount of melt was there-
fore held in water bodies.

For surface meltwater to pond, the underlying surface needs to
be impermeable, and is likely, therefore, to be either blue ice or
saturated firn (slush). Based on the results presented here
(Fig. 7) many pixels that are classified as ponded water are also

classified as slush at least once in the melt season. Over the full
study period (2013–2020), 26% of all water-covered pixels are
occupied by slush and ponded water at least once. In these loca-
tions, therefore, it is likely that as melt increases throughout the
melt season, the firn layer becomes increasingly saturated and
water can no longer percolate into the firn pack, which results
in ponding at the surface, and lateral transfer of meltwater across
the ice shelf surface. However, we also note that some pixels are
classified as only ponded water during a melt season, and were
therefore not preceded by slush (Fig. 7). Evidence for this is
seen in all melt seasons and is particularly prominent towards
the central grounding line. We postulate that these areas of
ponded water are filling depressions within blue ice surfaces or
are forming on top of melt ponds which may have refrozen.

Exposed blue ice surfaces have been identified previously in
proximity to the Roi Baudouin grounding line, and result from
katabatic winds which cause snow erosion and an increase in
near-surface temperatures as winds cause mixing in the stable
boundary layer and adiabatic warming (Vihma and others,
2011; Lenaerts and others, 2017). Lenaerts and others (2017)
attributed a doubling in summer surface melt at the grounding
line to the katabatic winds, and they also noted that the exposed
blue ice surfaces will contribute to further melt, as they have a
lower surface albedo than snow-covered surfaces. These processes
help to explain the main patterns of ponded meltwater that we
observe across the RBIS, as ponded meltwater is clustered near
to the grounding line (Figs 6 and 7).

4.4 Errors arising from cloud and cloud shadows

In both the validation dataset and the larger Roi Baudouin dataset,
errors of commission due to cloud and cloud shadows are evident
(Figs 4–6), which highlights a limitation of our classifier. For
example, from 31 December 2016 to 14 January 2017, and through
to the end of the melt season, errors of commission are identified
over the central and distal regions of the RBIS (e.g. see red panel in
Fig. 6). Similar errors are identified within the maximum melt
extent products (Fig. 7). This limitation has also been found in
similar previous research (e.g. Halberstadt and others, 2020),
with errors resulting from imperfect cloud-masking methods.

The transient nature of cloud and cloud shadows mean that
these errors of commission will have a low persistence over entire
melt seasons. This is demonstrated in Fig. 9, which shows the
number of times over the full study period that a pixel is classified
as either slush or ponded water over the RBIS. The errors of com-
mission in the central and distal regions of the ice-shelf have a
persistence score of one (Fig. 9, grey pixels), meaning that each
pixel was classified as water at only a single point in time. In
contrast, areas of extensive meltwater towards the southeast and
central southern grounding line generally have higher persistence
values (Fig. 9). Therefore, a potential solution to errors of com-
mission resulting from cloud and cloud shadows when looking
at maximum melt products for each melt season would be to filter
out pixels with a persistence of one. However, this would lead to
the removal of some true positives, where water has been correctly
classified at its maximum extent for the melt season, but for only
a single point in time. Future research is needed to develop meth-
ods to reduce the errors of commission introduced by clouds,
either at the pre-processing stage prior to classifier development,
or post classifier application. Meanwhile, our maximum melt
extents (Fig. 7) are likely to be overestimates.

5. Conclusions

We have presented an ML method that is capable of accurately
classifying slush and ponded water across Antarctic ice shelves

Fig. 9. Heatmap showing the number of times (i.e. persistency scores) each pixel is
classified as (a) slush, (b) ponded water and (c) either slush or ponded water over
all of the 15-day products produced for the full study period (2013–20).
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using the Landsat 8 record from 2013 to 2020. This is achieved by
using a random forest classifier, which is trained using spectral
data from six different ice shelves around the continent. The clas-
sifier performs well across all ice shelves throughout multiple melt
seasons, achieving mean accuracies of 84% for ponded water and
82% for slush. Although the classifier encounters errors when
defining the slush/ponded-water boundary, we also find that
experts disagree on where this boundary should lie, and it is there-
fore likely that the extent of slush cannot be more accurately
mapped without the collection of ground-truthed data. Errors
of commission caused by cloud and cloud shadows are the
main source of error associated with this method. Future research
should look at improving cloud-masking approaches before
applying the classifier, or developing a means of filtering out
false positives caused by clouds after the classifier has been
applied. In this way, it will be possible to produce accurate time
series of slush and ponded meltwater extents across all
Antarctic ice shelves.

Finally, we applied the classifier to the RBIS for the 2013/14
to 2019/20 melt seasons in order to produce a time series of
slush and ponded melt extent. For each melt season, many of
the pixels classified as ponded water were also classified as
slush; an observation that likely captures the saturation of firn
and subsequent formation of surface ponds as the melt season
progresses. On average slush accounted for around two-thirds
of the total meltwater extent. This highlights the need to map
slush in addition to ponded water on ice shelves over a
pan-Antarctic scale, to ensure we do not underestimate the
area of surface meltwater. The accurate time series data produced
by this method, which captures all surface meltwater across
Antarctic ice shelves should be used to validate and improve sur-
face mass-balance models.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2021.114
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