
royalsocietypublishing.org/journal/rsta

Research
Cite this article: Nisbet EG et al. 2021 Isotopic
signatures of methane emissions from tropical
fires, agriculture and wetlands: the MOYA and
ZWAMPS flights. Phil. Trans. R. Soc. A 380:
20210112.
https://doi.org/10.1098/rsta.2021.0112

Received: 29 March 2021
Accepted: 11 August 2021

One contribution of 10 to a discussion meeting
issue ‘Rising methane: is warming feeding
warming? (part 2)’.

Subject Areas:
atmospheric chemistry, environmental
chemistry, atmospheric science,
biogeochemistry

Keywords:
atmospheric methane, African wetlands,
African biomass burning, African air pollution,
methane isotopes, aircraft surveys

Authors for correspondence:
Euan G. Nisbet
e-mail: e.nisbet@rhul.ac.uk
Grant Allen
e-mail: grant.allen@manchester.ac.uk

Electronic supplementary material is available
online at https://doi.org/10.6084/m9.figshare.
c.5680503.

Isotopic signatures of methane
emissions from tropical fires,
agriculture and wetlands: the
MOYA and ZWAMPS flights
MOYA/ZWAMPS Team1, Euan G. Nisbet1, Grant Allen2,

Rebecca E. Fisher1, James L. France1,16,

James D. Lee3, David Lowry1, Marcos F. Andrade4,17,

Thomas J. Bannan2, Patrick Barker2,

Prudence Bateson2, Stéphane J.-B. Bauguitte5,

Keith N. Bower2, Tim J. Broderick6,

Francis Chibesakunda7, Michelle Cain8,

Alice E. Cozens1, Michael C. Daly9, Anita L. Ganesan10,

Anna E. Jones16, Musa Lambakasa7, Mark F. Lunt11,

Archit Mehra2,18, Isabel Moreno4,

Dominika Pasternak3,19, Paul I. Palmer11,20,

Carl J. Percival15, Joseph R. Pitt12, Amber J. Riddle1,

Matthew Rigby13, Jacob T. Shaw2,

Angharad C. Stell10, Adam R. Vaughan19,

Nicola J. Warwick14 and Shona E. Wilde19

1Department of Earth Sciences, Royal Holloway, University of
London, Egham TW20 0EX, UK
2Centre for Atmospheric Sciences, University of Manchester,
Oxford Road, Manchester M13 9PL, UK
3National Centre for Atmospheric Sciences, Department of
Chemistry, University of York, Heslington, York YO10 5DD, UK
4Laboratory for Atmospheric Physics, Institute for Physics Research,
Universidad Mayor de San Andrés-UMSA, Campus Universitario,
Cota-Cota Calle No 27, La Paz, Bolivia

2021 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

13
 D

ec
em

be
r 

20
21

 

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2021.0112&domain=pdf&date_stamp=2021-12-06
https://doi.org/10.1098/rsta/380/2215
mailto:e.nisbet@rhul.ac.uk
mailto:grant.allen@manchester.ac.uk
https://doi.org/10.6084/m9.figshare.c.5680503
https://doi.org/10.6084/m9.figshare.c.5680503
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


2

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210112

...............................................................

5Facility for Airborne Atmospheric Measurement, Cranfield University, College Road, Cranfield MK43 0AL, UK
619 Jenkinson Road, Chisipite, Harare, Zimbabwe
7Geological Survey of Zambia, Ministry of Mines and Mineral Development, PO Box 50135, Ridgeway, Lusaka,
Zambia
8Centre for Environment and Agricultural Informatics, Cranfield University, College Road, Cranfield MK43 0AL, UK
9Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
10School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK
11School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FF, UK
12School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA
13School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
14Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
15Now at Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
16British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK
17Department Atmospheric and Oceanic Sciences, University of Maryland, College Park, MD 20742, USA
18Now at Faculty of Science and Engineering, University of Chester, Chester, UK
19Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, UK
20National Centre for Earth Observation, University of Edinburgh, Edinburgh EH9 3FF, UK

EGN, 0000-0001-8379-857X; GA, 0000-0002-7070-3620; JLF, 0000-0002-8785-1240; PB, 0000-0001-8754-4278;
MC, 0000-0003-2062-6556; MCD, 0000-0002-3426-0164; PIP, 0000-0002-1487-0969; JRP, 0000-0002-8660-5136;
ACS, 0000-0003-0349-2859

We report methane isotopologue data from aircraft and ground measurements in Africa and
South America. Aircraft campaigns sampled strong methane fluxes over tropical papyrus
wetlands in the Nile, Congo and Zambezi basins, herbaceous wetlands in Bolivian southern
Amazonia, and over fires in African woodland, cropland and savannah grassland. Measured
methane δ13CCH4 isotopic signatures were in the range −55 to −49‰ for emissions from
equatorial Nile wetlands and agricultural areas, but widely −60 ± 1‰ from Upper Congo
and Zambezi wetlands. Very similar δ13CCH4 signatures were measured over the Amazonian
wetlands of NE Bolivia (around −59‰) and the overall δ13CCH4 signature from outer tropical
wetlands in the southern Upper Congo and Upper Amazon drainage plotted together was
−59 ± 2‰. These results were more negative than expected. For African cattle, δ13CCH4 values
were around −60 to −50‰. Isotopic ratios in methane emitted by tropical fires depended on
the C3 : C4 ratio of the biomass fuel. In smoke from tropical C3 dry forest fires in Senegal,
δ13CCH4 values were around −28‰. By contrast, African C4 tropical grass fire δ13CCH4 values
were −16 to −12‰. Methane from urban landfills in Zambia and Zimbabwe, which have
frequent waste fires, had δ13CCH4 around −37 to −36‰. These new isotopic values help
improve isotopic constraints on global methane budget models because atmospheric δ13CCH4

