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Abstract Low-level jets (LLJs) drive frequent emission of mineral dust in the central and western Sahara
in boreal summer. A major hotspot for this process is central Algeria, northern Mali and Mauritania, through
which blow the dry near-surface northeasterly Harmattan winds, with a peak in dust emission around the
low-lying Tidihelt region. North African orography is thought to contribute to the strength of the LLJ over

the Bodele dust source in Chad, but its influence on erosivity over summertime source regions remains
unquantified. In this paper, the contribution of central Saharan orography to the strength of Harmattan LLIJs
and associated dust emission frequency is tested. An idealized simulation with flattened Hoggar mountains is
compared with a control using the Met Office Unified Model at 12 km horizontal resolution. In the absence of
the Hoggar mountains, dust emission frequency estimated using an empirical relationship with surface wind
speeds is found to decline across the entire northeasterly “LLJ alley,” including by 31% in the Tidihelt where
composited jet surface winds drop from 9.0 to 7.3 m s~! under a more easterly regime. The mountains are
linked to a low-level leeward geopotential height perturbation, with a northern limb reinforcing northeasterlies
through the Tidihelt. Dome-shaped elevated heating situated over the Hoggar mountains explains the difference
between the simulated wind fields in the two experiments. These findings suggest that central Saharan
orography plays an important role in sustaining erosive dusty conditions during boreal summer.

Plain Language Summary A major driver of dust storms in the central and western Sahara is a
strong wind (referred to as a jet) which forms overnight at elevation and then hits the surface after sunrise.
This process is important in the remote central Algerian Tidihelt region, home to a highly active dust source.
In this paper we estimate the effect that the nearby Hoggar mountains have upon strong wind events in the
Tidihelt during summer. We do this by comparing two computer model simulations of the atmosphere over
North Africa. One has a realistic representation of the Hoggar mountains, whereas in the other the mountains
are flattened to a uniform level. Our results show that the mountains strengthen these winds by heating

the atmosphere relative to the surrounding desert, producing a local region of low pressure. Using satellite
observations of dust plumes we estimate that without the mountains the frequency of dust emission events from
the Tidihelt would be reduced by about a third due to weaker winds. The findings show how mountains can
play an important role in the meteorology responsible for dust storms.

1. Introduction
1.1. Background

Mineral dust is an abundant and important aerosol with natural and anthropogenic origins. The largest propor-
tion of atmospheric loading of mineral dust originates from the Sahara, with peak emission in boreal spring and
summer (Kok et al., 2021). Saharan dust has a varied radiative effect (Boucher et al., 2013), as well as impacts
on ice nucleation (Hoose et al., 2008), tropical cyclone development (Strong et al., 2018), rainforest fertilization
(Mahowald et al., 2010), ocean biogeochemistry (Jickells et al., 2005; Schulz et al., 2012) and human health (De
Longueville et al., 2010). Activation of Saharan dust sources is sporadic and sensitive to relatively infrequent
intense winds linked to mesoscale atmospheric processes (Allen et al., 2013; Caton Harrison et al., 2019; Cowie
et al., 2015; Marsham et al., 2013).

Dust models diverge considerably in their estimates of net North African yearly dust fluxes (Huneeus et al., 2011;
Wau et al., 2020). Although part of this is due to the formulation of the model itself, a large proportion of the
uncertainty stems from differences between driving wind fields (Fiedler et al., 2016; Luo et al., 2003). To address
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these sources of uncertainty, several modeling and observation studies have attempted to characterize the mesos-
cale processes responsible for dust emission (e.g., Allen et al., 2013; Caton Harrison et al., 2019, 2021; Heinold
et al., 2013; Knippertz et al., 2007; Schepanski et al., 2009; Washington & Todd, 2005; Washington et al., 2006)
and to evaluate their representation in wind speed products commonly used to drive offline dust models (Allen &
Washington, 2014; Garcia-Carreras et al., 2013; Roberts et al., 2017; Schepanski et al., 2015).

A major meteorological emission mechanism at work in the Sahara during boreal summer is the morning break-
down of the nocturnal low-level jet (LLJ). Winds atop the nocturnal boundary layer accelerate under a stable re-
gime due to decoupling from surface friction and inertial oscillation (Blackadar, 1957). Mixing of jet momentum
to the surface as a result of eddy-driven turbulence in the morning raises surface wind speeds, leading to dust
emission in the strongest cases (Allen & Washington, 2014). An analysis of the ERA-Interim reanalysis indi-
cates that favorable locations for LLJs are found along the margins of the Saharan heat low (SHL) in regions of
Atlantic, Mediterranean and monsoon inflow, as well as downwind of orographic channels (Fiedler et al., 2013).
LLJs embedded in both northeasterly and monsoon flows were regularly observed during the June 2011 intensive
observation period of the Fennec campaign, contributing 14% of the observed dust loading (Allen & Washing-
ton, 2014; Allen et al., 2013). Automated tracking of over 47,000 summertime dust plumes observed in SEVIRI
from 2004 to 2017 indicates that LLJs are responsible for 18% of flagged dust pixels, and as much as 40% in 2012
(Caton Harrison et al., 2019).

A robust feature of both model and satellite analyses of Saharan dust is a prominent hotspot of dust presence and
emission around central Algeria (Ashpole & Washington, 2013; Evan et al., 2015; Heinold et al., 2013; Schepan-
ski et al., 2007; Todd & Cavazos-Guerra, 2016; Wu et al., 2020), as well as more generally within the broad north-
easterly Harmattan ’alley’ of the northern Sahara. The central Algerian surface wind speed maximum, referred to
as the Tidihelt jet in this paper, is evident in reanalysis (see e.g., Figure 13g—13i in Caton Harrison et al. [2019])
and surface observations (Chellali et al., 2011; Messaoudi et al., 2019). The Tidihelt region is unique in that un-
like almost all other dust sources, it is predominantly activated by LLJs (Caton Harrison et al., 2019). A map of
the Tidihelt dust source showing potential erodible salt flats is given in Figure 15 of Caton Harrison et al. (2019).
The LLJ alley containing the Tidihelt jet is bounded by the Atlas mountains to the north and the Hoggar moun-
tains to the south (see Figure 3a).

