

Article (refereed) - postprint

Whittet, Richard; Lopez, Gustavo; Rosique-Esplugas, Cristina. 2021. Midrotation variation in growth, form and phenology of sycamore (Acer pseudoplatanus L.) provenances in field trials in England.

© The Author(s) 2020

This version is available at http://nora.nerc.ac.uk/id/eprint/531573

Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at https://nora.nerc.ac.uk/policies.html#access

This is a pre-copyedited, author-produced version of an article accepted for publication in *Forestry: An International Journal of Forest Research* following peer review. The version of record *Forestry: An International Journal of Forest Research*, 94 (5). 704-713 is available online at: https://doi.org/10.1093/forestry/cpab012

There may be differences between this version and the publisher's version. You are advised to consult the publisher's version if you wish to cite from this article.

The definitive version is available at https://academic.oup.com/

Contact UKCEH NORA team at <u>noraceh@ceh.ac.uk</u>

The NERC and UKCEH trademarks and logos ('the Trademarks') are registered trademarks of NERC and UKCEH in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.

1 Supplementary material

2 Figure 1 Suppl. Scatterplot with the latitude in the y axis and in the x axis the growing degree days,

- 3 which is a measure of the cumulative annual degrees (measured as Σ (daily mean temperature 5.5)
- 4 whenever daily mean temperature > 5.5 °C) Met Office data, annual averages for 1970-2011 (Perry
- 5 and Hollis, 2005). The grey dots correspond to the occurrence of common ash in Great Britain, for
- 6 each 10x10km squares, data provided by the Botanical Society of the British Isles. The blue dots
- 7 correspond to the provenances of study. The two orange dots correspond to the trial sites. The dotted
- 8 lines correspond to the median values for latitude and for growing degree days.

9

Table 1 Suppl. Coordinates and associated environmental information for provenance sites of origin.
 The "x" indicates the trial site (Llan = Llandovery; NYM = North York Moors) in which each provenance

12 was planted. Alt = Altitude, AP = Annual precipitation, GSL = growing season length (days where
13 temperature mean is over 5 °C for over 5 consecutive days).

Brovonanco	Country	lat	Alt Long (m)	Alt	АР	GSL	S	Site	
Flovenance	country	Lat		(m)	(mm)	(days)	Llan	NYM	
Craigellachie	Scotland	57.484	-3.17	102	835.24	256.7	х	х	
Rassal Wood, Kishorn	Scotland	57.426	-5.591	78	2623.5	268.5	х	х	
Erchite Wood, Dores	Scotland	57.368	-4.345	56	852.79	285.4	х	х	
Duisdale, Skye	Scotland	57.176	-5.751	18	2041.4	237.2	х	х	

Den of Alyth	Scotland	56.623	-3.258	152	787.69	260.2	х	
Glen Lyon	Scotland	56.602	-4.248	183	1778.6	249.6	х	х
Fearnan Forest, Kenmore	Scotland	56.579	-4.037	142	1358.4	256.9	х	х
Glasdrum Wood, Loch Creran	Scotland	56.574	-5.232	33	2505.3	306	х	х
Ardtornish, Morvern	Scotland	56.56	-5.741	20	2145	290.7	x	х
Kilninian, Mull	Scotland	56.53	-6.208	71	1741.1	273.7	х	х
Pitcairns Glen, Dunning	Scotland	56.3	-3.573	119	1318.2	264.9	х	х
Add Valley, Kilmichael Glassary	Scotland	56.106	-5.42	30	1771.1	295.5	х	х
Shielhill Glen	Scotland	55.911	-4.825	107	1767.7	309.6	х	х
Clyde Valley	Scotland	55.68	-3.913	159	1056.2	263.1	х	х
Tweed Valley North Glen	Scotland	55.588	-2.662	68	712.21	270.9	x	х
Crawick Water	Scotland	55.381	-3.929	162	1270.9	256.1	х	х
Nith Valley	Scotland	55.32	-3.829	141	1455.1	232.6	x	х
Penpont	Scotland	55.235	-3.853	90	1294.3	279.2	х	х
Warks Burn	England	55.088	-2.222	90	825.79	272.7	x	х
Castle Eden Dene, Peterlee	England	54.743	-1.352	102	708.49	297.3	х	х
Forge Valley	England	54.274	-0.49	52	772.92	283.9	х	х
Witherslack	England	54.264	-2.87	79	1473.5	306.3	х	х
Ashberry Woods	England	54.262	-1.133	142	862.85	266.4	x	х
Upper Wharfedale	England	54.203	-2.104	202	1619.4	233	х	х
Park Wood &Hutton Roof	England	54.182	-2.689	170	1208	287.3	x	х
Treswell Woods	England	53.308	-0.861	54	616.42	295.7	х	
Via Gellia Woods	England	53.104	-1.619	239	980.75	285.4	х	х
Betws-y-Coed	Wales	53.079	-3.799	57	1899.5	312.5	x	х
Forest Bank, Marchington	England	52.852	-1.82	142	721.46	286.2	х	х
Tick Wood, Ironbridge	England	52.621	-2.523	99	714.33	299.7	х	х
Aberystwyth Area	Wales	52.43	-4.059	90	1051.2	329.1	x	х
Out Wood	England	52.166	0.415	96	623.85	303.9	х	х
Hayley Wood	England	52.158	-0.11	79	562.16	305.2	x	х
Groton Wood	England	52.05	0.883	66	565.55	303.5	x	х
Talgarth	Wales	51.986	-3.213	198	943.39	296.1	x	х
Wyndcliff, Wye Valley	England	51.678	-2.679	208	1052.4	310.6	x	х
Midger Wood	England	51.606	-2.285	160	861.5	301.2	х	х
Cardiff Area	Wales	51.546	-3.234	158	1329.3	315.9	x	x
Horner Wood, Porlock	England	51.189	-3.583	102	1541.2	293	x	х
Pheasant Copse, Petworth	England	51.011	-0.628	60	859.63	318.7	x	x
Bignor Hill	England	50.908	-0.616	194	936.24	300.4	x	х
Greta Wood, Purbeck Ridge	England	50.637	-2.136	126	867.59	321.3	x	x