values predicted by global atmospheric models are highly sensitive to the δ13CCH4 isotopic
signatures applied to tropical wetland emissions. Field and aircraft campaigns also observed
widespread regional smoke pollution over Africa, in both the wet and dry seasons, and large
urban pollution plumes. The work highlights the need to understand tropical greenhouse gas
emissions in order to meet the goals of the UNFCCC Paris Agreement, and to help reduce air
pollution over wide regions of Africa.

This article is part of a discussion meeting issue ’Rising methane: is warming feeding
warming? (part 2)’.
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1. Introduction
The objectives were to measure methane in air over major tropical sources, especially African
wetlands, regional agriculture and biomass burning, to determine at regional scale the
characteristic isotopic signatures of these methane sources, and thereby to help constrain regional
methane source fluxes and their roles in global methane budget.

There is strong evidence to suggest increasing tropical biological sources such as ruminants
and wetlands are major drivers of methane’s recent growth [1–4]. Growth in tropical methane
emissions is consistent with a widening of regions experiencing tropical climate [5], land-use
intensification and rapid population rise coupled with explosive urban growth.

The causes of the recent rapid growth in the atmospheric methane burden, and concurrent
isotopic shift to values more depleted in 13C remain poorly understood [1,2,16]. Much of the
current rise in the global methane burden is led from sources in the tropics [2–4].

Major tropical methane sources such as wetlands and cattle emit methane isotopically depleted
in 13C compared to the bulk global source [2,3,34]. Methane emissions from tropical fires are also
significant. But, though isotopic source signatures are key inputs needed if isotopic modelling is
to help impose better constraints on global methane budgets, there have been very few studies
of the isotopic signatures of methane sources emitting into tropical air masses, especially over
central Africa.

Global methane budgets (e.g. [8]) are primarily ‘bottom-up’ aggregates of on-ground emissions
estimates. They are unconstrained or only weakly constrained by isotopic balancing, a difficult
task because isotopic data are very sparse from the tropics, especially the African tropics. The
‘top-down’ measurements reported here, made directly from the air or in situ, will allow better
constraints to be placed on regional scale isotopic source signatures. In particular, methane
emissions from tropical wetlands contribute 60–80% of global natural wetland CH4 emissions [9]
but the carbon isotopic signatures (δ13CCH4 ) of methane from African wetlands are very poorly
known. Better understanding of African wetland and biomass burning δ13CCH4 signatures will
provide critical new data to constrain global isotopic inversions for methane.

Overall, Lunt et al. [10] estimated Africa’s annual methane emissions between 2010 and 2016
to be around 76–80 Tg yr−1. This compares with total global emissions estimated at around 600 Tg
(top down; [8]). Thus, to balance the global methane budget isotopically, understanding African
and Amazonian emissions is critically important.

Hitherto most evidence for atmospheric emissions over tropical Africa has been from satellite
remote sensing, or from model or desk studies. In situ direct measurement of the atmospheric
boundary layer is rare in sub-Saharan Africa outside South Africa and Senegal [11]. Remote
marine in situ observations, satellite remote sensing and measurement-linked modelling on a
regional scale all imply very strong methane emissions from tropical regions in Africa and South
America [3,10,12–16], but there have been very few direct measurements by well-instrumented
aircraft and ground campaigns.

(a) Isotopic signatures
Isotopic signatures are a critical input for using co-constrained isotopic mass balance modelling
to understand the global methane budget [17,6]. For example, Schwietzke et al. [18] used isotopes
to show that emissions from the fossil fuel industry (gas, oil and coal) were 20–60% greater than
estimated in inventories.

Using isotopes to constrain global methane budgets and to understand the processes driving
the current strong rise in the methane burden depends on having good information about δ13CCH4

signatures of sources, especially tropical sources. But previously very few measurements have
been made in the tropics [19], where much better measurement of δ13CCH4 signatures is needed
to assess wide-area wetland and fire inputs of methane into the ambient tropical air.

Thus the determination of regional δ13CCH4 isotopic signatures of specific tropical methane
sources is a key objective. Although a few δ13CCH4 source signatures have been measured locally
on the ground [20], regional-scale aircraft-based determinations of δ13CCH4 signatures are lacking.
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In particular, low-altitude research aircraft flights such as those reported here permit integrated
sampling of complex aggregations of emissions, difficult to assess by spot-sampling on the
ground.