1.2. Orographic Effects on Dust-Emitting Conditions in the Sahara

Although the proximity of many Saharan dust sources to orographic channels has been noted (Evan et al., 2015;
Fiedler et al., 2013; Schepanski et al., 2007), few studies have drawn an explicit link between Saharan orography
and the frequency or strength of dust emission, especially for western sources such as the Tidihelt. The Bodele
in northern Chad is frequently activated when a ridging Libyan high pressure system drives statically stable
northeasterlies through a gap between the Tibesti and Ennedi massifs, splitting the flow upstream and accelerat-
ing winds in the exit region by up to 40% (Todd et al., 2008; Washington et al., 2006). A secondary effect from
elevated heating and cooling over the mountains is also apparent. The Bodele is much larger and more active than
western Saharan dust sources, but serves nonetheless as a useful analogue.

Western Saharan orography stretching from the Atlas mountains in the north to the Air mountains in the south
has been linked to atmospheric phenomena relevant to dust emission. Kelvin waves regularly propagate along the
barrier of the Atlas mountains, organizing downslope winds and jet adjustment processes responsible for severe
dust storms in the Harmattan channel (Pokharel & Kaplan, 2019). A relationship may also exist between the Atlas
range and the remote Saharan boundary layer, with ascent over the mountains and compensating descent over the
central Sahara (Flamant et al., 2007). There is also a plausible but untested connection between orography and
triggering of convection in the southern Sahara during the late monsoon season, which in turn produces convec-
tive downdrafts responsible for dust emission (Caton Harrison et al., 2021).

The Hoggar mountains south of the Tidihelt have a peak of 2,918 m, span 800 km and consist of rock pinnacles
and volcanogenic formations, with widespread dust sources in their western lee and southern flank formed from
outwash fluvial and paleo-lacustrine deposits (Ashpole & Washington, 2013; Prospero et al., 2002). These moun-
tains are thought to have some role in the onset of the West African Monsoon due to their interaction with the
SHL via lee cyclogenesis. It has been shown that background easterlies and northeasterlies around the mountains
could be capable of initiating a leeward trough or depression as the subtropical anticyclone is amplified over the
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elevated terrain, in turn deepening the SHL (Drobinski et al., 2005; Semazzi & Sun, 1997). The mechanics of
such a process have not been demonstrated in detail, however, and have not been linked directly to dust emission.
Birch et al. (2012) previously flattened the Hoggar mountains in a set of idealized model experiments using the
Met Office Unified Model, showing how orography heats and deepens the convective boundary layer over the
Sahara several hundred kilometers west of the main peaks, and redirects cooler maritime easterlies upstream.
These thermodynamic effects could offer an additional or alternative explanation for the interaction between the
Hoggar mountains and summertime dust emission, but the effect of orography upon dust emission frequency
from nearby dust sources has not been explored.

1.3. Aims

In this paper, we test the effect of the Hoggar mountains upon a prominent climatological peak in summertime
wind speeds over central Algeria associated with a frequent LLJ, identified here as the Tidihelt jet. Boreal sum-
mer is selected for analysis as dust emission from the central and western Sahara, including central Algeria, is
high at this time of year (Engelstaedter et al., 2006; Kok et al., 2021; Ridley et al., 2012; Schepanski et al., 2012)
and because automated satellite detection of LLJ has been developed for the summer months (Caton Harrison
et al., 2019). The study also estimates the impact of these winds on dust emission frequency. To achieve this, we
identify the synoptic conditions favoring the Tidihelt jet, test for elevated heating and lee cyclogenesis associated
with the elevated terrain and estimate the wider impacts of the orography upon dust emission frequency in the
northern Saharan LLJ alley. In summary, the research aims to:

1. Quantify the effect of the Hoggar mountains upon dust-emitting winds in central Algeria

2. Identify a mechanism linking the Hoggar mountains and elevated surface wind speeds

3. Estimate the effect of the Hoggar mountains upon dust emission frequency within the LLJ alley of the north-
ern Sahara

Model and observation datasets are described in Section 2, as well as a composite method. The synoptic condi-
tions associated with dust emission in central Algeria are described in Section 3, with the results of the model
experiment presented in Section 4.

2. Data and Model Experiment Setup
2.1. Model Data

This study uses a regional climate model (HadREM3-GA7.05) in a limited area configuration of the GA7.05
Unified Model (UM) (Walters et al., 2019), closely based on the model configuration used in UKCP18 climate
projections (Murphy et al., 2018). It is set up in atmosphere-only mode with a limited area domain centered over
North Africa on a 12 km horizontal grid with 57 vertical levels. The UM dynamical core solves deep-atmos-
phere non-hydrostatic equations with a semi-implicit, semi-Lagrangian formulation discretized onto a regular lat-
itude-longitude grid with terrain-following hybrid height coordinates (Walters et al., 2019). In this configuration,
convection is parameterized and sea surface temperatures and sea ice extents are prescribed using the analyses of
Reynolds et al. (2002), in addition to aerosol properties and cloud droplet number concentration derived from the
MACV2-SP dataset for the historical (Stevens et al., 2017) scenario. The method used to implement these aerosol
effects is identical to that used in the 12 km RCM in UKCP, although with a difference source dataset. As dust
emission is not explicitly simulated, the effects of winds upon dust emission are derived empirically based on
satellite-observed dust source LLJ activity, described in Section 2.2.

Of particular relevance to the simulation of LLIJs is the boundary layer scheme. While inertial oscillation is han-
dled by the dynamical core, the UM boundary layer scheme (Brown et al., 2008; Lock et al., 2000) is responsible
for all vertical mixing by turbulent motions and is therefore critical for LLJ decoupling and decay. In an unstable
boundary layer, diffusion coefficients (K profiles) are defined for sources of turbulence from both the surface and
cloud top, whereas in a stable regime a local Richardson number scheme (Smith, 1990) applies. Shallow and deep
sub-grid cumulus convection is handled by the UM mass-flux convection scheme, with an extension to include
parameterization of downdrafts (Gregory & Rowntree, 1990; Walters et al., 2019).
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Lateral boundary conditions and initial conditions are supplied to the limited area model by the ERA-Interim re-
analysis (Dee et al., 2011) via one-way nesting. ERA-Interim has a horizontal resolution of approximately 80 km,
and helps align the model with the quasi-observed state of the atmosphere represented in the reanalysis as it steps
forwards in time, although the region of interest is far away from the domain boundaries at 20.1°W to 23.8°E
and 7.9°N to 37.6°N meaning the UM plays a dominant role in the simulation of LLJ processes therein. Output
is analyzed from June, July, and August 2004 to 2007, but simulations are run from May 2004 to August 2007
to allow for one month of model spin-up. Although ERA-Interim underestimates surface winds associated with
Saharan LLJs (Allen & Washington, 2014), it is capable of realistically reproducing wind variability associated
with synoptic and seasonal variations (Roberts et al., 2017) which is important for lateral boundary conditions.

