Modelling inner proton belt variability at energies 1 to 10MeV using BAS‐PRO

Lozinski, Alexander R. ORCID:; Horne, Richard B. ORCID:; Glauert, Sarah A. ORCID:; Del Zanna, Giulio; Claudepierre, Seth G.. 2021 Modelling inner proton belt variability at energies 1 to 10MeV using BAS‐PRO. Journal of Geophysical Research: Space Physics, 126 (12), e2021JA029777. 22, pp.

Before downloading, please read NORA policies.
Text (Open Access)
© 2021. The Authors.
JGR Space Physics - 2021 - Lozinski - Modeling Inner Proton Belt Variability at Energies 1 to 10 MeV Using BAS%u2010PRO.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (5MB) | Preview


Geomagnetically trapped protons forming Earth’s proton radiation belt pose a hazard to orbiting spacecraft. In particular, solar cell degradation is caused by non-ionising collisions with protons at energies of several megaelectron volts (MeV), which can shorten mission lifespan. Dynamic enhancements in trapped proton flux following solar energetic particle events have been observed to last several months, and there is a strong need for physics-based modelling to predict the impact on spacecraft. However, modelling proton belt variability at this energy is challenging because radial diffusion coefficients are not well constrained. We address this by using the British Antarctic Survey proton belt model BAS-PRO to perform 3D simulations of the proton belt in the region 1.15 ≤ L ≤ 2 from 2014 to 2018. The model is driven by measurements from the RBSPICE and MagEIS instruments carried by the Van Allen Probe satellites. To investigate sensitivity, simulations are repeated for three different sets of proton radial diffusion coefficients DLL taken from previous literature. Comparing the time evolution of each result, we find that solar cycle variability can drive up to a ∼75% increase in 7.5MeV flux at L = 1.3 over four years due to the increased importance of collisional loss at low energies. We also show how the anisotropy of proton pitch angle distributions varies with L and energy, depending on DLL. However we find that phase space density can vary by three orders of magnitude at L = 1.4 and μ = 20MeV/G due to uncertainty in DLL, highlighting the need to better constrain proton DLL at low energy.

Item Type: Publication - Article
Digital Object Identifier (DOI):
ISSN: 2169-9380
Additional Keywords: Proton Belt, Radial Diffusion, Trapped Protons, Modelling, Solar Cell Degradation
Date made live: 08 Dec 2021 14:43 +0 (UTC)

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...