Tropical methane sources are diverse. They include emissions from wetlands, agriculture
(especially from cattle, and crop waste burning) and large-area dry season fires (mostly human-
lit), as well as emissions from the rapidly growing new urban population centres. An important
factor that leads to locally distinctive δ13CCH4 isotopic signatures is the metabolic make up
of the local vegetation. Warm tropical grasslands, farms and wetlands are rich in C4 plants
such as maize, sugar and papyrus and many pastoral grasses, with carbon contents that are
comparatively rich in 13C. By contrast, trees, bushes and some grasses have C3 metabolisms,
which discriminate highly against 13C.

Wetland vegetation in both tropical Africa and South America is typically dominated by
C4 grasses, especially C4 papyrus in the equatorial zone, although C3 plants such as reeds
are also widespread. Decay of rotting C4 organic debris emits methane with comparatively
less negative δ13CCH4 than methane from C3 vegetation. Although very little is known about
emission mechanisms, it is likely that in wetlands rich in tall papyrus and reed stems, methane
may be emitted not only through ebullition (which is then subject to isotopically fractionating
methanotrophy in the water column) but also through plant and tree stem conduits. Thus on-
surface chamber measurements may fail to capture accurately the δ13CCH4 source signatures of
emissions from areas with tall plants (like papyrus) and trees; instead, these signatures may be
better captured by integrative aircraft sampling in low flights.

Agricultural methane sources in Africa are large and expected to grow further, driven by rapid
growth in human populations and fertilizer use. Methane is produced both by farm ruminants
and by crop waste burning. Sub-Saharan African ruminant populations (mainly cattle, but also
goats and sheep) are very large [21,38,57]. Eructated δ13CCH4 values in cattle breath depend on
feed and pasture species, which are diverse—tropical cattle diets are typically rich in C4 pasture
grasses and crop waste from C4 maize, millet, sorghum or sugar but also including C3 grasses,
tree leaves and bushes. Biomass burning of crop waste is often of C4 crop plants like maize or
sugar in moist regions, or millet waste in drier agriculture, although other crop waste includes C3
yams, sweet potato and palm waste, etc.

Dry season wildfires are widespread in Africa and South America. Incomplete combustion
produces methane with δ13CCH4 values that depend strongly and characteristically on the type
of vegetation fuelling the fires (such as C4 grasses or C3 tree-leaf litter), and that typically has
much more positive δ13CCH4 than wetland emissions. In particular, grassland fires (dominantly
C4 plants) tend to produce very 13C-rich methane, while methane in smoke from fires fuelled by
C3 trees and leaf litter in facultatively deciduous woodland and forest tends to have rather more
negative δ13CCH4 values.

Africa’s dense human populations, with fast growing large cites and major landfills, also
emit methane. Fires, urban and rural village emissions cause significant local and regional air
pollution in Africa [24], but there have been very few measurements of δ13CCH4 in methane from
these sources. Routine annual grass and crop waste fires, and widespread charcoal burning [25]
lead to over 40 000 premature deaths annually from biomass burning aerosols [26] and there is
poor air quality over wide areas of Africa [11,27,28]. Enhanced trace gas and particle abundances
have been measured over major cities: Accra, Lomé, Abijan and Cotonou [29–31], but there have
been few airborne campaigns over heavily populated and intensively farmed rural regions in
equatorial Africa.

2. Methodology
As part of the UK Natural Environment Research Council’s MOYA (The Global Methane
Budget—Methane Observations and Yearly Assessment) and ZWAMPS (Quantifying methane
emissions in remote tropical settings—Zambian Wetland Atmospheric Methane Production
Study) projects, flight missions and associated on-the-ground field campaigns were carried out
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in Africa and South America. Flights in Africa used the NERC Facility for Airborne Atmospheric
Measurement (FAAM) BAe-146 aircraft, flights in Bolivia used a Twin Otter aircraft operated
by the British Antarctic Survey. The flights in Senegal, Uganda and Bolivia were supported
by MOYA, and in Zambia by ZWAMPS. Analytical methods are documented in the electronic
supplementary material, accessible online at rs.figshare.com.

(a) Campaign locations: Senegal, Uganda, Zambia, Bolivia
Campaign locations are detailed in the electronic supplementary material, including maps and
photographs.

The Senegal flights sampled winter fires in the Casamance region of southern Senegal in
February/March (winter) 2017. The Casamance is a region of strongly seasonal rainfall, with a
prolonged winter drought. The local vegetation [32] includes tropical woodlands (C3 rosewood),
grazing land and seasonal cropland.

Uganda has a strong north-south variation of seasonality, climate, vegetation and agricultural
types. The MOYA study had four distinct regional target areas:

(1) C4 Papyrus-dominated (Cyperus papyrus) (electronic supplementary material, figure SI 10)
equatorial wetlands, including the Lake Wamala region which has both wetlands and
widespread farming.

(2) Intensively cultivated agricultural central Uganda around Lake Kyoga. Crops include
maize, finger millet, sorghum and sugar (C4), as well as cassava (C3–C4 intermediate),
sweet potato (C3) and plantains (C3). There are also many cattle and extensive wetlands.

(3) C4 savannah grassland pastures in dry season northern Uganda.
(4) Regional background air over equatorial Lake Victoria (68 000 km2 area).