2.2. Observations

A key characteristic of the summertime Sahara is that the majority of dust sources, including many in the Har-
mattan channel, are regularly influenced by cold pool outflows (CPOs) (Caton Harrison et al., 2019). In this
paper, data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) are used to identify days with dust
present and to compare simulated wind speeds with dust emission frequency. Dust is identified in SEVIRI from
Brightness Temperatures at 15 min intervals and 3 km nadir resolution using the SEVIRI dust flags approach
of Ashpole and Washington (2012) and subsequently filtered to identify plumes associated with LLJ activity
following the method in Caton Harrison et al. (2019). Critically, this allows dust associated with LLIJs to be dis-
tinguished from CPO dust. Although SEVIRI is commonly used for dust detection (Ackerman, 1997; Lensky &
Rosenfeld, 2008; Schepanski et al., 2007), split-window techniques using wavelengths from 8 to 12 ym such as
SEVIRI dust flags are also sensitive to column water vapor and cloud (Brindley et al., 2012). Central Algeria is
partly spared from such drawbacks as it is exceptionally dry and has a high percentage of cloud-free days (e.g.,
see Figure 13 in Caton Harrison et al. [2019]).

Radiosonde data used in this paper to identify synoptic conditions linked to dust emission are obtained for In
Salah (27.19°N, 2.47°E), approximately 150 km upwind (northeast) of the Tidihelt dust sources. Daily soundings
at 12:00 UTC are sourced from the Integrated Global Radiosonde Archive (Durre et al., 2006) maintained by the
National Centers for Environmental Information.

2.3. Model Validation

The UM is selected as the modeling system for this project as it has demonstrable fidelity in simulating both the
large-scale synoptics and the jet core wind speeds within the boundary layer. A 12 km horizontal grid-spacing
configuration of the UM has been deployed (as ’Africa-LAM?’) to support the Fennec Campaign of in-situ obser-
vations in 2011 and 2012 (Washington et al., 2012). Comparisons between Africa-LAM and observations from
supersite 1 located at Bordj-Badji Mokhtar in southern Algeria (approximately 500 km south of the Tidihelt
region defined in Section 2.5) reveal ’excellent agreement’ between model wind speed profiles at 06:00 UTC and
Lidar measurements for Harmattan LLJs (Allen & Washington, 2014), equivalent to the northeasterly jets consid-
ered in this paper. Allen et al. (2015) also find a hit rate of 85% in simulating morning LLJ winds at the surface
compared to Fennec automatic weather station data, but they note that the frequency of the highest (>10 m s™)
winds is underestimated. Dropsonde measurements from Fennec flights show that forecasts accurately represent
large-scale wind fields around the SHL but underestimate morning wind speeds (Engelstaedter et al., 2015).

Figure 1 compares the 12 km configuration of the UM used in this paper with the approximately 31 km res-
olution ERAS reanalysis. With a severe paucity of in-situ observations in the central Sahara, there is little for
reanalyses to assimilate and dust extinction is not generally included in temperature or humidity retrievals from
satellite infrared sensors, leading to biases in these assimilated variables (Weaver et al., 2003). As a result, sig-
nificant disagreements exist between reanalyses over North Africa. This has led to uncertainty in their ability to
faithfully represent the SHL (Marsham et al., 2011), mesoscale convective systems (Roberts & Knippertz, 2014)
and the intertropical discontinuity (Roberts et al., 2015). Comparison against ground stations from other parts
of the world indicates ERAS outperforms other reanalyses in representing diurnal variability of surface winds
(Ramon et al., 2019), but an extensive evaluation of ERAS winds against ground stations and other reanalyses
has not yet been carried out over the Sahara. We adopt it here only for a broad comparison of synoptic features,
given that it likely inherits underestimation of peak Saharan surface winds shown in ERA-Interim (Allen &
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Figure 1. Comparison between ERAS5 (left) and 12 km horizontal resolution Unified Model remapped onto the ERAS horizontal grid (right). Filled contours in (a)
and (b) represent 925 hPa wind speeds (m s~!). Filled contours in (c) and (d) are the thickness of the 925-700 hPa geopotential height layer (m). (e) and (f) show the
difference between the two fields (UM minus ERAS) for the 925 hPa wind field and 925-700 hPa geopotential thickness, respectively. Both quantities are averaged over
June, July and August of 1997-2007. Regions above 700 m elevation are contoured and shaded in gray.
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above 700 m elevation are contoured and shaded in gray.

Washington, 2014; Roberts et al., 2017). ERAS is not used for lateral boundary conditions in this research as the
UM infrastructure does not currently support it.

A close match between the large-scale wind field is evident in comparing the UM and ERAS (Figures 1a and 1b).
Northeasterlies enter the region of the SHL via a gap between the Atlas and Hoggar mountain ranges, as well as
Atlantic inflow from the northwest. A minimum in wind speeds occurs at 22°N within the climatological ITD.
The highest winds are found along the Atlantic coast where a persistent coastal LLJ linked to the Azores High and
SHL overlies the Canary Current (Soares et al., 2019). Crucially for the purposes of this project, the UM accurate-
ly reproduces a wind speed maximum in central Algeria, evident in both the reanalysis and surface observations
(Chellali et al., 2011). Wind speeds in the core of this maximum are 1-1.5 m s~! higher in the UM compared to
ERAS (Figure le), which may be due to a deeper SHL (Figures 1c and 1d), driving a sharper pressure gradient
through central Algeria (Figure 1f) as well as due to the higher spatial resolution of the UM (12 km compared to
30 km in ERAS).

An interesting feature of the Tidihelt jet is that it appears as a small local wind maximum year-round (Fig-
ure 2), including when the SHL is situated much further south than its central Saharan position in JJA (Lavaysse
et al., 2009). This shows that a local control is important for the position of these high winds, rather than simply
being the result of synoptic pressure patterns. Nonetheless, the jet is at its strongest in JJA (Figure 1b). Whereas
in DJF, MAM, and SON the top of the jet feature is situated at 850-800 hPa, during JJA a much deeper boundary
layer appears to mix momentum from the jet to greater heights of 750-700 hPa (not shown).
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Figure 3. Representation of orography as elevation above sea level in the 12 km UM simulations for the control experiment (left) and the FLATHOGGAR experiment
(right). Relevant geographical features are labeled in (a).