Trait	Score	Description of the stage
Flushing, spring phenology	1	Bud closed, black, fully dormant winter state.
	2	Bud swollen but still closed, green-black in colour.
	3	Bud scales partially separated, some leaves visible.
	4	Bud scales completely separated, leaves visible but still furled and extending <1cm beyond scales.
	5	Leaves elongated >1cm from scales and spreading but leaflets still furled.
	6	All leaflets separated and shoot expanding.
Senescence, autumn phenology	1	No leaf loss
	2	1-25% leaf loss
	3	26-50% leaf loss
	4	51-75% leaf loss
	5	76-99% leaf loss
	6	100% leaf loss

Table 2 Suppl. Stages of leaf phenology and the corresponding scores.

- 30 **Table 3 Suppl**. Simple regressions between each trait an climatic variables of the provenances. The
- 31 significance (p), R-squared (R²) and slope of the regressions. Variables extrapolated climatic data
- 32 provided by Met Office, 5x5 km polygons, annual averages for 1970-2011 (Perry and Hollis, 2005):
- 33 GSL= growing season length (days where temperature mean is over 5 °C for over 5 consecutive
- 34 days); GFD = ground frost days (Count of days when the minimum temperature is below 0 °C); AP =
- 35 annual precipitation (in mm); MFT is mean February temperature; and MJT is the mean July
- 36 temperature.

Trait	Trial site	Climatic Variable							
IIdit		GSL	GFD	AP	MFT	MJT			
Height	LLAN	R ² : 0.34, p<0.001 slope: 0.0084	R ² : 0.25, p<0.001 slope: -0.9262	R ² : 0.28, p<0.001 slope: -0.0309	R ² : 0.27, p<0.001 slope: 21.062	R ² : 0.46, p<0.001 slope: 20.867			
	NYM	R2: 0.33, p<0.001 slope: 0.0030	R ² : 0.29, p<0.05 slope: -0.3708	ns	R ² : 0.28, p<0.05 slope: 6.680	R ² : 0.33, p<0.001 slope: 5.940			
DBH	LLAN	R2: 0.25, p<0.001 slope: 0.0131	R ² : 0.20, p<0.01 slope: -0.0156	R ² : 0.20, p<0.01 slope: -0.0004	R ² : 0.20, p<0.01 slope: 0.3166	R ² : 0.34, p<0.001 slope: 0.3430			
	NYM	R2: 0.34, p<0.001 slope: 0.0232	R ² : 0.33, p<0.05 slope: -0.0324	ns	R ² : 0.32, p<0.05 slope: 0.5600	R ² : 0.35, p<0.01 slope: 0.4839			
Forks	LLAN	ns	ns	ns	ns	ns			
	NYM	R2: 0.19, p<0.001 slope: 0.0077	R ² : 0.17, p<0.01 slope: -0.0031	ns	R ² : 0.16, p<0.05 slope: 0.0581	R ² : 0.16, p<0.01 slope: 0.0349			
Flush	LLAN	R2:0.34, p<0.001 slope: -0.0843	R ² : 0.24, p<0.001 slope: 0.1168	R ² : 0.10, p<0.001 slope: 2.296e- 03	R ² : 0.23, p<0.001 slope: -2.3387	R ² : 0.40, p<0.001 slope: -1.7382			
	NYM	R2: 0.31, p<0.001 slope: -0.0627	R ² : 0.21, p<0.001 slope: 0.0867	R ² : 0.12, p<0.001 slope: 1.893e- 03	R ² : 0.22, p<0.001 slope: -1.7283	R ² : 0.38, p<0.001 slope: -1.3563			
Sen	LLAN	R2: 0.29, p<0.001 slope: 0.0984	R ² : 0.23, p<0.001 slope: -0.1280	ns	R ² : 0.23, p<0.001 slope: 2.5567	R ² : 0.31, p<0.001 slope: 1.9637			
	NYM	R2: 0.44, p<0.001 slope: 0.0425	ns	ns	ns	R ² : 0.43, p<0.05 slope: 0.7314			

37

38

39

40

41

42

43

- 44 **Table 4 Suppl**. Correlation coefficient between the provenances' latitude and the other climatic
- 45 variables. Variables extrapolated climatic data provided by Met Office, 5x5 km polygons, annual
- 46 averages for 1970-2011 (Perry and Hollis, 2005): GDD= growing degree days (Σ (daily mean
- 47 temperature 5.5) whenever daily mean temperature > 5.5 °C); GSL= growing season length (days
- 48 where temperature mean is over 5 °C for over 5 consecutive days); GFD = ground frost days (Count
- 49 of days when the minimum temperature is below 0 °C); AP = annual precipitation (in mm); MFT is
- 50 mean February temperature; and MJT is the mean July temperature.

Variable	Correlation	Coefficient R and significance
Growing degree days	GDD~Lat	R: -0.77, p < 0.001
Growing season length	GSL~Lat	R: -0.65, p < 0.001
Ground frost days	GFD~Lat	R: 0.57, p < 0.001
Annual precipitation	AP~Lat	R: 0.50, p < 0.001
Mean July Temperature	MJT~Lat	R: -0,79, p < 0.001
Mean February Temperature	MFT~Lat	R: 0.46, p < 0.001

51

52

53

54