In Uganda, preparatory studies were carried out in 2014 in papyrus swamps on the shores of Lake
Victoria between Kampala and Entebbe. The aircraft missions reported below were carried out
on 24–29 January 2019. Flights were over several different terrains: (i) over equatorial wetlands,
during the equatorial region’s brief January dry season; (ii) over near-equatorial farming areas
with both intensive crop farming and high cattle populations and (iii) over Northern Uganda in
the winter dry season, sampling both woodland and savannah grass fires, by flying through large
smoke plumes advected from active fires. Linked surface measurement campaigns on the ground
took place both in preparatory work and also coincident with the aircraft flights. These campaigns
accessed representative sources, with particular focus on Keeling plot determinations of papyrus
wetland source signatures.

In Zambia, from 31 January to 4 February 2019 at the height of a very intense summer wet
season [33], the main target was to investigate methane emissions from the large outer tropical
wetlands. In particular, methane emissions from the Upper Congo basin [34] have had very little
study and thus flights over the 11 000 km2 Bangweulu wetlands [35, 36] of Northern Zambia were
the primary target. These very extensive wetlands, which are a major gathering centre for the
Congo drainage, have dense C3 reed and C4 papyrus growth. In addition, flights were also carried
out over the reed-rich Lukanga (central Zambia; [61]) and Kafue Flat (southern Zambia;[36])
wetlands in the Zambezi river drainage basin [34]. On the ground, sampling campaigns were
carried out during the same week in the Lukanga wetlands and around Lusaka.

In addition, parallel on-ground sampling was carried out in Zimbabwe (fires, cattle, landfill)
and for cattle in Kenya.

Bolivian sampling flights were over the Mamore River and Llanos de Moxos of North-East
Bolivia [39,40], with simultaneous on-surface sample collection. A parallel paper in this collection
[41] examines this region in more detail in the wider context of global tropical isotopic signatures
from wetlands and rice fields.
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(b) Flight details
In Senegal, four survey flights were carried out: labelled C004–C007 (see electronic supplementary
material, information). Transects through smoke plumes emanating from active fires were
repeated at altitudes from 1000 ft (300 m) to 6000 ft (1800 m). See electronic supplementary
material, figures SI 1 and 2 for flight paths, SI 3 for transect measurements, and [42] for further
flight, instrumental and sampling details). Numerous fires were seen, some with large smoke
plumes and visible fire fronts (electronic supplementary material, figure SI 4). Background
conditions were determined by control flights over the Atlantic.

Flights along the coast of Senegal, Gambia, Guinea-Bissau and Guinea intersected multiple
smoke plumes in the prevailing easterly wind, demonstrating that regional pollution was present,
with very widespread smoke plumes in the boundary layer and lower free troposphere. Transport
times of sampled smoke plumes ranged from a few minutes (in one plume overflown at low
altitude over an active fire front (electronic supplementary material, figure SI 4)), to 9–12 h for
plumes sampled over the ocean [43]. As there was no recent lightning from thunderstorms, fires
were presumably human-lit, whether accidentally or deliberately.

In Uganda, flights using the FAAM aircraft were operated out of Entebbe Airport, Uganda
(0° latitude), crossing the equator on take-off and landing. Flights took place during the long
winter dry season in northern Uganda and during the brief early year relatively dry interval
in the equatorial zone. Electronic supplementary material, figures SI 5–7 show flight paths and
measurements, electronic supplementary material, figure SI 8 shows isotopic source attributions
from plumes intersected in Kyoga transects, and electronic supplementary material, figure SI
9 shows an in situ Keeling plot sampled on the ground from a papyrus-dominated swamp at
Kajjansi airstrip south of Kampala (electronic supplementary material, figure SI 10). Barker et al.
[42] give further flight and sampling details.

In Zambia, FAAM flight surveys (electronic supplementary material, figure SI 11) took place
in late January and early February 2019, at the height of the summer wet season [32]. Flight C136
over the Bangweulu wetlands (electronic supplementary material, figure SI 12) took place in a
single fortunate dry day with very calm weather and vertical air advection during a very strong
wet season with sustained heavy regional cloud cover over northern Zambia. Flights over the
Lukanga and Kafue Flat wetlands were in a dry interval in a region of lower seasonal rainfall.
Electronic supplementary material, figure SI 13a,b shows on-ground conditions in Lukanga
swamp. Unfortunately, an aircraft problem cancelled a planned flight to determine emissions
from the Lusaka metropolis.

In Bolivia, a few weeks after the Zambian campaign, flights were carried out in early March
2019, using the British Antarctic Survey’s Twin Otter aircraft in the Amazonian Llanos de Moxos
wetlands, in N.E. Bolivia, at similar latitude and climate setting to the Zambian campaigns.
Further details are given by France et al. (2021-this volume; [41])

3. Results

(a) Senegal fires—Casamance dry forest
Keeling plot determination [44] of the methane increments in a smoke plume from Flight C005
gave source δ13CCH4 about −29.9 ± 0.85‰ (figure 1), though varying with some plumes around
−28‰, indicating the dominant fuel was C3 leaf litter, not C4 grasses, a finding consistent with
the visual observation of burning forest litter. In smoke, enrichments of up to 0.5 ppm for CH4
and 300 ppb for CO were measured. Barker et al. [42] found these fires had mean emission factors
units (in g per kg of dry fuel) of 1.8 ± 0.6 for CH4, 1630 ± 21.4 for CO2 and 67 ± 14 for CO, with a
mean combustion efficiency of 0.94 ± 0.01, and obtained a δ13CCH4 value of about −34‰ from all
regional sources. Wu et al. [43] provide further details about the FAAM flights and sampling for
the MOYA project, and report aerosol measurements and chemical transformations in biomass
burning plumes sampled in the region.
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Figure 1. Keeling plot of (1/methane abundance) versus δ13CCH4 for isotopic measurements of samples in a fire plume on FAAM
flight C005 over the Senegal Casamance region. (Online version in colour.)