2.4. Orography Experiments

Two simulations are run. In the first (CONTROL, Figure 3a), the UM is run with full orography over the limited
area domain. In the second run (FLATHOGGAR, Figure 3b), the region encompassing the Hoggar mountains is
smoothed to a uniform level. Unlike Birch et al. (2012), we do not remove the Air mountains at 19°N, 9°E as our
goal was to isolate the role that mountains adjacent to the Tidihelt region have upon winds there; furthermore, the
Air Mountains are an important site of late summer convective triggering (see Redl et al. [2015], Figure 6 there-
in) which could have an impact upon the low-level monsoon circulation. The same lateral boundary conditions
are supplied by ERA-Interim in both experiments, meaning that although the removal of the Hoggar mountains
may influence the large-scale flow beyond the limited area domain, this effect is not accounted for in this paper.

One approach tested for flattening the Hoggar region was to apply a mask and level all terrain therein to a maxi-
mum of 350 m above sea level. This introduced sharp horizontal discontinuities, especially toward the east of the
domain around 12-14°E which produced local wind acceleration in the simulations. The solution adopted here
is to smooth the mountains by cloning terrain from the lowlands in the central Saharan Erg Chech and El Djouf
(4°W-0°E) over the Hoggar plateau, introducing a more gradual incline toward the higher elevation of eastern
Algeria and Libya. Terrain from the western Sahara is selected for cloning as it is homogeneous in elevation over
spatial scales of hundreds of kilometers and therefore best approximates a flat sand sheet with no orography.

Edits are applied to a 1 km resolution topography dataset prior to generating the UM ancillary files describing the
mean and sub-grid properties of the orography. The effects of flow blocking, orographic form drag and orograph-
ic gravity wave drag are then calculated consistently following the method described in Walters et al. (2019) (see
Sections 2.6 and 3.5 therein). Orographic effects at the smallest scales (at which buoyancy effects are negligible)
are represented by an effective roughness length (i.e., indirectly) while sub-grid orographic effects at larger scales
up to the model resolution are represented with a drag scheme originally developed by Lott and Miller (1997)
with slight modifications described in Section 3.5 of Walters et al. (2017). No changes are made to albedo, which
is tested in more detail in Birch et al. (2012) and shown to exert a smaller influence on the boundary layer than
the orography itself. Surface roughness is also not edited in these experiments beyond the effective roughness
length described above.

2.5. Composite Method

The composite method in this paper selects high northeasterly surface wind days with visible dust emission.
Compositing is used in this analysis rather than averaging over the whole simulation for two reasons. Firstly,
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although northeasterlies are the most common wind regime in the Tidihelt region, other wind regimes are active
through summer due to occasional incursions from monsoon winds and Atlantic inflow. Secondly, high wind days
are disproportionately important for dust emission. The bulk of the results presented in this paper are obtained
from a comparison of composited days between the two experiments. An analysis of the overall effect on the
potential for dust emission across all days is presented in Section 4.4, however.

A sub-domain within the limited area of the model simulations is delineated and corresponds to the Tidihelt De-
pression in central Algeria, described in more detail in Caton Harrison et al. (2019). The boundaries are 25-28°N,
1.5°W to 3°E (the box region in Figure 5). Henceforth, this is referred to as the TID region.

Mornings with high surface winds and visible local LLJ-linked dust emission in the control experiment TID
region are selected for compositing. Dust emission is not computed in the model simulations, hence informa-
tion about emission must be obtained from the contemporaneous satellite record. The period of June, July and
August (JJA) 2004-2007 is used as this contains an overlap between the period for which UM data is available
(1997-2007) and the period for which SEVIRI dust tracking has been performed (2004-2017). Each selected day
must fulfill the following conditions for the day to count as a dust day:

1. At least 500 total dust pixels visible between 05:00 and 13:00 UTC in SEVIRI in the TID region which the
algorithm from Caton Harrison et al. (2019) identifies as LLJ dust
2. Any dust observed is freshly emitted (within the same morning)

bt

Mean control Experiment 10 m wind speed within the TID region exceeds 7 m s~
4. Mean control Experiment 10 m wind direction within the TID region for the day is between 0° and 90°

A wind direction constraint is included in order to limit the analysis to a northeasterly wind regime associated
with the prevailing dry Harmattan. As identified in Section 2.3, the existing analysis of UM performance in Allen
and Washington (2014) indicates that fidelity is excellent for northeasterly jets. On the other hand, it is relatively
poor for southwesterly jets embedded within the monsoon.

The 30 days with the highest mean wind speed and which also fulfill the conditions above are selected for inclu-
sion within the composites. Composites are averaged over 05:00-12:00 UTC to target a period in which both the
core strength of the jet peaks and the mixing of momentum to the surface occurs. Note that an extra hour is includ-
ed on the end of the SEVIRI dust observation window as occasionally dust plumes emitted in the mid-morning
do not become visible until around midday.

The 7 m s~! wind speed threshold chosen here is conservative compared to estimated dust emission thresholds at
surface stations in central and southern Algeria (Cowie et al., 2014), but provides a good sample of days to choose
from given the limited time analysis time period of four summers; 46 days fulfilling each composite condition
are found, of which the top 30 are selected. For a clearer picture of the likely dust emission threshold for the TID
region, an analysis of the relationship between simulated winds on these composite days and observed dust is
given in Section 4.4.

3. Synoptic Conditions

Lag-lead composites of 12:00 UTC soundings from In Salah (Figure 4) reveal that a cold northeasterly boundary
layer anomaly accompanies strong winds and dust emission over the Tidihelt region. Cold anomalies of —0.5 to
—3 K, significant at the 95% level, are observed up to 700 hPa through from Day —3 to Day +3. By Day —1 there
is a significant northeasterly anomaly of 4.8 m s~! at 925 hPa, backing to northerly at 700 hPa. The coldest layer
is found at 925-850 hPa on Day 0 along with a wind anomaly of 5.6 m s~! at 925 hPa and a 3.6 m s~! anomaly
observed at the surface level of 982 hPa. Days +1 to +3 see a continued cold anomaly with winds backing more
northerly.