(b) Uganda—wetlands, savannah and farmlands
There was widespread visual and MODIS-satellite evidence of winter dry season grass fires
during the flights over savannah northern Uganda. Significant local methane excesses sampled in
air over northern Uganda’s grasslands had incremental δ13CCH4 around −16 to −12‰, indicating
the methane sources were indeed C4 grass fires [45]. For these fires, Barker et al. [42] found mean
emission factors (in g kg−1) of 3.1 ± 1.6 for CH4, 1610 ± 52.2 for CO2 and 78 ± 31 for CO, with
a mean combustion efficiency of 0.93 ± 0.03. On one flight a mean N2O fire emission factor of
0.081 ± 0.020 g kg−1 was also measured.

Large methane increments were observed over the wetlands and agricultural districts of
central Uganda (electronic supplementary material, figures SI 5,7). For fire plumes over Lake
Kyoga, aircraft sampling found methane increments in individual plumes with δ13CCH4 from
−28 to −16‰ (electronic supplementary material, figure SI 8), suggesting the dominant fire fuel
was C4 crop waste, such as maize, sorghum and millet, though in some fires perhaps admixed
with cassava (C3–C4) or other C3 crop waste, or with emissions from the Kyoga wetlands.

A Miller–Tans plot (following the method of Miller & Tans [46]) of large methane increments
(over background) measured in air over Lake Kyoga wetlands and neighbouring agricultural
areas (figure 2 and electronic supplementary material, figure SI 7) had δ13CCH4 of −54.5 ± 1.4‰.
Methane in air over the Lake Wamala region of lake wetlands and surrounding farmlands in
equatorial Uganda had δ13CCH4 of −49.3 ± 0.9‰, indicating the methane came from complex
mixed sources, likely including the wetlands, crop waste fires and ruminants [38] in this diverse
and fertile region. These Miller–Tans plots likely represent regionally representative signals of
methane inputs over these complex and varied landscapes.

A prior ground-based sampling campaign in Ugandan wetlands found δ13CCH4 around
−53.0 ± 0.4‰ for methane (electronic supplementary material, figure SI 9) from an equatorial
papyrus swamp, though other samples from papyrus wetland near Kajjansi flanking Lake
Victoria gave a poorly constrained value of −58.7 ± 4.1‰ [7]. In situ sampling was hand-held,
and may have failed to access methane emitted from tall papyrus stem tops (3–5 m high) which
had bypassed isotopically fractionating methanotrophic uptake in the water column.

Our wetland results compare with −61.2‰ and −62.2‰ values found by Tyler et al. [20] from
Nyahururu marsh in Kenya. However, like our results over Lake Wamala, Tyler et al. [20] also
found a range of values in other Kenyan wetlands, from −54‰ to −31‰, although with very
high CO2 measurements in many samples, suggesting complex perturbation.
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Figure 2. Miller–Tans plots of samples collected in regional air during flights over Lake Kyoga (δ13CCH4 −54.5 ± 1.4‰) and
Lake Wamala (δ13CCH4 −49.3± 0.9‰), Uganda. (Online version in colour.)

Our sampling from East African cattle, to be detailed elsewhere [47], found δ13CCH4 around
−57‰, a range comparable to −57 to −52‰ values we previously found in Zimbabwean cattle [7]
and broadly similar to Australian results of −59.7 ± 0.7‰ from grazing cattle, and −62 : 9 ± 1 : 3‰
from feedlot cattle [48]. However, we note our results are significantly more 13C rich than the
values around −65‰ found for sub-Saharan Africa by Chang et al. [49] (their fig. 4).

(c) Zambia—Bangweulu, Kafue and Lukanga swamps
Strong methane emissions were observed over all the wetlands studied. The Bangweulu
transects, flown in still weather conditions with vertical advection of air (see cloud in electronic
supplementary material, figure SI 12), measured the highest values over wetlands, not the shallow
lake (figure 3a,b). Isotopic results from 19 air samples collected on the FAAM aircraft over the
Bangweulu wetlands found a very well constrained δ13CCH4 source signature of −59.7 ± 1.3‰
for these Upper Congo wetlands. This may be the first such measurement from the Congo basin.

In the Kafue (Zambezi) basin, figure 4 shows upwind and downwind methane profiles at
various altitudes around the Lukanga wetland, providing evidence for significant fluxes of
methane from the swamp, perhaps up to 0.3 Tg annually [50]. Over Lukanga, 16 air samples
collected on the aircraft gave δ13CCH4 −62.1 ± 2.3‰.

Parallel on-ground sampling campaigns were also carried out along the margin of the Lukanga
swamp, and cattle were widely observed in the wetlands. Unfortunately, the in situ isotopic
determinations from Lukanga gave complex results, suggesting a diverse range of local sources
advecting to the low flying aircraft. Similarly, diverse signatures have also been seen from ground-
based work in the Okavango, Botswana [41] and may be related to local burning, variable
methanotrophy or locally dominant plant species.

Flights over the third target, the Kafue Flat wetlands, also found substantial emissions with
high local methane enhancements. Fire plumes were again observed, marked by elevated CO
measurements and indicating a mixed source, although complex local meteorology during
sampling of Kafue fluxes makes it difficult unambiguously to separate advected local sources
from regional transport of emissions.
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Figure 3. (a) ZWAMPS FAAMflight C136, height, CO andmethane transects across Bangweuluwetlands. Height ismetres above
the ground surface. (b) ZWAMPS FAAMflight, showingmeasuredmethane abundance advected over the Bangweulu wetlands.
Transects at various heights above ground level, coloured by in situ methane concentration as per legend. Note the highest
values are over the wetlands SE of the lake, not over the large shallow lake. (Online version in colour.)

Over the Kafue Flats a Keeling plot of eleven samples collected on board the aircraft gave
δ13CCH4 −60.0 ± 1.2‰.

(d) δ13CCH4 results from the Mamore River basin, Llanos de Moxos, NE Bolivia
The Bolivian flights measured very large methane enhancements, from which a δ13CCH4 source
signature of −58.7‰ ± 1.9‰ was determined, with similar results from concurrent on-ground
in situ sampling [41]

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

13
 D

ec
em

be
r 

20
21

 



10

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210112

...............................................................

2000

1950

C
H

4 
(p

pb
)

1900

1850

–14.6 –14.4
degrees north

–14.2

downwind ~450 m.a.g.l.
downwind ~600 m.a.g.l.
downwind ~800 m.a.g.l.
upwind ~400 m.a.g.l.
upwind ~600 m.a.g.l.
upwind ~750 m.a.g.l.

–14.0

Figure 4. Lukanga swamp.Methane observations during flight transects at various heights above ground level. (Online version
in colour.)

4. Interpretation of δ13CCH4 results

(a) Sahel fires
Prior to the flights over Senegal’s southern Casamance region, the expectation had been that the
fuel for most fires would be from tropical C4 grasses. That expectation was shown to be wrong
from observation during the flights, when it was clear that the fires were primarily in forested
areas. This observation was confirmed by the measured δ13CCH4 −30‰ signature. This value,
which is much more negative than likely from C4 grassfires, suggests the primary fuel was leaf
litter and fallen or cut wood. The result also suggests that in addition to C4 grasses, C3 tree litter
[51] may be a significant fuel for many of the very widespread winter fires across the West African
Sahel. This observation is potentially important in the future use of isotopic data to model regional
contributions to global methane growth.

(b) Equatorial emissions
The complex isotopic results from aircraft sampling over central Uganda likely reflect the variety
of sources over these rich densely populated agricultural regions, with wetlands, large cattle and
other animal and human populations, and widespread crop waste and plastic waste fires. The
−53‰ δ13CCH4 values in air samples collected in on-foot fieldwork at water level from equatorial
C4 papyrus swamps in Uganda (electronic supplementary material, figures SI 9 and 10) are
consistent with the −49 to −55‰ values found in the Miller–Tans plots (figure 2b) of air samples
collected in flights over the regions around Lake Kyoga and Lake Wamala. However, the relatively
13C-rich measurements over Lake Wamala likely reflect significant inputs from biomass burning.

(c) Southern Hemisphere outer tropics
A Miller–Tans plot of all air samples collected over all three Zambian wetlands gave a δ13CCH4

value of −59.8 ± 1.0‰ ([50] under review). The Zambian and Bolivian wetlands are very
comparable. They are at approximately the same latitude in the outer tropics, and sampling was
a few weeks apart during the later part of the rainy season in both places, when wetlands were
filling. The Miller–Tans isotopic signature reported here from the outer tropical Upper Congo
and Zambezi wetlands is very similar to −59‰ values of large methane fluxes measured in the
comparable-latitude Bolivian Llanos de Moxos wetlands [41].

Given the similarity between the two regions, a Miller–Tans plot of all data from both areas is
justified. Figure 5 shows that when the samples collected over Bolivian Amazonia were included
with the Zambian data, the δ13CCH4 value was −59.3 ± 2.0‰ (figure 5). As a first assumption,
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Figure 5. δ13CCH4 signature of outer tropical wetlands of the Southern Hemisphere. Miller–Tans plot for data from Zambia
and Bolivia. The inferred δ13CCH4 value is −59.3± 2.0‰. Plot includes aircraft-collected samples from the Upper Congo
(Bangweulu) and Zambezi basin (Lukanga, Kafue) wetlands in Zambia and from the Mamore River and Llanos de Moxos
wetlands in Bolivian Amazonia. (Online version in colour.)

this value could be used in global isotopic modelling to represent the outer tropical Southern
Hemisphere wetlands.