Patterns in the fields from the UM control experiment map on well to observations from Figure 4 and reveal the
synoptic processes driving the wind anomalies (Figures 5a—5d). A cold anomaly extends from the Mediterranean
to central Algeria, advected by northeasterlies which reach their westernmost extent on Days 0 and +1 (Fig-
ures 5c and 5d). This strengthens winds through the Harmattan LLJ alley into the core of the SHL and also drives
an intense warm anomaly on the Atlantic coast by blocking cooler maritime inflow.
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Figure 4. Time versus height composite sonde measurements of temperature anomaly (shaded boxes) and wind speed/direction anomaly seen from a bird's eye view
(arrows) taken at 1200 UTC at In Salah relative to the mean for June, July and August 1997-2007. Each column represents a lag relative to the composite event at Day
0. Temperature anomalies significant at the 95% level are hatched. Wind speed anomalies significant at the 95% level are represented in bold. An inset map identifying
the location of the sonde launches is shown in the top right.

Intensification of subtropical low-level high pressure over the eastern Sahara associated with intrusion of a mid-
latitude trough and cold inflow from the Mediterranean has long been linked with strengthened Harmattan winds
(Kalu, 1979, Figures 5.4 and 5.5 therein). Synoptic conditions shown in Figure 5 resemble a typical Mediter-
ranean cold surge event which can persist over North Africa for up to 10 days alongside an enhanced upper
tropospheric ridge-trough pattern (Vizy & Cook, 2009). Upper level ridging over the Atlas mountains in the
UM simulation is accompanied by a trough over the Mediterranean (Figures Se-5h) which propagates eastward
through the composites. At low levels, a low pressure anomaly is present south of 28°N and east of 0°E which
shifts westward from day —2 (e) to day +1 (h). North of 28°N, anomalous high pressure develops and intensifies
to a maximum at day 0 (g) over and south of the Atlas mountains, producing conditions associated with a high
North African Dipole Index (NAFDI) (Rodriguez et al., 2015).

In the remainder of the paper, we study the low-level circulation patterns for the lag 0 composite days in both the
control and FLATHOGGAR simulations.

4. Model Experiment Results
4.1. Wind Speed and Vertical Structure

925 hPa composite winds in the control experiment (Figure 6a) exhibit a maximum northwest of the Hoggar
mountains, extending from 6°E to the Algerian border with Mali and Mauritania. Northeasterlies between 56°
and 79° account for over 40% of composite winds averaged across the TID domain (Figure 6b). TID is also situ-
ated at a confluence with southeasterlies along the western flank of the Hoggar mountains. The northern limb of
the SHL circulation is found around northern Mali at 24°N, with northerlies across Mauritania.

A substantial reduction in wind speeds occurs over the Tidihelt region in the absence of the Hoggar mountains
(Figure 6¢), with mean composite winds within TID dropping from 9.0 to 7.3 m s™!. A slight local maximum
nonetheless persists over central Algeria. A shift in the wind regime can be seen over the TID region, with winds
in the 56-79° range reduced (Figures 6b and 6d) in favor of easterlies (79-101° on the wind rose), which also
prevail over the region previously occupied by the Hoggar mountains. Southeasterlies are no longer evident in
southern Algeria and the SHL circulation appears to be shifted southward, with a northern limb extending down
to 22°N and reduced northerlies in eastern Mauritania (Figure 6c).
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Figure 5. Upper plots (a—d) show control experiment composite anomaly potential temperature at 130 m height (filled contours) with wind vectors relative to the mean
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and shaded in gray.

It should be noted that a potential drawback of a compositing approach here is that data in the control experiment
is selected for high wind speeds, whereas data in the counterfactual FLATHOGGAR experiment is not; removal
of orography could affect the timing of high wind events and the wind regime in which they occur and hence
cause winds to peak on different days. When the same analysis as in Figure 6 is carried out for the entire dataset
instead of composite days, a similar result emerges in a subtler form; the dominant shift is still a reduction of
wind speeds proximate to the Tidihelt (by 10.1% instead of the 18.9% obtained with compositing) and a slight
preference for easterlies over northeasterlies (not shown). The effect of orography upon modeled winds is there-
fore greater than usual on days with synoptic forcing driving an intense northeasterly jet. There is no indication,
however, that the strongest winds seen on composited control days occur at other times in the FLATHOGGAR
results. Further evidence of this may be found in Section 4.4 (Figure 13a) in which non-composited wind speed
distributions are compared for the two experiments.
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A composite cross section across the TID region in the control experiment reveals that the Tidihelt jet is a
low-level nocturnal feature, extending to approximately 1,800 m above sea level at 00 UTC (Figure 7a). The jet
core is close to the surface at 1,000 m above sea level or approximately 100 m above the surface. During the
day, winds within the boundary layer are well-mixed with a much slower core below 10 m s~! extending up to
above 2,000 m above sea level (Figure 7b). Although the nocturnal jet extends from 1 to 6°E, the highest winds
are found south of the Tademait Plateau in the low-lying Tidihelt Depression, corresponding to the TID region
(25-28°N, 1.5°W to 3°E). In the FLATHOGGAR experiment (Figures 7c and 7d), the jet core is significantly
eroded and less clearly defined, although the winds are still accelerated nocturnally (Figure 7¢).

4.2. Leeward Circulation

The difference between the two experiments at 850 hPa reveals a circulation pattern centered over the TID (Fig-
ure 8). The circulation has a northern limb of northeasterly anomalies through central Algeria and a southern limb
of southeasterlies and easterlies in the lee and over the Hoggar mountains (Figure 8b). This is associated with a
geopotential height perturbation of —15 to —20 m over the TID region at 850 hPa (Figure 8a), with significant
differences of 5-10 m as far west as the Atlantic coast.