(d) Mixed sources: how representative are the results?
Our data on East African and Zimbabwean cattle show that the δ13CCH4 source signatures
of African wetlands and ruminant emissions are probably indistinguishable. African wetland
regions have significant animal populations, including cattle in the Lukanga swamp (electronic
supplementary material, figure SI 13a), and also widespread antelopes (ruminants) and many
hippoipotamoi (pseudo-ruminants). Thus the aircraft samples from African wetlands may also
include significant eructated methane from ruminants and pseudo-ruminants.

The sampling areas flown over in Zambia and Bolivia were large and thus the overall −59‰
δ13CCH4 value (figure 5) may be broadly representative of the seasonally moist outer tropical
wetlands of both Africa and South America. This −59‰ outer tropical wetland signature is more
depleted compared to our previous estimates of the bulk global atmospheric methane source at
about −53‰ [13] and the −56.7‰ mean tropical signature used by Ganesan et al. [17]. However,
these wetland results are comparable in range to our estimates of δ13CCH4 around −55 to −60‰
emitted from grazing African and Australian cows.

A possible explanation of the contrast between the −49 to −55‰ δ13CCH4 values found in
equatorial Uganda and the −59 ± 2‰ values measured in Zambia and Bolivia is that this may be
seasonal, because the Ugandan campaign was carried out in equatorial Uganda’s brief relatively
dry season in January, and thus likely there was more 13C-rich methane from biomass burning
than in wetter periods.

An alternative hypothesis is that the on-ground sampling in Uganda did not properly sample
methane advected in papyrus swamps. Methanotrophy in water bodies is selective for 12CH4,
and it is possible the relatively positive δ13CCH4 values from the Ugandan on-ground samples,
collected approximately 1 m above water level, record methane that is remaining after passing
through a zone of methanotrophy during ebullition in the water, but that we failed to sample
much less depleted methane channelled directly to the air from the high tops of the 3–5 m high
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Figure 6. Global impact of changing the δ13CCH4 source signature ofmethane emitted from tropical wetlands. Black line (upper
line) is a model scenario optimized to NOAA observations with the tropical wetland source having a−55‰ δ13CCH4 signature.
Red line (lower line) shows the impact of changing the tropical wetland source δ13CCH4 signature from−55‰ to−60‰ on
the optimized model scenario, with nothing else varied. (Online version in colour.)

papyrus stalks. By contrast, sampling from low flying aircraft collects bulk emissions and should
be more representative of the bulk inputs.

However, a wider hypothesis for the greater 13C depletion measured by the flights in the outer
tropics is that these more negative δ13CCH4 values measured in flights over Zambia and Bolivia
are consistent with a broad latitudinal C4 : C3 gradation in plant species, with C4 plants, especially
papyrus, dominating in the equatorial wetlands, while in outer tropical Zambia, and in Bolivia,
the proportion of C3 reeds and swamp grasses is higher [52].

5. Summary of isotopic signatures
Table 1 summarizes the results from this work and related studies published elsewhere.

6. Modelling
Wetlands are one of the largest global sources of atmospheric methane, estimated to contribute
up to approximately 35% of global methane emissions (e.g. [8,53]), with the latitudinal gradient
in atmospheric methane mole fractions observed in the NOAA network indicating the bulk of
these emissions are situated in tropical rather than high latitude regions. Therefore, atmospheric
δ13CCH4 values predicted by global atmospheric models are sensitive to the δ13CCH4 isotopic
signature applied to tropical wetland emissions.

The evidence presented here shows a latitudinal range in δ13CCH4 signatures of methane that
actually enters the African troposphere, with equatorial emissions being less negative than −55‰,
being in bulk derived from wetland vegetation, ruminant fodder and crop waste more rich in
C4 species. By contrast, δ13CCH4 signatures of African outer tropical emissions, from wetlands,
pastures and farming somewhat richer in C3 plants, are closer to −60‰, which is similar to the
results of the Bolivian measurements, at a latitude very similar to northern Zambia.

This finding has significant impact. Changing the tropical wetland δ13CCH4 signature from
−55‰ (the number currently adopted in many global model studies) to −60‰ in a global
atmospheric model [54] resulted in a downward shift in the modelled global surface δ13CCH4

atmospheric composition of approximately 1.2‰ at steady-state (figure 6). Similarly, adopting
−60‰ as the bulk δ13CCH4 isotopic signature of tropical wetland areas in the analysis of Ganesan
et al. [17], which employed a different set of global methane fluxes from Warwick et al. [54], would
shift the modelled global atmospheric δ13CCH4 value by −0.5‰. Changes of this magnitude are
large compared to the measured signals in atmospheric δ13CCH4 values. Updating the tropical
wetland δ13CCH4 signature to −60‰ in model global budget studies would thus have an
important impact on the methane source mixture that best fits the δ13CCH4 observations.
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Table 1. Summary of Isotopic Signatures. Senegal regional value from Barker et al. [42], Lake Victoria Swamp value from
Brownlow et al. [7], Kenyan cattle from Cozens et al. [47], Zambia (all) from [50] (under review) and Bolivian wetlands from
France et al. [41]. All other measurements from this work.

latitude location setting type of vegetation δ13CCH4 (‰)

13° N Senegal—Casamance biomass burning C3 woodlands −29.9± 0.9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

leaf litter etc.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13° N Casamance smoke plumes C3 woodland −28
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13° N Casamance regional sources woodland, arable −34
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3° N N. Uganda grassland C4 fires −16 to−12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1° N Central Uganda farmland fires C4 and C4 fires −28 to−16
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1° N Central Uganda Kyoga
region

regional C4 and C3 mixed wetlands and
farming

−54.5± 1.4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0° Central Uganda
Wamala region

mixed wetlands and
farming

C4 and C3 −49.3± 0.9

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0° Lake Victoria Wetlands Kajjansi Swamp C4 papyrus −53.0± 0.4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0° Lake Victoria Wetlands swamp C4 papyrus −58.7± 4.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1° S Kenya cattle mixed fodder around−57
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11° S Zambia—Bangweulu wetlands C4 and C3 −59.7± 0.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

papyrus swamps
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14° S Zambia—Lukanga wetlands C3 and C4 −62.1± 2.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16° S Zambia—Kafue wetlands C3 and C4 −60.0± 1.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11–16° S Zambia (all) wetlands C3 and C4 −59.8± 1.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12–15° S Bolivia wetland flights C3 and C4 −58.7± 1.9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Zambia and Bolivia
together

flights over wetlands C3 and C4 −59.3± 2.0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

While the magnitude of this impact may differ slightly between models depending on the
source and sink assumptions, it represents a shift in δ13CCH4 , similar in magnitude to the shift
resulting from uncertainties in the tropospheric chlorine sink [55]. Such a modelled shift is much
larger than the observed shift in the global burden since 2007 [56]. Thus, the hypothesis that
recent vegetation or land-use changes have made equatorial African wetlands emit methane that
is isotopically more similar to outer tropical wetlands could in principle explain the post-2007
negative δ13CCH4 shift in the global burden. This explanation is unlikely, as intuitively a warming
climate would drive changes in the opposite direction, but is perhaps worth investigating.

More tropical measurement is needed, to determine the complex effects of seasonality, biomass
burning and variations in cattle management and in the C3 : C4 metabolic make up of the surface
vegetation [37]. Nevertheless, it is clear that increasing tropical wetland emissions may indeed be
an important factor in the explanation of the current negative isotopic shift shown by the global
burden [2,3].

7. Discussion
These aircraft and ground measurements have provided direct bulk evidence for the isotopic
signature of methane emissions from moist tropical Africa and South America.

Tropical source regions have globally important methane emissions [1,2,3]. In particular, the
regions sampled here have very large methane emissions. As part of this work, [50] (submitted)
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estimate the Bangweulu wetlands emissions to be around 1.2 Tg of methane annually and the
smaller Lukanga swamp in excess of 0.3 Tg yr−1. The methane flux from the Bolivian Llanos de
Moxos wetlands may be even greater than the Bangweulu emissions [41]. These very large fluxes
are consistent with other estimates. For example, the Nile basin’s Sudd wetlands [10,15], which
are northern tropical Africa’s equivalent of Bangweulu and have similar vegetation, may emit
as much as 7 ± 3 Tg annually, although Lunt et al. [58] found a smaller flux: 3.5 Tg yr−1 in 2018–
2019. To put these fluxes into context, they may be compared with total annual UK anthropogenic
methane emissions around 2.1 Tg [59].

The magnitude of the Upper Congo Bangweulu fluxes imply the Congo basin, which includes
many other similar wetland systems, many at lower and warmer altitudes than Bangweulu,
contributes significantly to the isotopic balance of global methane emissions. Lunt et al. [10]
estimate (their figure 4) that the Congo basin may emit 13 Tg yr−1 on average between 2010 and
2016. This number is consistent with a somewhat larger ‘guesstimate’ by comparison with the
Amazon basin, which may emit very roughly 35–40 Tg of methane annually, depending on inter-
annual variability, (e.g. see [60]), and if emissions are proportionate to area, the Congo basin,
about half its size, would perhaps emit 17–20 Tg annually.

For biomass burning, the values measured and reported here illustrate the importance of
identifying the fuel for the fires—whether from C3 plants, relatively richer in 12C, with δ13CCH4

around −28‰, or from C4 grasses, relatively richer in 13C, with δ13CCH4 around −16‰ to −12‰.
However, what is clear from the flights is the complexity of the sources [61], with intense human
activity in all regions where rainfall is adequate to support agriculture. Land surface modelling
needs to address this: the sources are multiple and heavily dominated by the impact of human
actions: cattle, crop fires, forest fires and C4 : C3 plant ratios all depend on humans.

The state of Africa’s atmosphere and its greenhouse gas outputs and their likely responses to
climate warming have had little attention: our work shows that this neglect needs to be rectified,
particularly given the likely near-future growth in fossil fuel burning and vehicle emissions [62].
In many locations burning is uncontrolled, despite the widespread loss of agricultural nutrients
into smoke, and air pollution is widespread in tropical Africa: all problems that demand attention.
Although Africa’s methane emissions are globally significant, national emissions inventories
are as yet poorly constrained for the region. Desk studies are not enough; better measurement
is needed. The novel isotopic source signatures for tropical wetlands and fires reported here
represent important new co-constraints for use in global methane budget models. Further field
measurements are urgently required to improve the representation of the tropics as a key global
methane source region.
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