East-west cross sections through the Hoggar mountains indicate a diurnal variation in the circulation pattern. In
both the control (Figures 9a-9d) and FLATHOGGAR (Figures 9e—9h) experiments, easterlies persist nocturnally,
albeit weakened on the western slopes in the control. During the day, however (Figures 9c and 9d), easterlies drop
to zero between 2° and 5°E in the control, whereas in FLATHOGGAR they are maintained at 3-5 m s~! (Fig-
ures 9g and 9h). This suggests an upslope wind in the control experiment driven by enhanced sensible heat fluxes
over the elevated terrain driving a thermally direct circulation (Wolyn & Mckee, 1994; Zingl & Chico, 2006).
In this instance, however, no actual upslope winds develop as the background flow is too strong. Differences
between the meridional circulation are more stark; whereas in FLATHOGGAR a mild southerly component is
present at 06:00 UTC (Figure 10f) and eroded entirely during the day (Figure 10g), in the control experiment a
southerly flow develops overnight over the peak of the Hoggar and reaches a maximum of up to 5 m s~! at 06:00
UTC (Figure 10b) at which point it is located over the western mountain lee slopes. The result is a net southeast-
erly into the Tidihelt Depression. During the day, this flow weakens and shifts further westward (Figure 10c).

The Hoggar mountains are subject to intense heating during the day. The difference between potential temperature
fields of the two experiments becomes greatest at 12:00 UTC (Figure 11c), with a peak over the summit extend-
ing up to 3,000 m in a dome shape. During the night, this heating perturbation shifts westward (Figure 11a, 11b,
and 11d) and is situated within a residual layer above the surface over 0-5°E. This elevated heating due to the
presence of the Hoggar mountains induces a horizontal temperature gradient over the plateau (about 1,500 m
elevation) relative to the low lying Sahara to the west (about 300 m elevation). A gradient between the cooler
maritime west and the SHL exists in the absence of the mountains (not shown) but is greatly intensified when
elevated terrain is present. The existence of elevated heating and baroclinicity suggests that the Hoggar mountains
may be capable of setting up a thermal low or trough within the much broader SHL, deepening and extending it.

The Tidihelt jet is a nocturnal phenomenon; 925 hPa composite winds in the Tidihelt region reach their maximum
at midnight UTC and minimum at 13:00 UTC, whereas the minimum mean 925 hPa geopotential height in the
lee of the Hoggar mountains occurs at 17:00 UTC (not shown). This temporally shifted relationship aligns with
the theoretical behavior of heat lows which develop to their lowest central pressure in the afternoon and evening.
Being out of quasi-geostrophic balance, however, the peak winds and relative vorticity occur several hours after
the pressure minimum (Racz & Smith, 1999; Spengler & Smith, 2008). The exact timing of the peak in low-level
winds can also depend on the Coriolis parameter and its effect on inertial oscillation (Racz & Smith, 1999);
this is tested by Heinold et al. (2015) who show that a later timing of maximum supergeostrophy (i.e., closer to
sunrise) is favored at 20°N compared to 30°N, with the Tidihelt at a latitude of about 26°N. A daytime minimum
in low-level winds is driven by intense mixing of the convective boundary layer, which inhibits horizontal flows
(Parker et al., 2005). Furthermore, it is plausible that the background easterlies act to shift the center of the heat
low westward to its mean position seen in Figure 8a, similar to the effect of background easterlies on the Austral-
ian heat trough (Spengler et al., 2005).
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4.3. Geostrophic Wind Analysis

To test the role that elevated heating could have upon winds in the Tidihelt notwithstanding any additional
dynamic effects, we estimate the geostrophic winds induced by a heating anomaly equivalent to the difference
between the control and FLATHOGGAR experiment. It should be noted that as the diabatic heating and cyclonic
circulation are out of phase the real Tidihelt jet is not in geostrophic balance; furthermore its peak core wind
speeds are subject to supergeostrophy due to inertial oscillation. These estimates instead serve to identify the
expected spatial pattern of winds induced by thermal forcing for comparison with Figure 8.

Atmospheric thickness is estimated for the 925-700 hPa layer from the temperature profile of the control and
FLATHOGGAR experiments to account for the heating effect of the Hoggar mountains. Assuming hydrostatic
balance, the atmospheric thickness in a given layer corresponding to a temperature profile is given by the hyp-
sometric equation:

P
2z = &/ T,dInp (1)
& Jp

in which z, and z, are the lower and upper heights of the layer between pressure levels p, and p, (925 and 700 hPa
in this instance), R, is the gas constant for dry air, g is gravity, and T, is the virtual temperature.

The difference between the estimated atmospheric thickness of the two experiments (Figure 12a) shows a thick-
ness perturbation of over 10 m centered over the lee of the Hoggar mountains, in close resemblance to the
850 hPa pattern (Figure 8a). Negative differences (warmer temperatures in the control) extend through central
Algeria and into Mali, with evidence of positive differences (cooler temperatures in the control) along the west
coast. This pattern is comparable to the SHL itself (Figure 1d) but its core is situated slightly further east over
the Hoggar mountains themselves. Nonetheless, these results suggest the presence of the mountains is capable of
introducing elevated heating which could deepen or extend the SHL.

To understand the effect such heating could have upon the winds, we compute the geostrophic wind change
induced if geopotential heights at an arbitrary level (within 925 to 700 hPa) were lowered by the thickness differ-
ences shown in Figure 12a. The results show a circulation pattern centered around the thermal low (Figure 12b),
with peak geostrophic winds in excess of 5 m s~! within and upstream of the TID domain where the pressure
gradient peaks. This circulation closely resembles the spatial structure of the wind difference between the control
and FLATHOGGAR experiments at 850 hPa (Figure 8b). Such a similarity suggests that heating alone is capable
of explaining the pressure pattern and that a local maximum in winds over the Tidihelt is the result of a thermo-
dynamically forced nocturnal LLJ.
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Our explanation for lee cyclogenesis over and west of the Hoggar mountains does not rely on the generation of an
upstream anticyclone at low levels to enhance northeasterly winds as shown in the comparable idealized model
experiment of Semazzi and Sun (1997). In contrast with their analysis, our composite appears to show only minor
differences in anticyclonic circulation on the windward side of the Hoggar mountains (Figure 8a) although an
enhanced anticyclonic return flow is observed atop the leeward circulation, especially above 500 hPa. Instead, the
results suggest that the enhanced elevated heating of the boundary layer is the primary control upon the deepening
of the eastern SHL and enhancement of the winds through the Tidihelt.
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A low level lee circulation over central and southern Algeria appears in each climatological season (not shown),
suggesting it is a stationary feature which helps maintain the elevated winds in the Tidihelt through the year (Fig-
ure 2), with peak strength when the lee circulation is collocated with the SHL in summer.

4.4. Role in Dust Emission Frequency

The Tidihelt depression is an important and frequently activated dust source (Ashpole & Washington, 2013; Ca-
ton Harrison et al., 2019; Schepanski et al., 2007). Our results show that the Hoggar mountains play an important
role in accelerating low level winds over the region. We hypothesize that the mountains could therefore be partly
responsible for the prominence of this dust source, meaning they are important for both erosivity on their leeward
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flank. To test this hypothesis, an estimate of the relationship between wind speeds and dust emission is needed.
To achieve this, we compare simulated wind speeds with satellite observations of LLJ dust plumes. Unlike pre-
vious results, no compositing is applied in this analysis as the aim is to estimate the net effect of orography upon
dust emission conditions. Results are instead calculated from all model output from JJA 2004-2007 between the
hours of 05:00 and 13:00 UTC (i.e., when freshly emitted LLJ dust is visible to satellite).
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to the control experiment which would be induced by a lowering of geopotential height contours by the amount shown in (a).
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Figure 13. (a) Map of estimated percentage decrease in the frequency of dust emission events if the influence of the Hoggar
mountains on the low-level wind field were removed, with a green box identifying the TID domain. Filled green squares show
the approximate locations of important LLJ dust sources. In (b), the distribution of hourly composite mean wind speeds in the
TID region in the control (dark gray) and FLATHOGGAR (light gray) experiments is shown. The percentage of events which
are accompanied by an LLJ Tidihelt dust emission event in SEVIRI is plotted as a red cross for each wind speed bin. (c)
shows counts of such emission events in SEVIRI in the TID domain for the control experiment (dark brown) and an estimate
of what those counts would be in the FLATHOGGAR experiment given the change in frequency for that wind speed bin
(light brown). Model and satellite data is obtained from 0500 to 1300 UTC on all 20042007 JJA days.

The method for distinguishing LLJ dust from CPO dust in SEVIRI imagery is described in Caton Harrison
et al. (2019). In brief, the timing of emission, plume geometry and distance from deep convection is combined
in a multiple regression model to assign a value from 0 to 1 to each discrete dust plume masked in SEVIRI data,
with higher values indicating a higher probability of being LLJ-associated (other plumes are assumed to originate
from convective CPO activity).

Here, we count dust emission events over the Tidihelt region and assign them to a wind speed bin corresponding
to the mean 10 m wind speed simulated over the TID domain for the timestep at which the dust is observed. Dust
counts are obtained as hourly totals and compared to hourly UM values. Only LLJ dust emitted the same day and
within the TID domain is included. In addition, if the sum of cloud pixels (identified where BT 10.8 um < 270 K,
following Caton Harrison et al. [2019]) in the domain for the hours of 02:00 and 18:00 UTC exceeds 500, the
day is considered cloud masked and skipped. The results of this analysis (Figure 13b, dark gray bars, with dust
frequency as red crosses) give an approximation of the relationship between simulated wind speed in the control
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and observed LLJ dust emission across JJA 2004-2007. The most commonly occurring wind speeds are in the
3-5 m s~! range, but the winds associated with the highest frequency of dust emission events are found in the
10-12 m s~ range. This exponential increase in dust emission frequency at higher wind speeds is consistent with
the theoretical cubic dependence of dust emission on surface wind speed (Marticorena & Bergametti, 1995). As
lower wind speeds are much more common, the counts of dust events in each bin are more even (Figure 13c, dark
brown) relative to the distribution of frequencies for each wind speed bin in Figure 13b. For example, although
the frequency of dust emission events is quite low in the 4-5 m s~! range (Figure 13b), the total number of emis-
sion events for this bin in the control experiment (Figure 13c) is comparable to that for the 10-11 m s~! range as
there are so many more occurrences of the former wind speed. Note that the very highest wind speed bin with any
data (12-13 m s7!) has only 16 occurrences in the control experiment, which may explain why the dust emission
frequency drops off again here.

The FLATHOGGAR experiment is observed to shift the 10 m wind speed distribution within the TID domain in
favor of lower wind speeds (Figure 13b, light gray bars), with the largest differences found in the high tail; for ex-
ample, wind speeds in the 8-9 m s~! range decrease by over 50%. To estimate the effect of this upon dust emission
in the Tidihelt, we assume the relationship between wind speed and dust emission holds as a constant between
experiments and adjust the frequency of dust emission in each wind speed bin accordingly. For example, 2.8% of
wind speed events falling into the 89 m s~! wind speed bin have an LLJ emission event observable in SEVIRI
at the same time (18 of 643 counts), so for the FLATHOGGAR the estimated dust counts would be 2.8% of 311
counts, or 8.7 counts. This results in a “simulated” distribution of dust emission counts for the FLATHOGGAR
experiment TID region (Figure 13c, light brown bars). As high wind speeds are so important for dust emission,
the effect of changes in the tails of the wind speed distribution is substantial; overall the TID region sees an aver-
age reduction in dust emission frequency of 31%.

As Figure 8b shows, the effect of the Hoggar mountains on the wind field is not unique to the Tidihelt region.
Instead, wind speed changes are observed through the entire LLJ alley. To estimate the wider effect of this shift
on the entire model domain, the relationship between wind speed and dust emission identified for the TID region
in Figure 13b is assumed to hold across the entire domain, and an estimated FLATHOGGAR dust emission
frequency distribution is calculated at each grid box based on the wind speed distribution at that grid box in
FLATHOGGAR. The difference between the two experiments' estimated dust emission frequency (Figure 13a)
indicates how dust emission frequency in the central and western Sahara might be different in the absence of the
Hoggar mountains.

Removing the Hoggar mountains is estimated to have the greatest impact upon dust emission frequency in the
Tidihelt region, with percentage decreases over 50% in the 0 to 4°E region most strongly impacted by a combi-
nation of background northeasterlies and the leeward circulation observed in Figure 8b. Effects are also observed
further north close to the southern foothills of the Atlas mountains as well as over northern Mauritania. To give
an indication of the position of this wind speed reduction relative to prominent dust sources, locations with known
LLJ-related dust sources from the SEVIRI record are marked in Figure 13a. These are locations where a cluster
of at least four SEVIRI pixels are each flagged with 10 or more LLJ dust emission events from June, July and
August of 2004-2017 following the method described in Caton Harrison et al. (2019). As well as sources within
central Algeria, reduced wind speeds are observed to affect dust emission frequency at sources in northern Mali,
Mauritania and western Algeria. By contrast, the mountains are responsible for increased estimated emission fre-
quencies in the immediate lee as well as upstream in western Libya (12—-16°E) as a result of flow blocking and an
upslope wind flow induced by the elevated heating discussed in Section 4.2, though these regions do not contain
clear satellite-observed LLJ dust sources.

This counterfactual set of results comes with caveats. First and foremost, discussing the impact of the mountains
in terms of an alternative situation in which those mountains did not exist implies that other conditions would
be held constant in such a scenario. Orography is not only responsible for increased erosivity due to accelerated
surface winds, however; a large proportion of active dust sources appear to be located close to Saharan moun-
tains around alluvial fans, chotts and sebkhas in the foothills (Middleton & Goudie, 2001; Prospero et al., 2002;
Schepanski et al., 2007), suggesting mountains drainage is also a factor in local erodibility. A second caveat is
that dust emission thresholds are not constant across North Africa, and a shift in emission frequencies applicable
to the Tidihelt does not necessarily hold elsewhere; for example, emission thresholds are thought to be higher
in northern Algeria (Cowie et al., 2014). In addition, the lateral boundary conditions are held constant in this
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experiment but removal of the mountains may be expected to feed back upon the wider circulation. Lastly, as aer-
osols are prescribed, the modification to the atmosphere in the FLATHOGGAR experiment does not include dust
radiative feedbacks, which may directly alter the local circulation via redistribution of heating within the atmos-
pheric column (Miller & Tegen, 1998) including boundary layer stability and LLJ formation (Miller et al., 2004;
Pérez et al., 2006), or indirectly, for example by introduction of ice condensation nuclei (DeMott et al., 2003;
Klein et al., 2010; Price et al., 2018). The advantage of the present setup is its relative simplicity, isolating the
local impact of the orography directly upon the winds as an empirically associated proxy for dust emission fre-
quency, and the results show that even a moderate shift in the wind speed distribution can have large impacts on
dust emission, but a more sophisticated setup is needed to consider the mediating effects of varied land surface
conditions, feedbacks on the wider circulation and feedbacks from dust.

5. Summary and Conclusions

The role of the Hoggar mountains in dust-emitting wind conditions within the northeasterly LLJ alley through
the central Algerian Sahara has been tested with parallel Met Office Unified Model (HadREM3-GA7.05) exper-
iments. Lateral boundary conditions are supplied by the ERA-Interim reanalysis and a composite method is de-
rived using dust plume observations from SEVIRI to identify days with evidence of both high northeasterly winds
and visible LLJ-related dust emission within the Tidihelt region of central Algeria, chosen as a representative dust
source. Reanalysis, in-situ observations and model simulations suggest a local maximum in wind speeds exists
here, identified in this research as the Tidihelt jet.

High wind and dust conditions within the Tidihelt during boreal summer are associated with a long-lived north-
easterly cold anomaly within the boundary layer. This is in turn linked to Mediterranean inflow from an inten-
sified subtropical anticyclone and the passage of an enhanced upper level ridge-trough pattern, typical of cold
surge conditions.

To test the role of the Hoggar mountains in the existence and strength of the Tidihelt jet, a control experiment
is compared with a counterfactual experiment in which the Hoggar mountains are smoothed to be continuous
with the Saharan sand sheet over the region of the SHL. The two experiments are run in parallel for the period
2004-2007 to overlap with available SEVIRI data and the 30 composite high wind, high dust days are compared.
The following results are found when the Hoggar mountains are removed in the composites:

1. Mean composite wind speeds within the Tidihelt region decline from 9.0 to 7.3 m s~!, although a slight local
maximum persists over central Algeria

2. The wind regime shifts from favoring northeasterlies to a more easterly prevailing wind

3. The Hoggar mountains are responsible for a geopotential height perturbation at 850 hPa of —15 to —20 m over
the TID region, but with significant differences extending as far west as the Atlantic coast

4. The northern limb of this cyclonic circulation is collocated with the Tidihelt jet

5. A dome-shaped daytime elevated heating structure situated over the Hoggar mountains can explain the simu-
lated wind field difference between the experiments, indicating an orographic thermal low is responsible for
peak Tidihelt winds

6. Based on an empirical relationship between surface wind speeds and LLJ dust observed in SEVIRI imagery,
an absence of Hoggar mountains is estimated to reduce dust emission frequency over the Tidihelt region by
an average of 31%

The results of this orography experiment show that the Hoggar mountains play a direct role in the surface wind
field of the northern Sahara, including the dusty northeasterly LLJ alley through central Algeria. Elevated dia-
batic heating is shown to be an effective explanation for accelerated low-level flow around a shallow heat low
disturbance centered around the lee of the Hoggar mountains. This, in turn, is estimated to have a substantial role
in dust emission frequency in LLJ-dominated regions.

This work contributes to a body of literature demonstrating the role that orography plays in both the erosivity
and erodibility of key western Saharan dust sources. However, it is limited in scope to LLIJs, which are thought
to play a secondary role in summertime dust emission. The availability of convective-permitting simulations
(e.g., Heinold et al., 2013; Knippertz et al., 2009; Marsham et al., 2011) and CPO parameterizations (e.g., Grand-
peix & Lafore, 2010; Pantillon et al., 2015) means more attention could be devoted to orographic impacts upon

CATON HARRISON ET AL.

20 of 24



A7t |
NI
ADVANCING EARTH
AND SPACE SCIENCE

Journal of Geophysical Research: Atmospheres

10.1029/2021JD035025

Acknowledgments

T. Caton Harrison is funded through the
NERC doctoral training partnership (NE/
L002612/1) and by a CASE studentship
with the UK Met Office. R. Washington
was partly supported by the NERC-De-
partment for International Development
(DFID)-funded Improving Model
Processes for African Climate (IMPALA)
project (Grant NE/M017206/1), as part
of the Future Climate for Africa (FCFA)
program (http://futureclimateafrica.org/
project/impala/). The authors are grateful
to Callum Munday, Ian Ashpole and

Ron Miller for useful discussions about
experiment design and interpretation of
the results. The authors would also like
to thank three anonymous reviewers

for their comments which improved the
manuscript.

convective triggering and cold pool formation around southern Saharan and Sahelian dust sources. The dust
budget from year to year in the Sahara is a function of both the availability of erodible material and the frequen-
cy and strength of mesoscale meteorological emission mechanisms. Efforts to understand the controls on these
emission mechanisms will allow model estimates of dust emission to be constrained via improvements to driving
wind fields.
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